xref: /aosp_15_r20/external/ComputeLibrary/tests/validate_examples/graph_validate_utils.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef GRAPH_VALIDATE_UTILS_H
26 #define GRAPH_VALIDATE_UTILS_H
27 
28 #include "arm_compute/graph.h"
29 
30 #include "ValidateExample.h"
31 #include "utils/command_line/CommandLineParser.h"
32 
33 namespace arm_compute
34 {
35 namespace utils
36 {
37 /*Available Padding modes */
38 enum class ConvolutionPaddingMode
39 {
40     Valid,
41     Same,
42     Manual
43 };
44 
45 /** Stream Input operator for the ConvolutionPaddingMode type
46  *
47  * @param[in]  stream Input stream.
48  * @param[out] Mode   Convolution parameters to output
49  *
50  * @return input stream.
51  */
52 inline ::std::istream &operator>>(::std::istream &stream, ConvolutionPaddingMode &Mode)
53 {
54     static const std::map<std::string, ConvolutionPaddingMode> modes =
55     {
56         { "valid", ConvolutionPaddingMode::Valid },
57         { "same", ConvolutionPaddingMode::Same },
58         { "manual", ConvolutionPaddingMode::Manual }
59     };
60     std::string value;
61     stream >> value;
62 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
63     try
64     {
65 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
66         Mode = modes.at(arm_compute::utility::tolower(value));
67 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
68     }
catch(const std::out_of_range &)69     catch(const std::out_of_range &)
70     {
71         throw std::invalid_argument(value);
72     }
73 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
74 
75     return stream;
76 }
77 
78 /** Formatted output of the ConvolutionPaddingMode type
79  *
80  * @param[out] os   Output stream.
81  * @param[in]  Mode ConvolutionPaddingMode to output
82  *
83  * @return Modified output stream.
84  */
85 inline ::std::ostream &operator<<(::std::ostream &os, ConvolutionPaddingMode Mode)
86 {
87     switch(Mode)
88     {
89         case ConvolutionPaddingMode::Valid:
90             os << "Valid";
91             break;
92         case ConvolutionPaddingMode::Same:
93             os << "Same";
94             break;
95         case ConvolutionPaddingMode::Manual:
96             os << "Manual";
97             break;
98         default:
99             throw std::invalid_argument("Unsupported padding mode format");
100     }
101 
102     return os;
103 }
104 
105 /** Structure holding all the input tensor graph parameters */
106 struct TensorParams
107 {
108     int              width{ 1 };
109     int              height{ 1 };
110     int              fm{ 1 };
111     int              batch{ 1 };
112     QuantizationInfo quant_info{ 1.0f, 0 };
113     std::string      npy{};
114     uint64_t         range_low{ 0 };
115     uint64_t         range_high{ 16 };
116 };
117 
118 /** Structure holding all the verification graph parameters */
119 struct VerificationParams
120 {
121     float absolute_tolerance{ -1.f };
122     float relative_tolerance{ -1.f };
123     float tolerance_number{ -1.f };
124 };
125 
126 /** Structure holding all the common graph parameters */
127 struct FrameworkParams
128 {
129     bool                       help{ false };
130     int                        threads{ 0 };
131     arm_compute::graph::Target target{ arm_compute::graph::Target::NEON };
132 };
133 
134 /** Structure holding all the graph Example parameters */
135 struct CommonParams
136 {
137     FrameworkParams       common_params{};
138     TensorParams          input{};
139     TensorParams          weights{};
140     TensorParams          bias{};
141     TensorParams          output{};
142     VerificationParams    verification{};
143     arm_compute::DataType data_type{ DataType::F32 };
144 };
145 
146 /** Structure holding all the Convolution layer graph parameters */
147 struct ConvolutionParams
148 {
149     int depth_multiplier{ 1 };
150     /** Padding graph parameters */
151     int                    padding_top{ 0 };
152     int                    padding_bottom{ 0 };
153     int                    padding_left{ 0 };
154     int                    padding_right{ 0 };
155     int                    padding_stride_x{ 0 };
156     int                    padding_stride_y{ 0 };
157     ConvolutionPaddingMode padding_mode{ ConvolutionPaddingMode::Valid };
158     struct
159     {
160         struct
161         {
162             int X{ 0 };
163             int Y{ 0 };
164         } stride{};
165         ConvolutionPaddingMode mode{ ConvolutionPaddingMode::Valid };
166     } padding{};
167 };
168 
169 /** Structure holding all the fully_connected layer graph parameters */
170 struct FullyConnectedParams
171 {
172     FullyConnectedLayerInfo info{};
173     int                     num_outputs{ 1 };
174 };
175 
176 /** Structure holding all the graph Example parameters */
177 struct ExampleParams : public CommonParams
178 {
179     FullyConnectedParams                           fully_connected{};
180     ConvolutionParams                              convolution{};
181     arm_compute::graph::DepthwiseConvolutionMethod depth_convolution_method{ arm_compute::graph::DepthwiseConvolutionMethod::Default };
182     arm_compute::graph::ConvolutionMethod          convolution_method{ arm_compute::graph::ConvolutionMethod::Default };
183     arm_compute::DataLayout                        data_layout{ DataLayout::NCHW };
184 };
185 
186 /** Calculate stride information.
187  *
188  * Depending on the selected padding mode create the desired PadStrideInfo
189  *
190  * @param[in] params Convolution parameters supplied by the user.
191  *
192  * @return PadStrideInfo with the correct padding mode.
193  */
calculate_convolution_padding(ExampleParams params)194 inline PadStrideInfo calculate_convolution_padding(ExampleParams params)
195 {
196     switch(params.convolution.padding_mode)
197     {
198         case ConvolutionPaddingMode::Manual:
199         {
200             return PadStrideInfo(params.convolution.padding_stride_x, params.convolution.padding_stride_y, params.convolution.padding_left, params.convolution.padding_right, params.convolution.padding_top,
201                                  params.convolution.padding_bottom, DimensionRoundingType::FLOOR);
202         }
203         case ConvolutionPaddingMode::Valid:
204         {
205             return PadStrideInfo();
206         }
207         case ConvolutionPaddingMode::Same:
208         {
209             return arm_compute::calculate_same_pad(TensorShape(params.input.width, params.input.height), TensorShape(params.weights.width, params.weights.height),
210                                                    PadStrideInfo(params.convolution.padding_stride_x,
211                                                                  params.convolution.padding_stride_y));
212         }
213         default:
214             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
215     }
216 }
217 /** CommonGraphValidateOptions command line options used to configure the graph examples
218  *
219  * (Similar to common options)
220  * The options in this object get populated when "parse()" is called on the parser used to construct it.
221  * The expected workflow is:
222  *
223  * CommandLineParser parser;
224  * CommonOptions options( parser );
225  * parser.parse(argc, argv);
226  */
227 class CommonGraphValidateOptions
228 {
229 public:
CommonGraphValidateOptions(CommandLineParser & parser)230     explicit CommonGraphValidateOptions(CommandLineParser &parser) noexcept
231         : help(parser.add_option<ToggleOption>("help")),
232           threads(parser.add_option<SimpleOption<int>>("threads")),
233           target(),
234           data_type(),
235           absolute_tolerance(parser.add_option<SimpleOption<float>>("abs_tolerance", -1.0f)),
236           relative_tolerance(parser.add_option<SimpleOption<float>>("rel_tolerance", -1.0f)),
237           tolerance_number(parser.add_option<SimpleOption<float>>("tolerance_num", -1.0f))
238     {
239         const std::set<arm_compute::graph::Target> supported_targets
240         {
241             arm_compute::graph::Target::NEON,
242             arm_compute::graph::Target::CL,
243         };
244 
245         const std::set<arm_compute::DataType> supported_data_types
246         {
247             DataType::F16,
248             DataType::F32,
249             DataType::QASYMM8,
250         };
251 
252         target    = parser.add_option<EnumOption<arm_compute::graph::Target>>("target", supported_targets, arm_compute::graph::Target::NEON);
253         data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
254 
255         target->set_help("Target to execute on");
256         data_type->set_help("Data type to use");
257         help->set_help("Show this help message");
258         absolute_tolerance->set_help("Absolute tolerance used for verification");
259         relative_tolerance->set_help("Absolute tolerance used for verification");
260         tolerance_number->set_help("Absolute tolerance used for verification");
261     }
262 
263     /** Prevent instances of this class from being copied (As this class contains pointers) */
264     CommonGraphValidateOptions(const CommonGraphValidateOptions &) = delete;
265     /** Prevent instances of this class from being copied (As this class contains pointers) */
266     CommonGraphValidateOptions &operator=(const CommonGraphValidateOptions &) = delete;
267     /** Allow instances of this class to be moved */
268     CommonGraphValidateOptions(CommonGraphValidateOptions &&) noexcept(true) = default;
269     /** Allow instances of this class to be moved */
270     CommonGraphValidateOptions &operator=(CommonGraphValidateOptions &&) noexcept(true) = default;
271     /** Default destructor */
272     virtual ~CommonGraphValidateOptions() = default;
273 
consume_common_parameters(CommonParams & common_params)274     void consume_common_parameters(CommonParams &common_params)
275     {
276         common_params.common_params.help    = help->is_set() ? help->value() : false;
277         common_params.common_params.threads = threads->value();
278         common_params.common_params.target  = target->value();
279 
280         common_params.verification.absolute_tolerance = absolute_tolerance->value();
281         common_params.verification.relative_tolerance = relative_tolerance->value();
282         common_params.verification.tolerance_number   = tolerance_number->value();
283     }
284 
285     /** Formatted output of the ExampleParams type
286      *
287      * @param[out] os            Output stream.
288      * @param[in]  common_params Example parameters to output
289      *
290      * @return None.
291      */
print_parameters(::std::ostream & os,const ExampleParams & common_params)292     virtual void print_parameters(::std::ostream &os, const ExampleParams &common_params)
293     {
294         os << "Threads : " << common_params.common_params.threads << std::endl;
295         os << "Target : " << common_params.common_params.target << std::endl;
296         os << "Data type : " << common_params.data_type << std::endl;
297     }
298 
299     ToggleOption                           *help;               /**< show help message */
300     SimpleOption<int>                      *threads;            /**< Number of threads option */
301     EnumOption<arm_compute::graph::Target> *target;             /**< Graph execution target */
302     EnumOption<arm_compute::DataType>      *data_type;          /**< Graph data type */
303     SimpleOption<float>                    *absolute_tolerance; /**< Absolute tolerance used in verification */
304     SimpleOption<float>                    *relative_tolerance; /**< Relative tolerance used in verification */
305     SimpleOption<float>                    *tolerance_number;   /**< Tolerance number used in verification */
306 };
307 
308 /** Consumes the consume_common_graph_parameters graph options and creates a structure containing any information
309  *
310  * @param[in]  options       Options to consume
311  * @param[out] common_params params structure to consume.
312  *
313  * @return consume_common_graph_parameters structure containing the common graph parameters
314  */
consume_common_graph_parameters(CommonGraphValidateOptions & options,CommonParams & common_params)315 void consume_common_graph_parameters(CommonGraphValidateOptions &options, CommonParams &common_params)
316 {
317     common_params.common_params.help    = options.help->is_set() ? options.help->value() : false;
318     common_params.common_params.threads = options.threads->value();
319     common_params.common_params.target  = options.target->value();
320 
321     common_params.verification.absolute_tolerance = options.absolute_tolerance->value();
322     common_params.verification.relative_tolerance = options.relative_tolerance->value();
323     common_params.verification.tolerance_number   = options.tolerance_number->value();
324 }
325 
326 /** Generates appropriate accessor according to the specified graph parameters
327  *
328  * @param[in] tensor Tensor parameters
329  * @param[in] lower  Lower random values bound
330  * @param[in] upper  Upper random values bound
331  * @param[in] seed   Random generator seed
332  *
333  * @return An appropriate tensor accessor
334  */
335 inline std::unique_ptr<graph::ITensorAccessor> get_accessor(const TensorParams &tensor, PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0)
336 {
337     if(!tensor.npy.empty())
338     {
339         return std::make_unique<arm_compute::graph_utils::NumPyBinLoader>(tensor.npy);
340     }
341     else
342     {
343         return std::make_unique<arm_compute::graph_utils::RandomAccessor>(lower, upper, seed);
344     }
345 }
346 
347 /** Graph example validation accessor class */
348 template <typename D>
349 class VerifyAccessor : public graph::ITensorAccessor
350 {
351 public:
352     using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
353     /** Constructor
354      *
355      * @param[in] params Convolution parameters
356      */
VerifyAccessor(ExampleParams & params)357     explicit VerifyAccessor(ExampleParams &params)
358         : _params(std::move(params))
359     {
360     }
361     // Inherited methods overriden:
access_tensor(ITensor & tensor)362     bool access_tensor(ITensor &tensor) override
363     {
364         if(_params.output.npy.empty())
365         {
366             arm_compute::test::SimpleTensor<D>     src;
367             arm_compute::test::SimpleTensor<D>     weights;
368             arm_compute::test::SimpleTensor<TBias> bias;
369 
370             //Create Input tensors
371             create_tensors(src, weights, bias, tensor);
372 
373             //Fill the tensors with random values
374             fill_tensor(src, 0, static_cast<D>(_params.input.range_low), static_cast<D>(_params.input.range_high));
375             fill_tensor(weights, 1, static_cast<D>(_params.weights.range_low), static_cast<D>(_params.weights.range_high));
376             fill_tensor(bias, 2, static_cast<TBias>(_params.input.range_low), static_cast<TBias>(_params.input.range_high));
377 
378             arm_compute::test::SimpleTensor<D> output = reference(src, weights, bias, output_shape(tensor));
379 
380             validate(tensor, output);
381         }
382         else
383         {
384             //The user provided a reference file use an npy accessor to validate
385             arm_compute::graph_utils::NumPyAccessor(_params.output.npy, tensor.info()->tensor_shape(), tensor.info()->data_type()).access_tensor(tensor);
386         }
387         return false;
388     }
389 
390     /** Create reference tensors.
391      *
392      * Validate the given tensor against the reference result.
393      *
394      * @param[out] src     The tensor with the source data.
395      * @param[out] weights The tensor with the weigths data.
396      * @param[out] bias    The tensor with the bias data.
397      * @param[in]  tensor  Tensor result of the actual operation passed into the Accessor.
398      *
399      * @return None.
400      */
create_tensors(arm_compute::test::SimpleTensor<D> & src,arm_compute::test::SimpleTensor<D> & weights,arm_compute::test::SimpleTensor<TBias> & bias,ITensor & tensor)401     virtual void create_tensors(arm_compute::test::SimpleTensor<D>     &src,
402                                 arm_compute::test::SimpleTensor<D>     &weights,
403                                 arm_compute::test::SimpleTensor<TBias> &bias,
404                                 ITensor                                &tensor)
405     {
406         ARM_COMPUTE_UNUSED(tensor);
407         //Create Input tensors
408         src     = arm_compute::test::SimpleTensor<D> { TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch), _params.data_type, 1, _params.input.quant_info };
409         weights = arm_compute::test::SimpleTensor<D> { TensorShape(_params.weights.width, _params.weights.height, _params.weights.fm), _params.data_type, 1, _params.weights.quant_info };
410         bias    = arm_compute::test::SimpleTensor<TBias> { TensorShape(_params.input.height), _params.data_type, 1, _params.input.quant_info };
411     }
412 
413     /** Calculate reference output tensor shape.
414      *
415      * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
416      *
417      * @return output tensor shape.
418      */
output_shape(ITensor & tensor)419     virtual TensorShape output_shape(ITensor &tensor)
420     {
421         return arm_compute::graph_utils::permute_shape(tensor.info()->tensor_shape(), _params.data_layout, DataLayout::NCHW);
422     }
423 
424     /** Calculate reference tensor.
425      *
426      * Validate the given tensor against the reference result.
427      *
428      * @param[in] src          The tensor with the source data.
429      * @param[in] weights      The tensor with the weigths data.
430      * @param[in] bias         The tensor with the bias data.
431      * @param[in] output_shape Shape of the output tensor.
432      *
433      * @return Tensor with the reference output.
434      */
435     virtual arm_compute::test::SimpleTensor<D> reference(arm_compute::test::SimpleTensor<D>     &src,
436                                                          arm_compute::test::SimpleTensor<D>     &weights,
437                                                          arm_compute::test::SimpleTensor<TBias> &bias,
438                                                          const arm_compute::TensorShape         &output_shape) = 0;
439 
440     /** Fill QASYMM tensor with Random values.
441      *
442      * Validate the given tensor against the reference result.
443      *
444      * @param[out] tensor The tensor we want to file
445      * @param[in]  seed   seed for the randomization function
446      * @param[in]  low    lower bound for random values
447      * @param[in]  high   upper bound for random values
448      *
449      * @return None.
450      */
fill_tensor(arm_compute::test::SimpleTensor<uint8_t> & tensor,std::random_device::result_type seed,uint8_t low,uint8_t high)451     void fill_tensor(arm_compute::test::SimpleTensor<uint8_t> &tensor, std::random_device::result_type seed, uint8_t low, uint8_t high)
452     {
453         ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::QASYMM8);
454 
455         const UniformQuantizationInfo qinfo = tensor.quantization_info().uniform();
456 
457         uint8_t qasymm8_low  = quantize_qasymm8(low, qinfo);
458         uint8_t qasymm8_high = quantize_qasymm8(high, qinfo);
459 
460         std::mt19937                           gen(seed);
461         std::uniform_int_distribution<uint8_t> distribution(qasymm8_low, qasymm8_high);
462 
463         for(int i = 0; i < tensor.num_elements(); ++i)
464         {
465             tensor[i] = quantize_qasymm8(distribution(gen), qinfo);
466         }
467     }
468     /** Fill S32 tensor with Random values.
469      *
470      * Validate the given tensor against the reference result.
471      *
472      * @param[out] tensor The tensor we want to file
473      * @param[in]  seed   seed for the randomization function
474      * @param[in]  low    lower bound for random values
475      * @param[in]  high   upper bound for random values
476      *
477      * @return None.
478      */
fill_tensor(arm_compute::test::SimpleTensor<int32_t> & tensor,std::random_device::result_type seed,int32_t low,int32_t high)479     void fill_tensor(arm_compute::test::SimpleTensor<int32_t> &tensor, std::random_device::result_type seed, int32_t low, int32_t high)
480     {
481         std::mt19937                           gen(seed);
482         std::uniform_int_distribution<int32_t> distribution(static_cast<int32_t>(low), static_cast<uint32_t>(high));
483 
484         for(int i = 0; i < tensor.num_elements(); ++i)
485         {
486             tensor[i] = distribution(gen);
487         }
488     }
489     /** Fill F32 tensor with Random values.
490      *
491      * Validate the given tensor against the reference result.
492      *
493      * @param[out] tensor The tensor we want to file
494      * @param[in]  seed   seed for the randomization function
495      * @param[in]  low    lower bound for random values
496      * @param[in]  high   upper bound for random values
497      *
498      * @return None.
499      */
fill_tensor(arm_compute::test::SimpleTensor<float> & tensor,std::random_device::result_type seed,float low,float high)500     void fill_tensor(arm_compute::test::SimpleTensor<float> &tensor, std::random_device::result_type seed, float low, float high)
501     {
502         ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F32);
503         std::mt19937                          gen(seed);
504         std::uniform_real_distribution<float> distribution(low, high);
505 
506         for(int i = 0; i < tensor.num_elements(); ++i)
507         {
508             tensor[i] = distribution(gen);
509         }
510     }
511     /** Fill F16 tensor with Random values.
512      *
513      * Validate the given tensor against the reference result.
514      *
515      * @param[out] tensor The tensor we want to file
516      * @param[in]  seed   seed for the randomization function
517      * @param[in]  low    lower bound for random values
518      * @param[in]  high   upper bound for random values
519      *
520      * @return None.
521      */
fill_tensor(arm_compute::test::SimpleTensor<half> & tensor,std::random_device::result_type seed,half low,half high)522     void fill_tensor(arm_compute::test::SimpleTensor<half> &tensor, std::random_device::result_type seed, half low, half high)
523     {
524         ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F16);
525         std::mt19937                          gen(seed);
526         std::uniform_real_distribution<float> distribution(static_cast<half>(low), static_cast<half>(high));
527 
528         for(int i = 0; i < tensor.num_elements(); ++i)
529         {
530             tensor[i] = static_cast<half>(distribution(gen));
531         }
532     }
533 
534     /** Select relative tolerance.
535      *
536      * Select relative tolerance if not supplied by user.
537      *
538      * @return Appropriate relative tolerance.
539      */
540     virtual float relative_tolerance() = 0;
541 
542     /** Select absolute tolerance.
543      *
544      * Select absolute tolerance if not supplied by user.
545      *
546      * @return Appropriate absolute tolerance.
547      */
548     virtual float absolute_tolerance() = 0;
549 
550     /** Select tolerance number.
551      *
552      * Select tolerance number if not supplied by user.
553      *
554      * @return Appropriate tolerance number.
555      */
556     virtual float tolerance_number() = 0;
557 
558     /** Validate the output versus the reference.
559      *
560      * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
561      * @param[in] output Tensor result of the reference implementation.
562      *
563      * @return None.
564      */
validate(ITensor & tensor,arm_compute::test::SimpleTensor<D> output)565     void validate(ITensor &tensor, arm_compute::test::SimpleTensor<D> output)
566     {
567         float user_relative_tolerance = _params.verification.relative_tolerance;
568         float user_absolute_tolerance = _params.verification.absolute_tolerance;
569         float user_tolerance_num      = _params.verification.tolerance_number;
570         /* If no user input was provided override with defaults. */
571         if(user_relative_tolerance == -1)
572         {
573             user_relative_tolerance = relative_tolerance();
574         }
575 
576         if(user_absolute_tolerance == -1)
577         {
578             user_absolute_tolerance = absolute_tolerance();
579         }
580 
581         if(user_tolerance_num == -1)
582         {
583             user_tolerance_num = tolerance_number();
584         }
585 
586         const arm_compute::test::validation::RelativeTolerance<float> rel_tolerance(user_relative_tolerance); /**< Relative tolerance */
587         const arm_compute::test::validation::AbsoluteTolerance<float> abs_tolerance(user_absolute_tolerance); /**< Absolute tolerance */
588         const float                                                   tolerance_num(user_tolerance_num);      /**< Tolerance number */
589 
590         arm_compute::test::validation::validate(arm_compute::test::Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance);
591     }
592 
593     ExampleParams _params;
594 };
595 
596 /** Generates appropriate convolution verify accessor
597  *
598  * @param[in] params User supplied parameters for convolution.
599  *
600  * @return A convolution verify accessor for the requested datatype.
601  */
602 template <template <typename D> class VerifyAccessorT>
get_verify_accessor(ExampleParams params)603 inline std::unique_ptr<graph::ITensorAccessor> get_verify_accessor(ExampleParams params)
604 {
605     switch(params.data_type)
606     {
607         case DataType::QASYMM8:
608         {
609             return std::make_unique<VerifyAccessorT<uint8_t>>(
610                        params);
611         }
612         case DataType::F16:
613         {
614             return std::make_unique<VerifyAccessorT<half>>(
615                        params);
616         }
617         case DataType::F32:
618         {
619             return std::make_unique<VerifyAccessorT<float>>(
620                        params);
621         }
622         default:
623             ARM_COMPUTE_ERROR("NOT SUPPORTED!");
624     }
625 }
626 
627 template <typename LayerT, typename OptionsT, template <typename D> class VerifyAccessorT>
628 class GraphValidateExample : public ValidateExample
629 {
630 public:
GraphValidateExample(std::string name)631     GraphValidateExample(std::string name)
632         : graph(0, name)
633     {
634     }
635 
636     virtual LayerT GraphFunctionLayer(ExampleParams &params) = 0;
637 
do_setup(int argc,char ** argv)638     bool do_setup(int argc, char **argv) override
639     {
640         CommandLineParser parser;
641 
642         OptionsT Options(parser);
643 
644         parser.parse(argc, argv);
645 
646         ExampleParams params;
647 
648         Options.consume_common_parameters(params);
649         Options.consume_parameters(params);
650 
651         if(params.common_params.help)
652         {
653             parser.print_help(argv[0]);
654             return false;
655         }
656 
657         Options.print_parameters(std::cout, params);
658         // Create input descriptor
659         const TensorShape input_shape = arm_compute::graph_utils::permute_shape(TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch),
660                                                                                 DataLayout::NCHW, params.data_layout);
661         arm_compute::graph::TensorDescriptor input_descriptor = arm_compute::graph::TensorDescriptor(input_shape, params.data_type, params.input.quant_info, params.data_layout);
662 
663         const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
664         const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
665 
666         graph << params.common_params.target
667               << params.convolution_method
668               << params.depth_convolution_method
669               << arm_compute::graph::frontend::InputLayer(input_descriptor, get_accessor(params.input, lower, upper, 0))
670               << GraphFunctionLayer(params)
671               << arm_compute::graph::frontend::OutputLayer(get_verify_accessor<VerifyAccessorT>(params));
672 
673         arm_compute::graph::GraphConfig config;
674         config.num_threads = params.common_params.threads;
675 
676         graph.finalize(params.common_params.target, config);
677 
678         return true;
679     }
680 
do_run()681     void do_run() override
682     {
683         graph.run();
684     }
685 
do_teardown()686     void do_teardown() override
687     {
688     }
689 
690     arm_compute::graph::frontend::Stream graph;
691 };
692 
693 } // graph_validate_utils
694 } // arm_compute
695 #endif //GRAPH_VALIDATE_UTILS_H
696