xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/ConvolutionLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "ConvolutionLayer.h"
25 
26 #include "tests/validation/Helpers.h"
27 #include "tests/validation/reference/Convolution3d.h"
28 #include "tests/validation/reference/Permute.h"
29 #include "tests/validation/reference/Utils.h"
30 #include "tests/validation/reference/UtilsQuantizedAsymm.h"
31 
32 #include "tests/framework/Asserts.h"
33 
34 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
35 
36 namespace arm_compute
37 {
38 namespace test
39 {
40 namespace validation
41 {
42 namespace reference
43 {
44 template <typename T, typename TW, typename TB>
convolution_layer_nchw(const SimpleTensor<T> & src,const SimpleTensor<TW> & weights,const SimpleTensor<TB> & bias,SimpleTensor<T> & dst,const PadStrideInfo & info,const Size2D & dilation,unsigned int num_groups)45 SimpleTensor<T> convolution_layer_nchw(const SimpleTensor<T> &src, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &dst, const PadStrideInfo &info,
46                                        const Size2D &dilation, unsigned int num_groups)
47 {
48     ARM_COMPUTE_ERROR_ON((src.shape()[2] / num_groups) != weights.shape()[2]);
49 
50     // Compute reference
51     const int width_in       = src.shape().x();
52     const int height_in      = src.shape().y();
53     const int depth_in       = src.shape().z();
54     const int width_out      = dst.shape().x();
55     const int height_out     = dst.shape().y();
56     const int depth_out      = dst.shape().z();
57     const int width_weights  = weights.shape().x();
58     const int height_weights = weights.shape().y();
59     const int depth_weights  = weights.shape().z();
60     const int pad_left       = info.pad_left();
61     const int pad_top        = info.pad_top();
62     const int stride_xi      = info.stride().first;
63     const int stride_yi      = info.stride().second;
64 
65     auto output_wh = scaled_dimensions(width_in, height_in, width_weights, height_weights, info, dilation);
66 
67     const int start_xi    = (dilation.x() * (width_weights - 1) + 1) / 2 - pad_left;
68     const int start_yi    = (dilation.y() * (height_weights - 1) + 1) / 2 - pad_top;
69     const int end_xi      = output_wh.first * stride_xi;
70     const int end_yi      = output_wh.second * stride_yi;
71     const int num_batches = src.shape().total_size() / (width_in * height_in * depth_in);
72 
73 #if defined(_OPENMP) && !( defined(__arm__) && defined(__ANDROID__))
74     #pragma omp parallel for collapse(5)
75 #endif /* _OPENMP */
76     for(int r = 0; r < num_batches; ++r)
77     {
78         for(int yi = start_yi; yi < start_yi + end_yi; yi += stride_yi)
79         {
80             for(int xi = start_xi; xi < start_xi + end_xi; xi += stride_xi)
81             {
82                 for(int group = 0; group < static_cast<int>(num_groups); ++group)
83                 {
84                     for(int ofm = 0; ofm < static_cast<int>(depth_out / num_groups); ++ofm)
85                     {
86                         // Compute input and output offsets
87                         const int offset_in  = r * width_in * height_in * depth_in + (group * (depth_in / num_groups) * width_in * height_in);
88                         const int xo         = (xi - start_xi) / stride_xi;
89                         const int yo         = (yi - start_yi) / stride_yi;
90                         const int offset_out = xo + yo * width_out + ((ofm + group * (depth_out / num_groups)) * width_out * height_out) + (r * width_out * height_out * depth_out);
91                         const int offset_w   = (ofm + group * (depth_out / num_groups)) * width_weights * height_weights * depth_weights;
92                         const int offset_b   = (ofm + group * (depth_out / num_groups));
93 
94                         ARM_COMPUTE_ASSERT(xo < width_out);
95                         ARM_COMPUTE_ASSERT(yo < height_out);
96 
97                         // Compute 3D convolution
98                         convolution_3d::detail::convolution3d(src, weights, bias, dst,
99                                                               offset_in, offset_w, offset_b, offset_out,
100                                                               xi, yi,
101                                                               width_in, height_in, (depth_in / num_groups),
102                                                               width_weights, height_weights, dilation.x(), dilation.y(), ofm);
103                     }
104                 }
105             }
106         }
107     }
108     return dst;
109 }
110 template <typename T, typename TW, typename TB>
convolution_layer(const SimpleTensor<T> & src,const SimpleTensor<TW> & weights,const SimpleTensor<TB> & bias,const TensorShape & output_shape,const PadStrideInfo & info,const Size2D & dilation,unsigned int num_groups,QuantizationInfo out_quant_info)111 SimpleTensor<T> convolution_layer(const SimpleTensor<T> &src, const SimpleTensor<TW> &weights, const SimpleTensor<TB> &bias, const TensorShape &output_shape, const PadStrideInfo &info,
112                                   const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info)
113 {
114     // if no explicit quantization has been set you the same as src
115     if(out_quant_info == QuantizationInfo())
116     {
117         out_quant_info = src.quantization_info();
118     }
119     // Create reference
120     SimpleTensor<T> dst{ output_shape, src.data_type(), 1, out_quant_info };
121 
122     return convolution_layer_nchw(src, weights, bias, dst, info, dilation, num_groups);
123 }
124 
125 template SimpleTensor<float> convolution_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, const TensorShape &output_shape,
126                                                const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info);
127 template SimpleTensor<half> convolution_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &bias, const TensorShape &output_shape,
128                                               const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info);
129 template SimpleTensor<uint8_t> convolution_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, const TensorShape &output_shape,
130                                                  const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info);
131 template SimpleTensor<uint8_t> convolution_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &bias, const TensorShape &output_shape,
132                                                  const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info);
133 template SimpleTensor<int8_t> convolution_layer(const SimpleTensor<int8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &bias, const TensorShape &output_shape,
134                                                 const PadStrideInfo &info, const Size2D &dilation, unsigned int num_groups, QuantizationInfo out_quant_info);
135 } // namespace reference
136 } // namespace validation
137 } // namespace test
138 } // namespace arm_compute
139