xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/ROIAlignLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE
25 #define ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "tests/AssetsLibrary.h"
31 #include "tests/Globals.h"
32 #include "tests/IAccessor.h"
33 #include "tests/framework/Asserts.h"
34 #include "tests/framework/Fixture.h"
35 #include "tests/validation/Helpers.h"
36 #include "tests/validation/reference/ROIAlignLayer.h"
37 
38 namespace arm_compute
39 {
40 namespace test
41 {
42 namespace validation
43 {
44 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois>
45 class ROIAlignLayerGenericFixture : public framework::Fixture
46 {
47 public:
48     template <typename...>
setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout,QuantizationInfo qinfo,QuantizationInfo output_qinfo)49     void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type, DataLayout data_layout, QuantizationInfo qinfo, QuantizationInfo output_qinfo)
50     {
51         _rois_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::QASYMM16 : data_type;
52         _target         = compute_target(input_shape, data_type, data_layout, pool_info, rois_shape, qinfo, output_qinfo);
53         _reference      = compute_reference(input_shape, data_type, pool_info, rois_shape, qinfo, output_qinfo);
54     }
55 
56 protected:
57     template <typename U>
fill(U && tensor)58     void fill(U &&tensor)
59     {
60         library->fill_tensor_uniform(tensor, 0);
61     }
62 
63     template <typename U>
64     void generate_rois(U &&rois, const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, TensorShape rois_shape, DataLayout data_layout = DataLayout::NCHW)
65     {
66         const size_t values_per_roi = rois_shape.x();
67         const size_t num_rois       = rois_shape.y();
68 
69         std::mt19937 gen(library->seed());
70         TRois       *rois_ptr = static_cast<TRois *>(rois.data());
71 
72         const float pool_width  = pool_info.pooled_width();
73         const float pool_height = pool_info.pooled_height();
74         const float roi_scale   = pool_info.spatial_scale();
75 
76         // Calculate distribution bounds
77         const auto scaled_width  = static_cast<float>((shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)] / roi_scale) / pool_width);
78         const auto scaled_height = static_cast<float>((shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)] / roi_scale) / pool_height);
79         const auto min_width     = static_cast<float>(pool_width / roi_scale);
80         const auto min_height    = static_cast<float>(pool_height / roi_scale);
81 
82         // Create distributions
83         std::uniform_int_distribution<int> dist_batch(0, shape[3] - 1);
84         std::uniform_int_distribution<>    dist_x1(0, scaled_width);
85         std::uniform_int_distribution<>    dist_y1(0, scaled_height);
86         std::uniform_int_distribution<>    dist_w(min_width, std::max(float(min_width), (pool_width - 2) * scaled_width));
87         std::uniform_int_distribution<>    dist_h(min_height, std::max(float(min_height), (pool_height - 2) * scaled_height));
88 
89         for(unsigned int pw = 0; pw < num_rois; ++pw)
90         {
91             const auto batch_idx = dist_batch(gen);
92             const auto x1        = dist_x1(gen);
93             const auto y1        = dist_y1(gen);
94             const auto x2        = x1 + dist_w(gen);
95             const auto y2        = y1 + dist_h(gen);
96 
97             rois_ptr[values_per_roi * pw] = batch_idx;
98             if(rois.data_type() == DataType::QASYMM16)
99             {
100                 rois_ptr[values_per_roi * pw + 1] = quantize_qasymm16(static_cast<float>(x1), rois.quantization_info());
101                 rois_ptr[values_per_roi * pw + 2] = quantize_qasymm16(static_cast<float>(y1), rois.quantization_info());
102                 rois_ptr[values_per_roi * pw + 3] = quantize_qasymm16(static_cast<float>(x2), rois.quantization_info());
103                 rois_ptr[values_per_roi * pw + 4] = quantize_qasymm16(static_cast<float>(y2), rois.quantization_info());
104             }
105             else
106             {
107                 rois_ptr[values_per_roi * pw + 1] = static_cast<TRois>(x1);
108                 rois_ptr[values_per_roi * pw + 2] = static_cast<TRois>(y1);
109                 rois_ptr[values_per_roi * pw + 3] = static_cast<TRois>(x2);
110                 rois_ptr[values_per_roi * pw + 4] = static_cast<TRois>(y2);
111             }
112         }
113     }
114 
compute_target(TensorShape input_shape,DataType data_type,DataLayout data_layout,const ROIPoolingLayerInfo & pool_info,const TensorShape rois_shape,const QuantizationInfo & qinfo,const QuantizationInfo & output_qinfo)115     TensorType compute_target(TensorShape                input_shape,
116                               DataType                   data_type,
117                               DataLayout                 data_layout,
118                               const ROIPoolingLayerInfo &pool_info,
119                               const TensorShape          rois_shape,
120                               const QuantizationInfo    &qinfo,
121                               const QuantizationInfo    &output_qinfo)
122     {
123         if(data_layout == DataLayout::NHWC)
124         {
125             permute(input_shape, PermutationVector(2U, 0U, 1U));
126         }
127 
128         const QuantizationInfo rois_qinfo = is_data_type_quantized(data_type) ? QuantizationInfo(0.125f, 0) : QuantizationInfo();
129 
130         // Create tensors
131         TensorType src         = create_tensor<TensorType>(input_shape, data_type, 1, qinfo, data_layout);
132         TensorType rois_tensor = create_tensor<TensorType>(rois_shape, _rois_data_type, 1, rois_qinfo);
133 
134         const TensorShape dst_shape = misc::shape_calculator::compute_roi_align_shape(*(src.info()), *(rois_tensor.info()), pool_info);
135         TensorType        dst       = create_tensor<TensorType>(dst_shape, data_type, 1, output_qinfo, data_layout);
136 
137         // Create and configure function
138         FunctionType roi_align_layer;
139         roi_align_layer.configure(&src, &rois_tensor, &dst, pool_info);
140 
141         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
142         ARM_COMPUTE_ASSERT(rois_tensor.info()->is_resizable());
143         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
144 
145         // Allocate tensors
146         src.allocator()->allocate();
147         rois_tensor.allocator()->allocate();
148         dst.allocator()->allocate();
149 
150         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
151         ARM_COMPUTE_ASSERT(!rois_tensor.info()->is_resizable());
152         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
153 
154         // Fill tensors
155         fill(AccessorType(src));
156         generate_rois(AccessorType(rois_tensor), input_shape, pool_info, rois_shape, data_layout);
157 
158         // Compute function
159         roi_align_layer.run();
160 
161         return dst;
162     }
163 
compute_reference(const TensorShape & input_shape,DataType data_type,const ROIPoolingLayerInfo & pool_info,const TensorShape rois_shape,const QuantizationInfo & qinfo,const QuantizationInfo & output_qinfo)164     SimpleTensor<T> compute_reference(const TensorShape         &input_shape,
165                                       DataType                   data_type,
166                                       const ROIPoolingLayerInfo &pool_info,
167                                       const TensorShape          rois_shape,
168                                       const QuantizationInfo    &qinfo,
169                                       const QuantizationInfo    &output_qinfo)
170     {
171         // Create reference tensor
172         SimpleTensor<T>        src{ input_shape, data_type, 1, qinfo };
173         const QuantizationInfo rois_qinfo = is_data_type_quantized(data_type) ? QuantizationInfo(0.125f, 0) : QuantizationInfo();
174         SimpleTensor<TRois>    rois_tensor{ rois_shape, _rois_data_type, 1, rois_qinfo };
175 
176         // Fill reference tensor
177         fill(src);
178         generate_rois(rois_tensor, input_shape, pool_info, rois_shape);
179 
180         return reference::roi_align_layer(src, rois_tensor, pool_info, output_qinfo);
181     }
182 
183     TensorType      _target{};
184     SimpleTensor<T> _reference{};
185     DataType        _rois_data_type{};
186 };
187 
188 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois>
189 class ROIAlignLayerFixture : public ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>
190 {
191 public:
192     template <typename...>
setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout)193     void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type, DataLayout data_layout)
194     {
195         ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>::setup(input_shape, pool_info, rois_shape, data_type, data_layout,
196                                                                                              QuantizationInfo(), QuantizationInfo());
197     }
198 };
199 
200 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois>
201 class ROIAlignLayerQuantizedFixture : public ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>
202 {
203 public:
204     template <typename...>
setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout,QuantizationInfo qinfo,QuantizationInfo output_qinfo)205     void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type,
206                DataLayout data_layout, QuantizationInfo qinfo, QuantizationInfo output_qinfo)
207     {
208         ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>::setup(input_shape, pool_info, rois_shape,
209                                                                                              data_type, data_layout, qinfo, output_qinfo);
210     }
211 };
212 } // namespace validation
213 } // namespace test
214 } // namespace arm_compute
215 #endif /* ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE */
216