xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/fixtures/MaxUnpoolingLayerFixture.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
25 #define ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE
26 
27 #include "arm_compute/core/TensorShape.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/runtime/Tensor.h"
31 #include "tests/AssetsLibrary.h"
32 #include "tests/Globals.h"
33 #include "tests/IAccessor.h"
34 #include "tests/framework/Asserts.h"
35 #include "tests/framework/Fixture.h"
36 #include "tests/validation/reference/MaxUnpoolingLayer.h"
37 #include "tests/validation/reference/PoolingLayer.h"
38 #include <random>
39 namespace arm_compute
40 {
41 namespace test
42 {
43 namespace validation
44 {
45 template <typename TensorType, typename AccessorType, typename PoolingFunctionType, typename MaxUnpoolingFunctionType, typename T>
46 class MaxUnpoolingLayerValidationGenericFixture : public framework::Fixture
47 {
48 public:
49     template <typename...>
setup(TensorShape shape,PoolingLayerInfo pool_info,DataType data_type,DataLayout data_layout)50     void setup(TensorShape shape, PoolingLayerInfo pool_info, DataType data_type, DataLayout data_layout)
51     {
52         std::mt19937                    gen(library->seed());
53         std::uniform_int_distribution<> offset_dis(0, 20);
54         const float                     scale     = data_type == DataType::QASYMM8_SIGNED ? 1.f / 127.f : 1.f / 255.f;
55         const int                       scale_in  = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
56         const int                       scale_out = data_type == DataType::QASYMM8_SIGNED ? -offset_dis(gen) : offset_dis(gen);
57         const QuantizationInfo          input_qinfo(scale, scale_in);
58         const QuantizationInfo          output_qinfo(scale, scale_out);
59         _pool_info = pool_info;
60         _target    = compute_target(shape, pool_info, data_type, data_layout, input_qinfo, output_qinfo);
61         _reference = compute_reference(shape, pool_info, data_type, input_qinfo, output_qinfo);
62     }
63 
64 protected:
65     template <typename U>
fill(U && tensor)66     void fill(U &&tensor)
67     {
68         if(tensor.data_type() == DataType::F32)
69         {
70             std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
71             library->fill(tensor, distribution, 0);
72         }
73         else if(tensor.data_type() == DataType::F16)
74         {
75             arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
76             library->fill(tensor, distribution, 0);
77         }
78         else // data type is quantized_asymmetric
79         {
80             library->fill_tensor_uniform(tensor, 0);
81         }
82     }
83 
compute_target(TensorShape input_shape,PoolingLayerInfo pool_info,DataType data_type,DataLayout data_layout,QuantizationInfo input_qinfo,QuantizationInfo output_qinfo)84     TensorType compute_target(TensorShape input_shape, PoolingLayerInfo pool_info,
85                               DataType data_type, DataLayout data_layout,
86                               QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
87     {
88         // Change shape in case of NHWC.
89         if(data_layout == DataLayout::NHWC)
90         {
91             permute(input_shape, PermutationVector(2U, 0U, 1U));
92         }
93 
94         // Create tensors
95         TensorType        src       = create_tensor<TensorType>(input_shape, data_type, 1, input_qinfo, data_layout);
96         const TensorShape dst_shape = misc::shape_calculator::compute_pool_shape(*(src.info()), pool_info);
97         TensorType        dst       = create_tensor<TensorType>(dst_shape, data_type, 1, output_qinfo, data_layout);
98         TensorType        unpooled  = create_tensor<TensorType>(input_shape, data_type, 1, output_qinfo, data_layout);
99         TensorType        indices   = create_tensor<TensorType>(dst_shape, DataType::U32, 1, output_qinfo, data_layout);
100 
101         // Create and configure function
102         PoolingFunctionType pool_layer;
103         pool_layer.configure(&src, &dst, pool_info, &indices);
104         // Create and configure function
105 
106         MaxUnpoolingFunctionType unpool_layer;
107         unpool_layer.configure(&dst, &indices, &unpooled, pool_info);
108 
109         ARM_COMPUTE_ASSERT(src.info()->is_resizable());
110         ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
111         ARM_COMPUTE_ASSERT(indices.info()->is_resizable());
112 
113         // Allocate tensors
114         src.allocator()->allocate();
115         dst.allocator()->allocate();
116         indices.allocator()->allocate();
117         unpooled.allocator()->allocate();
118 
119         ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
120         ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
121         ARM_COMPUTE_ASSERT(!indices.info()->is_resizable());
122         ARM_COMPUTE_ASSERT(!unpooled.info()->is_resizable());
123 
124         // Fill tensors
125         fill(AccessorType(src));
126 
127         // Compute function
128         pool_layer.run();
129         unpool_layer.run();
130         return unpooled;
131     }
132 
compute_reference(TensorShape input_shape,PoolingLayerInfo info,DataType data_type,QuantizationInfo input_qinfo,QuantizationInfo output_qinfo)133     SimpleTensor<T> compute_reference(TensorShape input_shape, PoolingLayerInfo info, DataType data_type,
134                                       QuantizationInfo input_qinfo, QuantizationInfo output_qinfo)
135     {
136         SimpleTensor<T>        src(input_shape, data_type, 1, input_qinfo);
137         SimpleTensor<uint32_t> indices{};
138         // Fill reference
139         fill(src);
140         auto pooled_tensor = reference::pooling_layer<T>(src, info, output_qinfo, &indices);
141         return reference::max_unpooling_layer<T>(pooled_tensor, info, output_qinfo, indices, input_shape);
142     }
143 
144     TensorType       _target{};
145     SimpleTensor<T>  _reference{};
146     PoolingLayerInfo _pool_info{};
147 };
148 
149 template <typename TensorType, typename AccessorType, typename F1, typename F2, typename T>
150 class MaxUnpoolingLayerValidationFixture : public MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>
151 {
152 public:
153     template <typename...>
setup(TensorShape shape,PoolingType pool_type,Size2D pool_size,PadStrideInfo pad_stride_info,DataType data_type,DataLayout data_layout)154     void setup(TensorShape shape, PoolingType pool_type, Size2D pool_size, PadStrideInfo pad_stride_info, DataType data_type, DataLayout data_layout)
155     {
156         MaxUnpoolingLayerValidationGenericFixture<TensorType, AccessorType, F1, F2, T>::setup(shape, PoolingLayerInfo(pool_type, pool_size, data_layout, pad_stride_info, true),
157                                                                                               data_type, data_layout);
158     }
159 };
160 
161 } // namespace validation
162 } // namespace test
163 } // namespace arm_compute
164 #endif /* ARM_COMPUTE_TEST_POOLING_LAYER_FIXTURE */
165