1 /* 2 * Copyright (c) 2017-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 #ifndef ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE 25 #define ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE 26 27 #include "arm_compute/core/TensorShape.h" 28 #include "arm_compute/core/Types.h" 29 #include "tests/AssetsLibrary.h" 30 #include "tests/Globals.h" 31 #include "tests/IAccessor.h" 32 #include "tests/framework/Asserts.h" 33 #include "tests/framework/Fixture.h" 34 #include "tests/framework/ParametersLibrary.h" 35 #include "tests/validation/Helpers.h" 36 #include "tests/validation/reference/ActivationLayer.h" 37 38 #include <random> 39 40 namespace arm_compute 41 { 42 namespace test 43 { 44 namespace validation 45 { 46 template <typename TensorType, typename AccessorType, typename FunctionType, typename T> 47 class ActivationValidationGenericFixture : public framework::Fixture 48 { 49 public: ActivationValidationGenericFixture()50 ActivationValidationGenericFixture() 51 : _target(parameters->get_ctx<TensorType>()) 52 { 53 } 54 55 template <typename...> setup(TensorShape shape,bool in_place,ActivationLayerInfo::ActivationFunction function,float alpha_beta,DataType data_type,QuantizationInfo quantization_info)56 void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info) 57 { 58 ActivationLayerInfo info(function, alpha_beta, alpha_beta); 59 60 _in_place = in_place; 61 _data_type = data_type; 62 _output_quantization_info = calculate_output_quantization_info(_data_type, info, quantization_info); 63 _input_quantization_info = in_place ? _output_quantization_info : quantization_info; 64 65 _function = function; 66 _target = compute_target(shape, info); 67 _reference = compute_reference(shape, info); 68 } 69 70 protected: get_boundary_values(T min,T max)71 std::vector<T> get_boundary_values(T min, T max) 72 { 73 // This function will return a vector filled with the following values that can 74 // represent two partitions derived from equivalent partitioning. 75 // * Lower parition: min, min + delta, lower quarter (nominal), center - delta 76 // * Upper partition: center, center + delta, upper quarter (nominal), max - delta, max 77 const auto delta = is_data_type_float(_data_type) ? T(0.1f) : T(1); 78 const auto center_value = (min + max) / 2; 79 const auto lower_quarter = (min + center_value) / 2; 80 const auto upper_quarter = (center_value + max) / 2; 81 82 std::vector<T> boundary_values{}; 83 84 // To ensure all the inserted values are within the given range after subtracing/adding delta 85 auto insert_values = [&boundary_values, &min, &max](const std::initializer_list<T> &new_values) 86 { 87 for(auto &v : new_values) 88 { 89 if(v >= min && v <= max) 90 { 91 boundary_values.emplace_back(v); 92 } 93 } 94 }; 95 96 insert_values({ min, static_cast<T>(min + delta), static_cast<T>(lower_quarter), static_cast<T>(center_value - delta) }); // lower partition 97 insert_values({ static_cast<T>(center_value), static_cast<T>(center_value + delta), static_cast<T>(upper_quarter), static_cast<T>(max - delta), max }); // upper partition 98 99 return boundary_values; 100 } 101 102 template <typename U> fill(U && tensor)103 void fill(U &&tensor) 104 { 105 if(is_data_type_float(_data_type)) 106 { 107 float min_bound = 0; 108 float max_bound = 0; 109 std::tie(min_bound, max_bound) = get_activation_layer_test_bounds<T>(_function, _data_type); 110 library->fill_static_values(tensor, get_boundary_values(static_cast<T>(min_bound), static_cast<T>(max_bound))); 111 } 112 else 113 { 114 PixelValue min{}; 115 PixelValue max{}; 116 std::tie(min, max) = get_min_max(tensor.data_type()); 117 library->fill_static_values(tensor, get_boundary_values(min.get<T>(), max.get<T>())); 118 } 119 } 120 compute_target(const TensorShape & shape,ActivationLayerInfo info)121 TensorType compute_target(const TensorShape &shape, ActivationLayerInfo info) 122 { 123 auto ctx = parameters->get_ctx<TensorType>(); 124 // Create tensors 125 TensorType src = create_tensor<TensorType>(shape, _data_type, 1, _input_quantization_info, DataLayout::NCHW, ctx); 126 TensorType dst = create_tensor<TensorType>(shape, _data_type, 1, _output_quantization_info, DataLayout::NCHW, ctx); 127 128 // Create and configure function 129 FunctionType act_layer(ctx); 130 131 TensorType *dst_ptr = _in_place ? nullptr : &dst; 132 133 act_layer.configure(&src, dst_ptr, info); 134 135 ARM_COMPUTE_ASSERT(src.info()->is_resizable()); 136 ARM_COMPUTE_ASSERT(dst.info()->is_resizable()); 137 138 // Allocate tensors 139 src.allocator()->allocate(); 140 ARM_COMPUTE_ASSERT(!src.info()->is_resizable()); 141 142 if(!_in_place) 143 { 144 dst.allocator()->allocate(); 145 ARM_COMPUTE_ASSERT(!dst.info()->is_resizable()); 146 } 147 148 // Fill tensors 149 fill(AccessorType(src)); 150 151 // Compute function 152 act_layer.run(); 153 154 if(_in_place) 155 { 156 return src; 157 } 158 else 159 { 160 return dst; 161 } 162 } 163 compute_reference(const TensorShape & shape,ActivationLayerInfo info)164 SimpleTensor<T> compute_reference(const TensorShape &shape, ActivationLayerInfo info) 165 { 166 // Create reference 167 SimpleTensor<T> src{ shape, _data_type, 1, _input_quantization_info }; 168 169 // Fill reference 170 fill(src); 171 172 return reference::activation_layer<T>(src, info, _output_quantization_info); 173 } 174 175 private: calculate_output_quantization_info(DataType dt,const ActivationLayerInfo & act_info,const QuantizationInfo & default_qinfo)176 QuantizationInfo calculate_output_quantization_info(DataType dt, const ActivationLayerInfo &act_info, const QuantizationInfo &default_qinfo) 177 { 178 auto qasymm8_max = float(std::numeric_limits<uint8_t>::max()) + 1.f; 179 auto qasymm8_signed_max = float(std::numeric_limits<int8_t>::max()) + 1.f; 180 auto qsymm16_max = float(std::numeric_limits<int16_t>::max()) + 1.f; 181 182 switch(act_info.activation()) 183 { 184 case ActivationLayerInfo::ActivationFunction::TANH: 185 if(dt == DataType::QSYMM16) 186 { 187 return QuantizationInfo(1.f / qsymm16_max, 0); 188 } 189 else if(dt == DataType::QASYMM8) 190 { 191 return QuantizationInfo(1.f / (0.5 * qasymm8_max), int(0.5 * qasymm8_max)); 192 } 193 else if(dt == DataType::QASYMM8_SIGNED) 194 { 195 return QuantizationInfo(1.f / qasymm8_signed_max, 0); 196 } 197 else 198 { 199 return default_qinfo; 200 } 201 case ActivationLayerInfo::ActivationFunction::LOGISTIC: 202 if(dt == DataType::QSYMM16) 203 { 204 return QuantizationInfo(1.f / qsymm16_max, 0); 205 } 206 else if(dt == DataType::QASYMM8) 207 { 208 return QuantizationInfo(1.f / qasymm8_max, 0); 209 } 210 else if(dt == DataType::QASYMM8_SIGNED) 211 { 212 return QuantizationInfo(1.f / (2.f * qasymm8_signed_max), -int(qasymm8_signed_max)); 213 } 214 else 215 { 216 return default_qinfo; 217 } 218 default: 219 return default_qinfo; 220 } 221 } 222 223 protected: 224 TensorType _target{}; 225 SimpleTensor<T> _reference{}; 226 bool _in_place{}; 227 QuantizationInfo _input_quantization_info{}; 228 QuantizationInfo _output_quantization_info{}; 229 DataType _data_type{}; 230 ActivationLayerInfo::ActivationFunction _function{}; 231 }; 232 233 template <typename TensorType, typename AccessorType, typename FunctionType, typename T> 234 class ActivationValidationFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T> 235 { 236 public: 237 template <typename...> setup(TensorShape shape,bool in_place,ActivationLayerInfo::ActivationFunction function,float alpha_beta,DataType data_type)238 void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type) 239 { 240 ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, QuantizationInfo()); 241 } 242 }; 243 244 template <typename TensorType, typename AccessorType, typename FunctionType, typename T> 245 class ActivationValidationQuantizedFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T> 246 { 247 public: 248 template <typename...> setup(TensorShape shape,bool in_place,ActivationLayerInfo::ActivationFunction function,float alpha_beta,DataType data_type,QuantizationInfo quantization_info)249 void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info) 250 { 251 ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, quantization_info); 252 } 253 }; 254 255 } // namespace validation 256 } // namespace test 257 } // namespace arm_compute 258 #endif /* ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE */ 259