1 /*
2 * Copyright (c) 2019-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #ifndef GRAPH_VALIDATE_UTILS_H
26 #define GRAPH_VALIDATE_UTILS_H
27
28 #include "arm_compute/graph.h"
29
30 #include "ValidateExample.h"
31 #include "utils/command_line/CommandLineParser.h"
32
33 namespace arm_compute
34 {
35 namespace utils
36 {
37 /*Available Padding modes */
38 enum class ConvolutionPaddingMode
39 {
40 Valid,
41 Same,
42 Manual
43 };
44
45 /** Stream Input operator for the ConvolutionPaddingMode type
46 *
47 * @param[in] stream Input stream.
48 * @param[out] Mode Convolution parameters to output
49 *
50 * @return input stream.
51 */
52 inline ::std::istream &operator>>(::std::istream &stream, ConvolutionPaddingMode &Mode)
53 {
54 static const std::map<std::string, ConvolutionPaddingMode> modes =
55 {
56 { "valid", ConvolutionPaddingMode::Valid },
57 { "same", ConvolutionPaddingMode::Same },
58 { "manual", ConvolutionPaddingMode::Manual }
59 };
60 std::string value;
61 stream >> value;
62 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
63 try
64 {
65 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
66 Mode = modes.at(arm_compute::utility::tolower(value));
67 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
68 }
catch(const std::out_of_range &)69 catch(const std::out_of_range &)
70 {
71 throw std::invalid_argument(value);
72 }
73 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
74
75 return stream;
76 }
77
78 /** Formatted output of the ConvolutionPaddingMode type
79 *
80 * @param[out] os Output stream.
81 * @param[in] Mode ConvolutionPaddingMode to output
82 *
83 * @return Modified output stream.
84 */
85 inline ::std::ostream &operator<<(::std::ostream &os, ConvolutionPaddingMode Mode)
86 {
87 switch(Mode)
88 {
89 case ConvolutionPaddingMode::Valid:
90 os << "Valid";
91 break;
92 case ConvolutionPaddingMode::Same:
93 os << "Same";
94 break;
95 case ConvolutionPaddingMode::Manual:
96 os << "Manual";
97 break;
98 default:
99 throw std::invalid_argument("Unsupported padding mode format");
100 }
101
102 return os;
103 }
104
105 /** Structure holding all the input tensor graph parameters */
106 struct TensorParams
107 {
108 int width{ 1 };
109 int height{ 1 };
110 int fm{ 1 };
111 int batch{ 1 };
112 QuantizationInfo quant_info{ 1.0f, 0 };
113 std::string npy{};
114 uint64_t range_low{ 0 };
115 uint64_t range_high{ 16 };
116 };
117
118 /** Structure holding all the verification graph parameters */
119 struct VerificationParams
120 {
121 float absolute_tolerance{ -1.f };
122 float relative_tolerance{ -1.f };
123 float tolerance_number{ -1.f };
124 };
125
126 /** Structure holding all the common graph parameters */
127 struct FrameworkParams
128 {
129 bool help{ false };
130 int threads{ 0 };
131 arm_compute::graph::Target target{ arm_compute::graph::Target::NEON };
132 };
133
134 /** Structure holding all the graph Example parameters */
135 struct CommonParams
136 {
137 FrameworkParams common_params{};
138 TensorParams input{};
139 TensorParams weights{};
140 TensorParams bias{};
141 TensorParams output{};
142 VerificationParams verification{};
143 arm_compute::DataType data_type{ DataType::F32 };
144 };
145
146 /** Structure holding all the Convolution layer graph parameters */
147 struct ConvolutionParams
148 {
149 int depth_multiplier{ 1 };
150 /** Padding graph parameters */
151 int padding_top{ 0 };
152 int padding_bottom{ 0 };
153 int padding_left{ 0 };
154 int padding_right{ 0 };
155 int padding_stride_x{ 0 };
156 int padding_stride_y{ 0 };
157 ConvolutionPaddingMode padding_mode{ ConvolutionPaddingMode::Valid };
158 struct
159 {
160 struct
161 {
162 int X{ 0 };
163 int Y{ 0 };
164 } stride{};
165 ConvolutionPaddingMode mode{ ConvolutionPaddingMode::Valid };
166 } padding{};
167 };
168
169 /** Structure holding all the fully_connected layer graph parameters */
170 struct FullyConnectedParams
171 {
172 FullyConnectedLayerInfo info{};
173 int num_outputs{ 1 };
174 };
175
176 /** Structure holding all the graph Example parameters */
177 struct ExampleParams : public CommonParams
178 {
179 FullyConnectedParams fully_connected{};
180 ConvolutionParams convolution{};
181 arm_compute::graph::DepthwiseConvolutionMethod depth_convolution_method{ arm_compute::graph::DepthwiseConvolutionMethod::Default };
182 arm_compute::graph::ConvolutionMethod convolution_method{ arm_compute::graph::ConvolutionMethod::Default };
183 arm_compute::DataLayout data_layout{ DataLayout::NCHW };
184 };
185
186 /** Calculate stride information.
187 *
188 * Depending on the selected padding mode create the desired PadStrideInfo
189 *
190 * @param[in] params Convolution parameters supplied by the user.
191 *
192 * @return PadStrideInfo with the correct padding mode.
193 */
calculate_convolution_padding(ExampleParams params)194 inline PadStrideInfo calculate_convolution_padding(ExampleParams params)
195 {
196 switch(params.convolution.padding_mode)
197 {
198 case ConvolutionPaddingMode::Manual:
199 {
200 return PadStrideInfo(params.convolution.padding_stride_x, params.convolution.padding_stride_y, params.convolution.padding_left, params.convolution.padding_right, params.convolution.padding_top,
201 params.convolution.padding_bottom, DimensionRoundingType::FLOOR);
202 }
203 case ConvolutionPaddingMode::Valid:
204 {
205 return PadStrideInfo();
206 }
207 case ConvolutionPaddingMode::Same:
208 {
209 return arm_compute::calculate_same_pad(TensorShape(params.input.width, params.input.height), TensorShape(params.weights.width, params.weights.height),
210 PadStrideInfo(params.convolution.padding_stride_x,
211 params.convolution.padding_stride_y));
212 }
213 default:
214 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
215 }
216 }
217 /** CommonGraphValidateOptions command line options used to configure the graph examples
218 *
219 * (Similar to common options)
220 * The options in this object get populated when "parse()" is called on the parser used to construct it.
221 * The expected workflow is:
222 *
223 * CommandLineParser parser;
224 * CommonOptions options( parser );
225 * parser.parse(argc, argv);
226 */
227 class CommonGraphValidateOptions
228 {
229 public:
CommonGraphValidateOptions(CommandLineParser & parser)230 explicit CommonGraphValidateOptions(CommandLineParser &parser) noexcept
231 : help(parser.add_option<ToggleOption>("help")),
232 threads(parser.add_option<SimpleOption<int>>("threads")),
233 target(),
234 data_type(),
235 absolute_tolerance(parser.add_option<SimpleOption<float>>("abs_tolerance", -1.0f)),
236 relative_tolerance(parser.add_option<SimpleOption<float>>("rel_tolerance", -1.0f)),
237 tolerance_number(parser.add_option<SimpleOption<float>>("tolerance_num", -1.0f))
238 {
239 const std::set<arm_compute::graph::Target> supported_targets
240 {
241 arm_compute::graph::Target::NEON,
242 arm_compute::graph::Target::CL,
243 };
244
245 const std::set<arm_compute::DataType> supported_data_types
246 {
247 DataType::F16,
248 DataType::F32,
249 DataType::QASYMM8,
250 };
251
252 target = parser.add_option<EnumOption<arm_compute::graph::Target>>("target", supported_targets, arm_compute::graph::Target::NEON);
253 data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
254
255 target->set_help("Target to execute on");
256 data_type->set_help("Data type to use");
257 help->set_help("Show this help message");
258 absolute_tolerance->set_help("Absolute tolerance used for verification");
259 relative_tolerance->set_help("Absolute tolerance used for verification");
260 tolerance_number->set_help("Absolute tolerance used for verification");
261 }
262
263 /** Prevent instances of this class from being copied (As this class contains pointers) */
264 CommonGraphValidateOptions(const CommonGraphValidateOptions &) = delete;
265 /** Prevent instances of this class from being copied (As this class contains pointers) */
266 CommonGraphValidateOptions &operator=(const CommonGraphValidateOptions &) = delete;
267 /** Allow instances of this class to be moved */
268 CommonGraphValidateOptions(CommonGraphValidateOptions &&) noexcept(true) = default;
269 /** Allow instances of this class to be moved */
270 CommonGraphValidateOptions &operator=(CommonGraphValidateOptions &&) noexcept(true) = default;
271 /** Default destructor */
272 virtual ~CommonGraphValidateOptions() = default;
273
consume_common_parameters(CommonParams & common_params)274 void consume_common_parameters(CommonParams &common_params)
275 {
276 common_params.common_params.help = help->is_set() ? help->value() : false;
277 common_params.common_params.threads = threads->value();
278 common_params.common_params.target = target->value();
279
280 common_params.verification.absolute_tolerance = absolute_tolerance->value();
281 common_params.verification.relative_tolerance = relative_tolerance->value();
282 common_params.verification.tolerance_number = tolerance_number->value();
283 }
284
285 /** Formatted output of the ExampleParams type
286 *
287 * @param[out] os Output stream.
288 * @param[in] common_params Example parameters to output
289 *
290 * @return None.
291 */
print_parameters(::std::ostream & os,const ExampleParams & common_params)292 virtual void print_parameters(::std::ostream &os, const ExampleParams &common_params)
293 {
294 os << "Threads : " << common_params.common_params.threads << std::endl;
295 os << "Target : " << common_params.common_params.target << std::endl;
296 os << "Data type : " << common_params.data_type << std::endl;
297 }
298
299 ToggleOption *help; /**< show help message */
300 SimpleOption<int> *threads; /**< Number of threads option */
301 EnumOption<arm_compute::graph::Target> *target; /**< Graph execution target */
302 EnumOption<arm_compute::DataType> *data_type; /**< Graph data type */
303 SimpleOption<float> *absolute_tolerance; /**< Absolute tolerance used in verification */
304 SimpleOption<float> *relative_tolerance; /**< Relative tolerance used in verification */
305 SimpleOption<float> *tolerance_number; /**< Tolerance number used in verification */
306 };
307
308 /** Consumes the consume_common_graph_parameters graph options and creates a structure containing any information
309 *
310 * @param[in] options Options to consume
311 * @param[out] common_params params structure to consume.
312 *
313 * @return consume_common_graph_parameters structure containing the common graph parameters
314 */
consume_common_graph_parameters(CommonGraphValidateOptions & options,CommonParams & common_params)315 void consume_common_graph_parameters(CommonGraphValidateOptions &options, CommonParams &common_params)
316 {
317 common_params.common_params.help = options.help->is_set() ? options.help->value() : false;
318 common_params.common_params.threads = options.threads->value();
319 common_params.common_params.target = options.target->value();
320
321 common_params.verification.absolute_tolerance = options.absolute_tolerance->value();
322 common_params.verification.relative_tolerance = options.relative_tolerance->value();
323 common_params.verification.tolerance_number = options.tolerance_number->value();
324 }
325
326 /** Generates appropriate accessor according to the specified graph parameters
327 *
328 * @param[in] tensor Tensor parameters
329 * @param[in] lower Lower random values bound
330 * @param[in] upper Upper random values bound
331 * @param[in] seed Random generator seed
332 *
333 * @return An appropriate tensor accessor
334 */
335 inline std::unique_ptr<graph::ITensorAccessor> get_accessor(const TensorParams &tensor, PixelValue lower, PixelValue upper, const std::random_device::result_type seed = 0)
336 {
337 if(!tensor.npy.empty())
338 {
339 return std::make_unique<arm_compute::graph_utils::NumPyBinLoader>(tensor.npy);
340 }
341 else
342 {
343 return std::make_unique<arm_compute::graph_utils::RandomAccessor>(lower, upper, seed);
344 }
345 }
346
347 /** Graph example validation accessor class */
348 template <typename D>
349 class VerifyAccessor : public graph::ITensorAccessor
350 {
351 public:
352 using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
353 /** Constructor
354 *
355 * @param[in] params Convolution parameters
356 */
VerifyAccessor(ExampleParams & params)357 explicit VerifyAccessor(ExampleParams ¶ms)
358 : _params(std::move(params))
359 {
360 }
361 // Inherited methods overriden:
access_tensor(ITensor & tensor)362 bool access_tensor(ITensor &tensor) override
363 {
364 if(_params.output.npy.empty())
365 {
366 arm_compute::test::SimpleTensor<D> src;
367 arm_compute::test::SimpleTensor<D> weights;
368 arm_compute::test::SimpleTensor<TBias> bias;
369
370 //Create Input tensors
371 create_tensors(src, weights, bias, tensor);
372
373 //Fill the tensors with random values
374 fill_tensor(src, 0, static_cast<D>(_params.input.range_low), static_cast<D>(_params.input.range_high));
375 fill_tensor(weights, 1, static_cast<D>(_params.weights.range_low), static_cast<D>(_params.weights.range_high));
376 fill_tensor(bias, 2, static_cast<TBias>(_params.input.range_low), static_cast<TBias>(_params.input.range_high));
377
378 arm_compute::test::SimpleTensor<D> output = reference(src, weights, bias, output_shape(tensor));
379
380 validate(tensor, output);
381 }
382 else
383 {
384 //The user provided a reference file use an npy accessor to validate
385 arm_compute::graph_utils::NumPyAccessor(_params.output.npy, tensor.info()->tensor_shape(), tensor.info()->data_type()).access_tensor(tensor);
386 }
387 return false;
388 }
389
390 /** Create reference tensors.
391 *
392 * Validate the given tensor against the reference result.
393 *
394 * @param[out] src The tensor with the source data.
395 * @param[out] weights The tensor with the weigths data.
396 * @param[out] bias The tensor with the bias data.
397 * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
398 *
399 * @return None.
400 */
create_tensors(arm_compute::test::SimpleTensor<D> & src,arm_compute::test::SimpleTensor<D> & weights,arm_compute::test::SimpleTensor<TBias> & bias,ITensor & tensor)401 virtual void create_tensors(arm_compute::test::SimpleTensor<D> &src,
402 arm_compute::test::SimpleTensor<D> &weights,
403 arm_compute::test::SimpleTensor<TBias> &bias,
404 ITensor &tensor)
405 {
406 ARM_COMPUTE_UNUSED(tensor);
407 //Create Input tensors
408 src = arm_compute::test::SimpleTensor<D> { TensorShape(_params.input.width, _params.input.height, _params.input.fm, _params.input.batch), _params.data_type, 1, _params.input.quant_info };
409 weights = arm_compute::test::SimpleTensor<D> { TensorShape(_params.weights.width, _params.weights.height, _params.weights.fm), _params.data_type, 1, _params.weights.quant_info };
410 bias = arm_compute::test::SimpleTensor<TBias> { TensorShape(_params.input.height), _params.data_type, 1, _params.input.quant_info };
411 }
412
413 /** Calculate reference output tensor shape.
414 *
415 * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
416 *
417 * @return output tensor shape.
418 */
output_shape(ITensor & tensor)419 virtual TensorShape output_shape(ITensor &tensor)
420 {
421 return arm_compute::graph_utils::permute_shape(tensor.info()->tensor_shape(), _params.data_layout, DataLayout::NCHW);
422 }
423
424 /** Calculate reference tensor.
425 *
426 * Validate the given tensor against the reference result.
427 *
428 * @param[in] src The tensor with the source data.
429 * @param[in] weights The tensor with the weigths data.
430 * @param[in] bias The tensor with the bias data.
431 * @param[in] output_shape Shape of the output tensor.
432 *
433 * @return Tensor with the reference output.
434 */
435 virtual arm_compute::test::SimpleTensor<D> reference(arm_compute::test::SimpleTensor<D> &src,
436 arm_compute::test::SimpleTensor<D> &weights,
437 arm_compute::test::SimpleTensor<TBias> &bias,
438 const arm_compute::TensorShape &output_shape) = 0;
439
440 /** Fill QASYMM tensor with Random values.
441 *
442 * Validate the given tensor against the reference result.
443 *
444 * @param[out] tensor The tensor we want to file
445 * @param[in] seed seed for the randomization function
446 * @param[in] low lower bound for random values
447 * @param[in] high upper bound for random values
448 *
449 * @return None.
450 */
fill_tensor(arm_compute::test::SimpleTensor<uint8_t> & tensor,std::random_device::result_type seed,uint8_t low,uint8_t high)451 void fill_tensor(arm_compute::test::SimpleTensor<uint8_t> &tensor, std::random_device::result_type seed, uint8_t low, uint8_t high)
452 {
453 ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::QASYMM8);
454
455 const UniformQuantizationInfo qinfo = tensor.quantization_info().uniform();
456
457 uint8_t qasymm8_low = quantize_qasymm8(low, qinfo);
458 uint8_t qasymm8_high = quantize_qasymm8(high, qinfo);
459
460 std::mt19937 gen(seed);
461 std::uniform_int_distribution<uint8_t> distribution(qasymm8_low, qasymm8_high);
462
463 for(int i = 0; i < tensor.num_elements(); ++i)
464 {
465 tensor[i] = quantize_qasymm8(distribution(gen), qinfo);
466 }
467 }
468 /** Fill S32 tensor with Random values.
469 *
470 * Validate the given tensor against the reference result.
471 *
472 * @param[out] tensor The tensor we want to file
473 * @param[in] seed seed for the randomization function
474 * @param[in] low lower bound for random values
475 * @param[in] high upper bound for random values
476 *
477 * @return None.
478 */
fill_tensor(arm_compute::test::SimpleTensor<int32_t> & tensor,std::random_device::result_type seed,int32_t low,int32_t high)479 void fill_tensor(arm_compute::test::SimpleTensor<int32_t> &tensor, std::random_device::result_type seed, int32_t low, int32_t high)
480 {
481 std::mt19937 gen(seed);
482 std::uniform_int_distribution<int32_t> distribution(static_cast<int32_t>(low), static_cast<uint32_t>(high));
483
484 for(int i = 0; i < tensor.num_elements(); ++i)
485 {
486 tensor[i] = distribution(gen);
487 }
488 }
489 /** Fill F32 tensor with Random values.
490 *
491 * Validate the given tensor against the reference result.
492 *
493 * @param[out] tensor The tensor we want to file
494 * @param[in] seed seed for the randomization function
495 * @param[in] low lower bound for random values
496 * @param[in] high upper bound for random values
497 *
498 * @return None.
499 */
fill_tensor(arm_compute::test::SimpleTensor<float> & tensor,std::random_device::result_type seed,float low,float high)500 void fill_tensor(arm_compute::test::SimpleTensor<float> &tensor, std::random_device::result_type seed, float low, float high)
501 {
502 ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F32);
503 std::mt19937 gen(seed);
504 std::uniform_real_distribution<float> distribution(low, high);
505
506 for(int i = 0; i < tensor.num_elements(); ++i)
507 {
508 tensor[i] = distribution(gen);
509 }
510 }
511 /** Fill F16 tensor with Random values.
512 *
513 * Validate the given tensor against the reference result.
514 *
515 * @param[out] tensor The tensor we want to file
516 * @param[in] seed seed for the randomization function
517 * @param[in] low lower bound for random values
518 * @param[in] high upper bound for random values
519 *
520 * @return None.
521 */
fill_tensor(arm_compute::test::SimpleTensor<half> & tensor,std::random_device::result_type seed,half low,half high)522 void fill_tensor(arm_compute::test::SimpleTensor<half> &tensor, std::random_device::result_type seed, half low, half high)
523 {
524 ARM_COMPUTE_ERROR_ON(tensor.data_type() != arm_compute::DataType::F16);
525 std::mt19937 gen(seed);
526 std::uniform_real_distribution<float> distribution(static_cast<half>(low), static_cast<half>(high));
527
528 for(int i = 0; i < tensor.num_elements(); ++i)
529 {
530 tensor[i] = static_cast<half>(distribution(gen));
531 }
532 }
533
534 /** Select relative tolerance.
535 *
536 * Select relative tolerance if not supplied by user.
537 *
538 * @return Appropriate relative tolerance.
539 */
540 virtual float relative_tolerance() = 0;
541
542 /** Select absolute tolerance.
543 *
544 * Select absolute tolerance if not supplied by user.
545 *
546 * @return Appropriate absolute tolerance.
547 */
548 virtual float absolute_tolerance() = 0;
549
550 /** Select tolerance number.
551 *
552 * Select tolerance number if not supplied by user.
553 *
554 * @return Appropriate tolerance number.
555 */
556 virtual float tolerance_number() = 0;
557
558 /** Validate the output versus the reference.
559 *
560 * @param[in] tensor Tensor result of the actual operation passed into the Accessor.
561 * @param[in] output Tensor result of the reference implementation.
562 *
563 * @return None.
564 */
validate(ITensor & tensor,arm_compute::test::SimpleTensor<D> output)565 void validate(ITensor &tensor, arm_compute::test::SimpleTensor<D> output)
566 {
567 float user_relative_tolerance = _params.verification.relative_tolerance;
568 float user_absolute_tolerance = _params.verification.absolute_tolerance;
569 float user_tolerance_num = _params.verification.tolerance_number;
570 /* If no user input was provided override with defaults. */
571 if(user_relative_tolerance == -1)
572 {
573 user_relative_tolerance = relative_tolerance();
574 }
575
576 if(user_absolute_tolerance == -1)
577 {
578 user_absolute_tolerance = absolute_tolerance();
579 }
580
581 if(user_tolerance_num == -1)
582 {
583 user_tolerance_num = tolerance_number();
584 }
585
586 const arm_compute::test::validation::RelativeTolerance<float> rel_tolerance(user_relative_tolerance); /**< Relative tolerance */
587 const arm_compute::test::validation::AbsoluteTolerance<float> abs_tolerance(user_absolute_tolerance); /**< Absolute tolerance */
588 const float tolerance_num(user_tolerance_num); /**< Tolerance number */
589
590 arm_compute::test::validation::validate(arm_compute::test::Accessor(tensor), output, rel_tolerance, tolerance_num, abs_tolerance);
591 }
592
593 ExampleParams _params;
594 };
595
596 /** Generates appropriate convolution verify accessor
597 *
598 * @param[in] params User supplied parameters for convolution.
599 *
600 * @return A convolution verify accessor for the requested datatype.
601 */
602 template <template <typename D> class VerifyAccessorT>
get_verify_accessor(ExampleParams params)603 inline std::unique_ptr<graph::ITensorAccessor> get_verify_accessor(ExampleParams params)
604 {
605 switch(params.data_type)
606 {
607 case DataType::QASYMM8:
608 {
609 return std::make_unique<VerifyAccessorT<uint8_t>>(
610 params);
611 }
612 case DataType::F16:
613 {
614 return std::make_unique<VerifyAccessorT<half>>(
615 params);
616 }
617 case DataType::F32:
618 {
619 return std::make_unique<VerifyAccessorT<float>>(
620 params);
621 }
622 default:
623 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
624 }
625 }
626
627 template <typename LayerT, typename OptionsT, template <typename D> class VerifyAccessorT>
628 class GraphValidateExample : public ValidateExample
629 {
630 public:
GraphValidateExample(std::string name)631 GraphValidateExample(std::string name)
632 : graph(0, name)
633 {
634 }
635
636 virtual LayerT GraphFunctionLayer(ExampleParams ¶ms) = 0;
637
do_setup(int argc,char ** argv)638 bool do_setup(int argc, char **argv) override
639 {
640 CommandLineParser parser;
641
642 OptionsT Options(parser);
643
644 parser.parse(argc, argv);
645
646 ExampleParams params;
647
648 Options.consume_common_parameters(params);
649 Options.consume_parameters(params);
650
651 if(params.common_params.help)
652 {
653 parser.print_help(argv[0]);
654 return false;
655 }
656
657 Options.print_parameters(std::cout, params);
658 // Create input descriptor
659 const TensorShape input_shape = arm_compute::graph_utils::permute_shape(TensorShape(params.input.width, params.input.height, params.input.fm, params.input.batch),
660 DataLayout::NCHW, params.data_layout);
661 arm_compute::graph::TensorDescriptor input_descriptor = arm_compute::graph::TensorDescriptor(input_shape, params.data_type, params.input.quant_info, params.data_layout);
662
663 const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
664 const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
665
666 graph << params.common_params.target
667 << params.convolution_method
668 << params.depth_convolution_method
669 << arm_compute::graph::frontend::InputLayer(input_descriptor, get_accessor(params.input, lower, upper, 0))
670 << GraphFunctionLayer(params)
671 << arm_compute::graph::frontend::OutputLayer(get_verify_accessor<VerifyAccessorT>(params));
672
673 arm_compute::graph::GraphConfig config;
674 config.num_threads = params.common_params.threads;
675
676 graph.finalize(params.common_params.target, config);
677
678 return true;
679 }
680
do_run()681 void do_run() override
682 {
683 graph.run();
684 }
685
do_teardown()686 void do_teardown() override
687 {
688 }
689
690 arm_compute::graph::frontend::Stream graph;
691 };
692
693 } // graph_validate_utils
694 } // arm_compute
695 #endif //GRAPH_VALIDATE_UTILS_H
696