xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/NEON/functions/NEFFT1D.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEFFT1D.h"
25 
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/runtime/NEON/NEScheduler.h"
29 #include "src/common/utils/Log.h"
30 #include "src/core/NEON/kernels/NEFFTDigitReverseKernel.h"
31 #include "src/core/NEON/kernels/NEFFTRadixStageKernel.h"
32 #include "src/core/NEON/kernels/NEFFTScaleKernel.h"
33 #include "src/core/utils/helpers/fft.h"
34 
35 namespace arm_compute
36 {
37 NEFFT1D::~NEFFT1D() = default;
38 
NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)39 NEFFT1D::NEFFT1D(std::shared_ptr<IMemoryManager> memory_manager)
40     : _memory_group(std::move(memory_manager)), _digit_reverse_kernel(), _fft_kernels(), _scale_kernel(), _digit_reversed_input(), _digit_reverse_indices(), _num_ffts(0), _axis(0), _run_scale(false)
41 {
42 }
43 
configure(const ITensor * input,ITensor * output,const FFT1DInfo & config)44 void NEFFT1D::configure(const ITensor *input, ITensor *output, const FFT1DInfo &config)
45 {
46     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
47     ARM_COMPUTE_ERROR_THROW_ON(NEFFT1D::validate(input->info(), output->info(), config));
48     ARM_COMPUTE_LOG_PARAMS(input, output, config);
49 
50     // Decompose size to radix factors
51     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
52     const unsigned int N                 = input->info()->tensor_shape()[config.axis];
53     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
54     ARM_COMPUTE_ERROR_ON(decomposed_vector.empty());
55 
56     // Flags
57     _run_scale = config.direction == FFTDirection::Inverse;
58 
59     const bool is_c2r = input->info()->num_channels() == 2 && output->info()->num_channels() == 1;
60 
61     // Configure digit reverse
62     FFTDigitReverseKernelInfo digit_reverse_config;
63     digit_reverse_config.axis      = config.axis;
64     digit_reverse_config.conjugate = config.direction == FFTDirection::Inverse;
65     TensorInfo digit_reverse_indices_info(TensorShape(input->info()->tensor_shape()[config.axis]), 1, DataType::U32);
66     _digit_reverse_indices.allocator()->init(digit_reverse_indices_info);
67     _memory_group.manage(&_digit_reversed_input);
68     _digit_reverse_kernel = std::make_unique<NEFFTDigitReverseKernel>();
69     _digit_reverse_kernel->configure(input, &_digit_reversed_input, &_digit_reverse_indices, digit_reverse_config);
70 
71     // Create and configure FFT kernels
72     unsigned int Nx = 1;
73     _num_ffts       = decomposed_vector.size();
74     _fft_kernels.resize(_num_ffts);
75     _axis = config.axis;
76 
77     for(unsigned int i = 0; i < _num_ffts; ++i)
78     {
79         const unsigned int radix_for_stage = decomposed_vector.at(i);
80 
81         FFTRadixStageKernelInfo fft_kernel_info;
82         fft_kernel_info.axis           = config.axis;
83         fft_kernel_info.radix          = radix_for_stage;
84         fft_kernel_info.Nx             = Nx;
85         fft_kernel_info.is_first_stage = (i == 0);
86         _fft_kernels[i]                = std::make_unique<NEFFTRadixStageKernel>();
87         _fft_kernels[i]->configure(&_digit_reversed_input, ((i == (_num_ffts - 1)) && !is_c2r) ? output : nullptr, fft_kernel_info);
88 
89         Nx *= radix_for_stage;
90     }
91 
92     // Configure scale kernel
93     if(_run_scale)
94     {
95         FFTScaleKernelInfo scale_config;
96         scale_config.scale     = static_cast<float>(N);
97         scale_config.conjugate = config.direction == FFTDirection::Inverse;
98         _scale_kernel          = std::make_unique<NEFFTScaleKernel>();
99         is_c2r ? _scale_kernel->configure(&_digit_reversed_input, output, scale_config) : _scale_kernel->configure(output, nullptr, scale_config);
100     }
101 
102     // Allocate tensors
103     _digit_reversed_input.allocator()->allocate();
104     _digit_reverse_indices.allocator()->allocate();
105 
106     // Init digit reverse indices
107     const auto digit_reverse_cpu = arm_compute::helpers::fft::digit_reverse_indices(N, decomposed_vector);
108     std::copy_n(digit_reverse_cpu.data(), N, reinterpret_cast<unsigned int *>(_digit_reverse_indices.buffer()));
109 }
110 
validate(const ITensorInfo * input,const ITensorInfo * output,const FFT1DInfo & config)111 Status NEFFT1D::validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
112 {
113     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
114     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() != DataType::F32);
115     ARM_COMPUTE_RETURN_ERROR_ON(input->num_channels() > 2);
116     ARM_COMPUTE_RETURN_ERROR_ON(std::set<unsigned int>({ 0, 1 }).count(config.axis) == 0);
117 
118     // Check if FFT is decomposable
119     const auto         supported_radix   = NEFFTRadixStageKernel::supported_radix();
120     const unsigned int N                 = input->tensor_shape()[config.axis];
121     const auto         decomposed_vector = arm_compute::helpers::fft::decompose_stages(N, supported_radix);
122     ARM_COMPUTE_RETURN_ERROR_ON(decomposed_vector.empty());
123 
124     // Checks performed when output is configured
125     if((output != nullptr) && (output->total_size() != 0))
126     {
127         // All combinations are supported except real input with real output (i.e., both input channels set to 1)
128         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() == 1 && input->num_channels() == 1);
129         ARM_COMPUTE_RETURN_ERROR_ON(output->num_channels() > 2);
130         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
131         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
132     }
133 
134     return Status{};
135 }
136 
run()137 void NEFFT1D::run()
138 {
139     MemoryGroupResourceScope scope_mg(_memory_group);
140 
141     NEScheduler::get().schedule(_digit_reverse_kernel.get(), (_axis == 0 ? Window::DimY : Window::DimZ));
142 
143     for(unsigned int i = 0; i < _num_ffts; ++i)
144     {
145         NEScheduler::get().schedule(_fft_kernels[i].get(), (_axis == 0 ? Window::DimY : Window::DimX));
146     }
147 
148     // Run output scaling
149     if(_run_scale)
150     {
151         NEScheduler::get().schedule(_scale_kernel.get(), Window::DimY);
152     }
153 }
154 } // namespace arm_compute
155