xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/RNNLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_RNN_LAYER_FIXTURE
25 #define ARM_COMPUTE_TEST_RNN_LAYER_FIXTURE
26 
27 #include "tests/Globals.h"
28 #include "tests/framework/Asserts.h"
29 #include "tests/framework/Fixture.h"
30 #include "tests/validation/reference/ActivationLayer.h"
31 #include "tests/validation/reference/ArithmeticOperations.h"
32 #include "tests/validation/reference/FullyConnectedLayer.h"
33 #include "tests/validation/reference/GEMM.h"
34 
35 namespace arm_compute
36 {
37 namespace test
38 {
39 namespace validation
40 {
41 template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
42 class RNNLayerValidationFixture : public framework::Fixture
43 {
44 public:
45     template <typename...>
setup(TensorShape input_shape,TensorShape weights_shape,TensorShape recurrent_weights_shape,TensorShape bias_shape,TensorShape output_shape,ActivationLayerInfo info,DataType data_type)46     void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape recurrent_weights_shape, TensorShape bias_shape, TensorShape output_shape, ActivationLayerInfo info,
47                DataType data_type)
48     {
49         _target    = compute_target(input_shape, weights_shape, recurrent_weights_shape, bias_shape, output_shape, info, data_type);
50         _reference = compute_reference(input_shape, weights_shape, recurrent_weights_shape, bias_shape, output_shape, info, data_type);
51     }
52 
53 protected:
54     template <typename U>
fill(U && tensor,int i)55     void fill(U &&tensor, int i)
56     {
57         static_assert(std::is_floating_point<T>::value || std::is_same<T, half>::value, "Only floating point data types supported.");
58         using DistributionType = typename std::conditional<std::is_same<T, half>::value, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
59 
60         DistributionType distribution{ T(-1.0f), T(1.0f) };
61         library->fill(tensor, distribution, i);
62     }
63 
compute_target(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & recurrent_weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,ActivationLayerInfo info,DataType data_type)64     TensorType compute_target(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &recurrent_weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape,
65                               ActivationLayerInfo info, DataType data_type)
66     {
67         // Create tensors
68         TensorType input             = create_tensor<TensorType>(input_shape, data_type);
69         TensorType weights           = create_tensor<TensorType>(weights_shape, data_type);
70         TensorType recurrent_weights = create_tensor<TensorType>(recurrent_weights_shape, data_type);
71         TensorType bias              = create_tensor<TensorType>(bias_shape, data_type);
72         TensorType hidden_state      = create_tensor<TensorType>(output_shape, data_type);
73         TensorType output            = create_tensor<TensorType>(output_shape, data_type);
74 
75         // Create and configure function
76         FunctionType rnn;
77         rnn.configure(&input, &weights, &recurrent_weights, &bias, &hidden_state, &output, info);
78 
79         ARM_COMPUTE_ASSERT(input.info()->is_resizable());
80         ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
81         ARM_COMPUTE_ASSERT(recurrent_weights.info()->is_resizable());
82         ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
83         ARM_COMPUTE_ASSERT(hidden_state.info()->is_resizable());
84         ARM_COMPUTE_ASSERT(output.info()->is_resizable());
85 
86         // Allocate tensors
87         input.allocator()->allocate();
88         weights.allocator()->allocate();
89         recurrent_weights.allocator()->allocate();
90         bias.allocator()->allocate();
91         hidden_state.allocator()->allocate();
92         output.allocator()->allocate();
93 
94         ARM_COMPUTE_ASSERT(!input.info()->is_resizable());
95         ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
96         ARM_COMPUTE_ASSERT(!recurrent_weights.info()->is_resizable());
97         ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
98         ARM_COMPUTE_ASSERT(!hidden_state.info()->is_resizable());
99         ARM_COMPUTE_ASSERT(!output.info()->is_resizable());
100 
101         // Fill tensors
102         fill(AccessorType(input), 0);
103         fill(AccessorType(weights), 0);
104         fill(AccessorType(recurrent_weights), 0);
105         fill(AccessorType(bias), 0);
106         fill(AccessorType(hidden_state), 0);
107 
108         // Compute function
109         rnn.run();
110 
111         return output;
112     }
113 
compute_reference(const TensorShape & input_shape,const TensorShape & weights_shape,const TensorShape & recurrent_weights_shape,const TensorShape & bias_shape,const TensorShape & output_shape,ActivationLayerInfo info,DataType data_type)114     SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &recurrent_weights_shape, const TensorShape &bias_shape,
115                                       const TensorShape &output_shape, ActivationLayerInfo info, DataType data_type)
116     {
117         // Create reference
118         SimpleTensor<T> input{ input_shape, data_type };
119         SimpleTensor<T> weights{ weights_shape, data_type };
120         SimpleTensor<T> recurrent_weights{ recurrent_weights_shape, data_type };
121         SimpleTensor<T> bias{ bias_shape, data_type };
122         SimpleTensor<T> hidden_state{ output_shape, data_type };
123 
124         // Fill reference
125         fill(input, 0);
126         fill(weights, 0);
127         fill(recurrent_weights, 0);
128         fill(bias, 0);
129         fill(hidden_state, 0);
130 
131         TensorShape out_shape = recurrent_weights_shape;
132         out_shape.set(1, output_shape.y());
133 
134         // Compute reference
135         SimpleTensor<T> out_w{ out_shape, data_type };
136         SimpleTensor<T> fully_connected = reference::fully_connected_layer(input, weights, bias, out_shape);
137         SimpleTensor<T> gemm            = reference::gemm(hidden_state, recurrent_weights, out_w, 1.f, 0.f);
138         SimpleTensor<T> add_res         = reference::arithmetic_operation(reference::ArithmeticOperation::ADD, fully_connected, gemm, data_type, ConvertPolicy::SATURATE);
139         return reference::activation_layer(add_res, info);
140     }
141 
142     TensorType      _target{};
143     SimpleTensor<T> _reference{};
144 };
145 } // namespace validation
146 } // namespace test
147 } // namespace arm_compute
148 #endif /* ARM_COMPUTE_TEST_RNN_LAYER_FIXTURE */
149