xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/Conv3D.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "Conv3D.h"
25 
26 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
27 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
28 #include "support/Requires.h"
29 #include "tests/validation/reference/UtilsQuantizedAsymm.h"
30 
31 // Source/Destination Tensor shape indices (N D H W C)
32 constexpr unsigned int batch_dim   = 4u;
33 constexpr unsigned int depth_dim   = 3u;
34 constexpr unsigned int height_dim  = 2u;
35 constexpr unsigned int width_dim   = 1u;
36 constexpr unsigned int channel_dim = 0u;
37 
38 // Weight tensor shape indices (D H W Cin Cout)
39 constexpr unsigned int weights_depth_dim  = 4u;
40 constexpr unsigned int weights_height_dim = 3u;
41 constexpr unsigned int weights_width_dim  = 2u;
42 constexpr unsigned int weights_CHin_dim   = 1u;
43 constexpr unsigned int weights_CHout_dim  = 0u;
44 
45 namespace arm_compute
46 {
47 namespace test
48 {
49 namespace validation
50 {
51 namespace reference
52 {
53 namespace
54 {
is_valid_pixel(int i,int min,int max)55 inline bool is_valid_pixel(int i, int min, int max)
56 {
57     return (i >= min && i < max);
58 }
59 
60 // Evaluate the weights against an element in a given tensor.
61 template < typename T, typename TB, typename std::enable_if < validation::is_floating_point<T>::value &&validation::is_floating_point<TB>::value, int >::type = 0 >
calculate_conv3d(const SimpleTensor<T> & src,const SimpleTensor<T> & weights,const SimpleTensor<TB> & bias,const Size3D & dilation,int batch,int z_start,int y_start,int x_start,int ch_out,UniformQuantizationInfo oq_info)62 T calculate_conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, const Size3D &dilation, int batch,
63                    int z_start, int y_start, int x_start, int ch_out, UniformQuantizationInfo oq_info)
64 {
65     ARM_COMPUTE_UNUSED(oq_info);
66 
67     const unsigned int weights_width  = weights.shape()[weights_width_dim];
68     const unsigned int weights_height = weights.shape()[weights_height_dim];
69     const unsigned int weights_depth  = weights.shape()[weights_depth_dim];
70 
71     const unsigned int src_channels = src.shape()[channel_dim];
72     const unsigned int src_width    = src.shape()[width_dim];
73     const unsigned int src_height   = src.shape()[height_dim];
74     const unsigned int src_depth    = src.shape()[depth_dim];
75 
76     T total(0);
77     for(unsigned int weight_d = 0; weight_d < weights_depth; ++weight_d)
78     {
79         const int idx_z = z_start + dilation.depth * weight_d;
80         for(unsigned int weight_y = 0; weight_y < weights_height; ++weight_y)
81         {
82             const int idx_y = y_start + dilation.height * weight_y;
83             for(unsigned int weight_x = 0; weight_x < weights_width; ++weight_x)
84             {
85                 const int idx_x = x_start + dilation.width * weight_x;
86 
87                 //Check if the point is within padding
88                 const bool is_x_valid       = is_valid_pixel(idx_x, 0, src_width);
89                 const bool is_y_valid       = is_valid_pixel(idx_y, 0, src_height);
90                 const bool is_z_valid       = is_valid_pixel(idx_z, 0, src_depth);
91                 const bool is_invalid_pixel = !(is_x_valid && is_y_valid && is_z_valid);
92                 if(is_invalid_pixel)
93                 {
94                     continue;
95                 }
96 
97                 for(unsigned int ch_in = 0; ch_in < src_channels; ++ch_in)
98                 {
99                     const T *in_ptr = src.data();
100                     const T *w_ptr  = weights.data();
101 
102                     const int in_offset     = coord2index(src.shape(), Coordinates{ ch_in, idx_x, idx_y, idx_z, batch });
103                     const int weight_offset = coord2index(weights.shape(), Coordinates{ ch_out, ch_in, weight_x, weight_y, weight_d });
104                     T         input_value   = in_ptr[in_offset];
105                     T         weight_value  = w_ptr[weight_offset];
106                     total += (input_value * weight_value);
107                 }
108             }
109         }
110     }
111 
112     const TB *b_ptr      = bias.data();
113     TB        bias_value = b_ptr[ch_out];
114 
115     return total + bias_value;
116 }
117 
118 template < typename T, typename TB, ARM_COMPUTE_REQUIRES_TA(std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value) >
calculate_conv3d(const SimpleTensor<T> & src,const SimpleTensor<T> & weights,const SimpleTensor<TB> & bias,const Size3D & dilation,int batch,int z_start,int y_start,int x_start,int ch_out,UniformQuantizationInfo oq_info)119 T calculate_conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, const Size3D &dilation, int batch,
120                    int z_start, int y_start, int x_start, int ch_out, UniformQuantizationInfo oq_info)
121 {
122     const unsigned int weights_width  = weights.shape()[weights_width_dim];
123     const unsigned int weights_height = weights.shape()[weights_height_dim];
124     const unsigned int weights_depth  = weights.shape()[weights_depth_dim];
125 
126     const unsigned int src_channels = src.shape()[channel_dim];
127     const unsigned int src_width    = src.shape()[width_dim];
128     const unsigned int src_height   = src.shape()[height_dim];
129     const unsigned int src_depth    = src.shape()[depth_dim];
130 
131     const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
132     const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
133 
134     const int   input_offset   = -iq_info.offset;
135     const float input_scale    = iq_info.scale;
136     int         weights_offset = -wq_info.offset;
137     float       weights_scale  = wq_info.scale;
138     const int   output_offset  = oq_info.offset;
139     const float output_scale   = oq_info.scale;
140 
141     int         output_multiplier = 0;
142     int         output_shift      = 0;
143     const float multiplier        = input_scale * weights_scale / output_scale;
144     arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
145 
146     int32_t total(0);
147     for(unsigned int weight_d = 0; weight_d < weights_depth; ++weight_d)
148     {
149         const int idx_z = z_start + dilation.depth * weight_d;
150         for(unsigned int weight_y = 0; weight_y < weights_height; ++weight_y)
151         {
152             const int idx_y = y_start + dilation.height * weight_y;
153             for(unsigned int weight_x = 0; weight_x < weights_width; ++weight_x)
154             {
155                 const int idx_x = x_start + dilation.width * weight_x;
156 
157                 //Check if the point is within padding
158                 const bool is_x_valid       = is_valid_pixel(idx_x, 0, src_width);
159                 const bool is_y_valid       = is_valid_pixel(idx_y, 0, src_height);
160                 const bool is_z_valid       = is_valid_pixel(idx_z, 0, src_depth);
161                 const bool is_invalid_pixel = !(is_x_valid && is_y_valid && is_z_valid);
162                 if(is_invalid_pixel)
163                 {
164                     continue;
165                 }
166 
167                 for(unsigned int ch_in = 0; ch_in < src_channels; ++ch_in)
168                 {
169                     const T *in_ptr = src.data();
170                     const T *w_ptr  = weights.data();
171 
172                     const int in_offset     = coord2index(src.shape(), Coordinates{ ch_in, idx_x, idx_y, idx_z, batch });
173                     const int weight_offset = coord2index(weights.shape(), Coordinates{ ch_out, ch_in, weight_x, weight_y, weight_d });
174                     T         input_value   = in_ptr[in_offset];
175                     T         weight_value  = w_ptr[weight_offset];
176                     total += ((input_value + input_offset) * (weight_value + weights_offset));
177                 }
178             }
179         }
180     }
181 
182     const TB *b_ptr      = bias.data();
183     TB        bias_value = b_ptr[ch_out];
184 
185     total += bias_value;
186 
187     return validation::quantize_down_scale_by_fixedpoint(total, output_multiplier, output_shift, output_offset,
188                                                          std::numeric_limits<T>::lowest(), std::numeric_limits<T>::max());
189 }
190 } // namespace
191 
192 template <typename T, typename TB>
conv3d(const SimpleTensor<T> & src,const SimpleTensor<T> & weights,const SimpleTensor<TB> & bias,SimpleTensor<T> & dst,const Conv3dInfo & conv3d_info)193 SimpleTensor<T> conv3d(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &bias, SimpleTensor<T> &dst, const Conv3dInfo &conv3d_info)
194 {
195     // Compute reference
196     const unsigned int batch_size     = src.shape()[batch_dim];
197     const unsigned int dst_width      = dst.shape()[width_dim];
198     const unsigned int dst_height     = dst.shape()[height_dim];
199     const unsigned int dst_depth      = dst.shape()[depth_dim];
200     const unsigned int src_channels   = src.shape()[channel_dim];
201     const unsigned int weights_out_ch = weights.shape()[weights_CHout_dim];
202     const unsigned int dst_channels   = dst.shape()[channel_dim];
203     const size_t       pad_left       = conv3d_info.padding.left;
204     const size_t       pad_top        = conv3d_info.padding.top;
205     const size_t       pad_front      = conv3d_info.padding.front;
206     const size_t       stride_x       = conv3d_info.stride.x();
207     const size_t       stride_y       = conv3d_info.stride.y();
208     const size_t       stride_z       = conv3d_info.stride.z();
209 
210     const TensorShape dst_shape = arm_compute::misc::shape_calculator::compute_conv3d_shape(src.shape(), weights.shape(), conv3d_info);
211 
212     ARM_COMPUTE_UNUSED(src_channels, weights_out_ch, dst_channels, dst_shape, weights_CHin_dim);
213     // Number of batches of source and destination tensors must match.
214     ARM_COMPUTE_ERROR_ON(src.shape()[batch_dim] != dst.shape()[batch_dim]);
215     // Input channels in the source and weights must match.
216     ARM_COMPUTE_ERROR_ON(src_channels != weights.shape()[weights_CHin_dim]);
217     // Weight channels in the destination and weights must match.
218     ARM_COMPUTE_ERROR_ON(weights_out_ch != dst_channels);
219     // Bias must match the number of destination channels.
220     ARM_COMPUTE_ERROR_ON(bias.shape()[0] != dst_channels);
221     // Compare given dst tensor shape with expected shape.
222     ARM_COMPUTE_ERROR_ON(dst.shape() != dst_shape);
223 
224     for(unsigned int batch = 0; batch < batch_size; ++batch)
225     {
226         for(unsigned int z_out = 0; z_out < dst_depth; ++z_out)
227         {
228             const int z_start = (z_out * stride_z) - pad_front;
229             for(unsigned int y_out = 0; y_out < dst_height; ++y_out)
230             {
231                 const int y_start = (y_out * stride_y) - pad_top;
232                 for(unsigned int x_out = 0; x_out < dst_width; ++x_out)
233                 {
234                     const int x_start = (x_out * stride_x) - pad_left;
235                     for(unsigned int ch_out = 0; ch_out < dst_channels; ++ch_out)
236                     {
237                         T *out_ptr = dst.data();
238 
239                         const int out_offset = coord2index(dst.shape(), Coordinates{ ch_out, x_out, y_out, z_out, batch });
240                         out_ptr[out_offset]  = calculate_conv3d<T, TB>(src, weights, bias, conv3d_info.dilation, batch, z_start, y_start, x_start, ch_out, dst.quantization_info().uniform());
241                     }
242                 }
243             }
244         }
245     }
246     return dst;
247 }
248 
249 template SimpleTensor<float> conv3d(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, SimpleTensor<float> &dst,
250                                     const Conv3dInfo &conv3d_info);
251 template SimpleTensor<half> conv3d(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &bias, SimpleTensor<half> &dst,
252                                    const Conv3dInfo &conv3d_info);
253 template SimpleTensor<uint8_t> conv3d(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<uint8_t> &dst,
254                                       const Conv3dInfo &conv3d_info);
255 template SimpleTensor<int8_t> conv3d(const SimpleTensor<int8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &bias, SimpleTensor<int8_t> &dst,
256                                      const Conv3dInfo &conv3d_info);
257 } // namespace reference
258 } // namespace validation
259 } // namespace test
260 } // namespace arm_compute