1 /* 2 * Copyright (c) 2018-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 #ifndef ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE 25 #define ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE 26 27 #include "arm_compute/core/TensorShape.h" 28 #include "arm_compute/core/Types.h" 29 #include "arm_compute/core/utils/misc/ShapeCalculator.h" 30 #include "tests/AssetsLibrary.h" 31 #include "tests/Globals.h" 32 #include "tests/IAccessor.h" 33 #include "tests/framework/Asserts.h" 34 #include "tests/framework/Fixture.h" 35 #include "tests/validation/Helpers.h" 36 #include "tests/validation/reference/ROIAlignLayer.h" 37 38 namespace arm_compute 39 { 40 namespace test 41 { 42 namespace validation 43 { 44 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois> 45 class ROIAlignLayerGenericFixture : public framework::Fixture 46 { 47 public: 48 template <typename...> setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout,QuantizationInfo qinfo,QuantizationInfo output_qinfo)49 void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type, DataLayout data_layout, QuantizationInfo qinfo, QuantizationInfo output_qinfo) 50 { 51 _rois_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::QASYMM16 : data_type; 52 _target = compute_target(input_shape, data_type, data_layout, pool_info, rois_shape, qinfo, output_qinfo); 53 _reference = compute_reference(input_shape, data_type, pool_info, rois_shape, qinfo, output_qinfo); 54 } 55 56 protected: 57 template <typename U> fill(U && tensor)58 void fill(U &&tensor) 59 { 60 library->fill_tensor_uniform(tensor, 0); 61 } 62 63 template <typename U> 64 void generate_rois(U &&rois, const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, TensorShape rois_shape, DataLayout data_layout = DataLayout::NCHW) 65 { 66 const size_t values_per_roi = rois_shape.x(); 67 const size_t num_rois = rois_shape.y(); 68 69 std::mt19937 gen(library->seed()); 70 TRois *rois_ptr = static_cast<TRois *>(rois.data()); 71 72 const float pool_width = pool_info.pooled_width(); 73 const float pool_height = pool_info.pooled_height(); 74 const float roi_scale = pool_info.spatial_scale(); 75 76 // Calculate distribution bounds 77 const auto scaled_width = static_cast<float>((shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)] / roi_scale) / pool_width); 78 const auto scaled_height = static_cast<float>((shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)] / roi_scale) / pool_height); 79 const auto min_width = static_cast<float>(pool_width / roi_scale); 80 const auto min_height = static_cast<float>(pool_height / roi_scale); 81 82 // Create distributions 83 std::uniform_int_distribution<int> dist_batch(0, shape[3] - 1); 84 std::uniform_int_distribution<> dist_x1(0, scaled_width); 85 std::uniform_int_distribution<> dist_y1(0, scaled_height); 86 std::uniform_int_distribution<> dist_w(min_width, std::max(float(min_width), (pool_width - 2) * scaled_width)); 87 std::uniform_int_distribution<> dist_h(min_height, std::max(float(min_height), (pool_height - 2) * scaled_height)); 88 89 for(unsigned int pw = 0; pw < num_rois; ++pw) 90 { 91 const auto batch_idx = dist_batch(gen); 92 const auto x1 = dist_x1(gen); 93 const auto y1 = dist_y1(gen); 94 const auto x2 = x1 + dist_w(gen); 95 const auto y2 = y1 + dist_h(gen); 96 97 rois_ptr[values_per_roi * pw] = batch_idx; 98 if(rois.data_type() == DataType::QASYMM16) 99 { 100 rois_ptr[values_per_roi * pw + 1] = quantize_qasymm16(static_cast<float>(x1), rois.quantization_info()); 101 rois_ptr[values_per_roi * pw + 2] = quantize_qasymm16(static_cast<float>(y1), rois.quantization_info()); 102 rois_ptr[values_per_roi * pw + 3] = quantize_qasymm16(static_cast<float>(x2), rois.quantization_info()); 103 rois_ptr[values_per_roi * pw + 4] = quantize_qasymm16(static_cast<float>(y2), rois.quantization_info()); 104 } 105 else 106 { 107 rois_ptr[values_per_roi * pw + 1] = static_cast<TRois>(x1); 108 rois_ptr[values_per_roi * pw + 2] = static_cast<TRois>(y1); 109 rois_ptr[values_per_roi * pw + 3] = static_cast<TRois>(x2); 110 rois_ptr[values_per_roi * pw + 4] = static_cast<TRois>(y2); 111 } 112 } 113 } 114 compute_target(TensorShape input_shape,DataType data_type,DataLayout data_layout,const ROIPoolingLayerInfo & pool_info,const TensorShape rois_shape,const QuantizationInfo & qinfo,const QuantizationInfo & output_qinfo)115 TensorType compute_target(TensorShape input_shape, 116 DataType data_type, 117 DataLayout data_layout, 118 const ROIPoolingLayerInfo &pool_info, 119 const TensorShape rois_shape, 120 const QuantizationInfo &qinfo, 121 const QuantizationInfo &output_qinfo) 122 { 123 if(data_layout == DataLayout::NHWC) 124 { 125 permute(input_shape, PermutationVector(2U, 0U, 1U)); 126 } 127 128 const QuantizationInfo rois_qinfo = is_data_type_quantized(data_type) ? QuantizationInfo(0.125f, 0) : QuantizationInfo(); 129 130 // Create tensors 131 TensorType src = create_tensor<TensorType>(input_shape, data_type, 1, qinfo, data_layout); 132 TensorType rois_tensor = create_tensor<TensorType>(rois_shape, _rois_data_type, 1, rois_qinfo); 133 134 const TensorShape dst_shape = misc::shape_calculator::compute_roi_align_shape(*(src.info()), *(rois_tensor.info()), pool_info); 135 TensorType dst = create_tensor<TensorType>(dst_shape, data_type, 1, output_qinfo, data_layout); 136 137 // Create and configure function 138 FunctionType roi_align_layer; 139 roi_align_layer.configure(&src, &rois_tensor, &dst, pool_info); 140 141 ARM_COMPUTE_ASSERT(src.info()->is_resizable()); 142 ARM_COMPUTE_ASSERT(rois_tensor.info()->is_resizable()); 143 ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); 144 145 // Allocate tensors 146 src.allocator()->allocate(); 147 rois_tensor.allocator()->allocate(); 148 dst.allocator()->allocate(); 149 150 ARM_COMPUTE_ASSERT(!src.info()->is_resizable()); 151 ARM_COMPUTE_ASSERT(!rois_tensor.info()->is_resizable()); 152 ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); 153 154 // Fill tensors 155 fill(AccessorType(src)); 156 generate_rois(AccessorType(rois_tensor), input_shape, pool_info, rois_shape, data_layout); 157 158 // Compute function 159 roi_align_layer.run(); 160 161 return dst; 162 } 163 compute_reference(const TensorShape & input_shape,DataType data_type,const ROIPoolingLayerInfo & pool_info,const TensorShape rois_shape,const QuantizationInfo & qinfo,const QuantizationInfo & output_qinfo)164 SimpleTensor<T> compute_reference(const TensorShape &input_shape, 165 DataType data_type, 166 const ROIPoolingLayerInfo &pool_info, 167 const TensorShape rois_shape, 168 const QuantizationInfo &qinfo, 169 const QuantizationInfo &output_qinfo) 170 { 171 // Create reference tensor 172 SimpleTensor<T> src{ input_shape, data_type, 1, qinfo }; 173 const QuantizationInfo rois_qinfo = is_data_type_quantized(data_type) ? QuantizationInfo(0.125f, 0) : QuantizationInfo(); 174 SimpleTensor<TRois> rois_tensor{ rois_shape, _rois_data_type, 1, rois_qinfo }; 175 176 // Fill reference tensor 177 fill(src); 178 generate_rois(rois_tensor, input_shape, pool_info, rois_shape); 179 180 return reference::roi_align_layer(src, rois_tensor, pool_info, output_qinfo); 181 } 182 183 TensorType _target{}; 184 SimpleTensor<T> _reference{}; 185 DataType _rois_data_type{}; 186 }; 187 188 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois> 189 class ROIAlignLayerFixture : public ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois> 190 { 191 public: 192 template <typename...> setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout)193 void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type, DataLayout data_layout) 194 { 195 ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>::setup(input_shape, pool_info, rois_shape, data_type, data_layout, 196 QuantizationInfo(), QuantizationInfo()); 197 } 198 }; 199 200 template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TRois> 201 class ROIAlignLayerQuantizedFixture : public ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois> 202 { 203 public: 204 template <typename...> setup(TensorShape input_shape,const ROIPoolingLayerInfo pool_info,TensorShape rois_shape,DataType data_type,DataLayout data_layout,QuantizationInfo qinfo,QuantizationInfo output_qinfo)205 void setup(TensorShape input_shape, const ROIPoolingLayerInfo pool_info, TensorShape rois_shape, DataType data_type, 206 DataLayout data_layout, QuantizationInfo qinfo, QuantizationInfo output_qinfo) 207 { 208 ROIAlignLayerGenericFixture<TensorType, AccessorType, FunctionType, T, TRois>::setup(input_shape, pool_info, rois_shape, 209 data_type, data_layout, qinfo, output_qinfo); 210 } 211 }; 212 } // namespace validation 213 } // namespace test 214 } // namespace arm_compute 215 #endif /* ARM_COMPUTE_TEST_ROIALIGNLAYER_FIXTURE */ 216