xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CPP/CPPScheduler.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2016-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CPP/CPPScheduler.h"
25 
26 #include "arm_compute/core/CPP/ICPPKernel.h"
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/Helpers.h"
29 #include "arm_compute/core/Log.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/utils/misc/Utility.h"
32 #include "support/Mutex.h"
33 
34 #include <atomic>
35 #include <condition_variable>
36 #include <iostream>
37 #include <list>
38 #include <memory>
39 #include <mutex>
40 #include <system_error>
41 #include <thread>
42 #include <vector>
43 
44 namespace arm_compute
45 {
46 namespace
47 {
48 class ThreadFeeder
49 {
50 public:
51     /** Constructor
52      *
53      * @param[in] start First value that will be returned by the feeder
54      * @param[in] end   End condition (The last value returned by get_next() will be end - 1)
55      */
ThreadFeeder(unsigned int start=0,unsigned int end=0)56     explicit ThreadFeeder(unsigned int start = 0, unsigned int end = 0)
57         : _atomic_counter(start), _end(end)
58     {
59     }
60     /** Return the next element in the range if there is one.
61      *
62      * @param[out] next Will contain the next element if there is one.
63      *
64      * @return False if the end of the range has been reached and next wasn't set.
65      */
get_next(unsigned int & next)66     bool get_next(unsigned int &next)
67     {
68         next = atomic_fetch_add_explicit(&_atomic_counter, 1u, std::memory_order_relaxed);
69         return next < _end;
70     }
71 
72 private:
73     std::atomic_uint   _atomic_counter;
74     const unsigned int _end;
75 };
76 
77 /** Execute workloads[info.thread_id] first, then call the feeder to get the index of the next workload to run.
78  *
79  * Will run workloads until the feeder reaches the end of its range.
80  *
81  * @param[in]     workloads The array of workloads
82  * @param[in,out] feeder    The feeder indicating which workload to execute next.
83  * @param[in]     info      Threading and CPU info.
84  */
process_workloads(std::vector<IScheduler::Workload> & workloads,ThreadFeeder & feeder,const ThreadInfo & info)85 void process_workloads(std::vector<IScheduler::Workload> &workloads, ThreadFeeder &feeder, const ThreadInfo &info)
86 {
87     unsigned int workload_index = info.thread_id;
88     do
89     {
90         ARM_COMPUTE_ERROR_ON(workload_index >= workloads.size());
91         workloads[workload_index](info);
92     }
93     while(feeder.get_next(workload_index));
94 }
95 
96 /** Set thread affinity. Pin current thread to a particular core
97  *
98  * @param[in] core_id ID of the core to which the current thread is pinned
99  */
set_thread_affinity(int core_id)100 void set_thread_affinity(int core_id)
101 {
102     if(core_id < 0)
103     {
104         return;
105     }
106 
107 #if !defined(_WIN64) && !defined(__APPLE__) && !defined(__OpenBSD__)
108     cpu_set_t set;
109     CPU_ZERO(&set);
110     CPU_SET(core_id, &set);
111     ARM_COMPUTE_EXIT_ON_MSG(sched_setaffinity(0, sizeof(set), &set), "Error setting thread affinity");
112 #endif /* !defined(__APPLE__) && !defined(__OpenBSD__) */
113 }
114 
115 /** There are currently 2 scheduling modes supported by CPPScheduler
116  *
117  * Linear:
118  *  The default mode where all the scheduling is carried out by the main thread linearly (in a loop).
119  *  E.G. If there are 8 threads in total, there will be 1 main thread + 7 threads in the thread pool, and it is main
120  *  thread's responsibility to start all the other threads in the thread pool.
121  *
122  * Fanout:
123  *  In fanout mode, the scheduling (starting other threads) task is distributed across many threads instead of just
124  *  the main thread.
125  *
126  *  The scheduler has a fixed parameter: wake_fanout, and the scheduling sequence goes like this:
127  *  1. Main thread wakes the first wake_fanout - 1 number of FanoutThreads from the thread pool
128  *      From thread: 0
129  *      To thread (non-inclusive): Wake_fanout - 1
130  *  2. Each FanoutThread then wakes wake_fanout number of FanoutThreads from the thread pool:
131  *      From thread: (i + 1) * wake_fanout - 1
132  *      To thread (non-inclusive): (i + 2) * wake_fanout - 1
133  *      where i is the current thread's thread id
134  *      The end is clamped at the size of the thread pool / the number of threads in use - 1
135  *
136  *  E.G. for a total number of 8 threads (1 main thread, 7 FanoutThreads in thread pool) with a fanout of 3
137  *  1. Main thread wakes FanoutThread 0, 1
138  *  2. FanoutThread 0 wakes FanoutThread 2, 3, 4
139  *  3. FanoutThread 1 wakes FanoutThread 5, 6
140  */
141 
142 class Thread final
143 {
144 public:
145     /** Start a new thread
146      *
147      * Thread will be pinned to a given core id if value is non-negative
148      *
149      * @param[in] core_pin Core id to pin the thread on. If negative no thread pinning will take place
150      */
151     explicit Thread(int core_pin = -1);
152 
153     Thread(const Thread &) = delete;
154     Thread &operator=(const Thread &) = delete;
155     Thread(Thread &&)                 = delete;
156     Thread &operator=(Thread &&) = delete;
157 
158     /** Destructor. Make the thread join. */
159     ~Thread();
160 
161     /** Set workloads */
162     void set_workload(std::vector<IScheduler::Workload> *workloads, ThreadFeeder &feeder, const ThreadInfo &info);
163 
164     /** Request the worker thread to start executing workloads.
165      *
166      * The thread will start by executing workloads[info.thread_id] and will then call the feeder to
167      * get the index of the following workload to run.
168      *
169      * @note This function will return as soon as the workloads have been sent to the worker thread.
170      * wait() needs to be called to ensure the execution is complete.
171      */
172     void start();
173 
174     /** Wait for the current kernel execution to complete. */
175     void wait();
176 
177     /** Function ran by the worker thread. */
178     void worker_thread();
179 
180     /** Set the scheduling strategy to be linear */
set_linear_mode()181     void set_linear_mode()
182     {
183         _thread_pool = nullptr;
184         _wake_beg    = 0;
185         _wake_end    = 0;
186     }
187 
188     /** Set the scheduling strategy to be fanout */
set_fanout_mode(std::list<Thread> * thread_pool,unsigned int wake_beg,unsigned int wake_end)189     void set_fanout_mode(std::list<Thread> *thread_pool, unsigned int wake_beg, unsigned int wake_end)
190     {
191         _thread_pool = thread_pool;
192         _wake_beg    = wake_beg;
193         _wake_end    = wake_end;
194     }
195 
196 private:
197     std::thread                        _thread{};
198     ThreadInfo                         _info{};
199     std::vector<IScheduler::Workload> *_workloads{ nullptr };
200     ThreadFeeder                      *_feeder{ nullptr };
201     std::mutex                         _m{};
202     std::condition_variable            _cv{};
203     bool                               _wait_for_work{ false };
204     bool                               _job_complete{ true };
205     std::exception_ptr                 _current_exception{ nullptr };
206     int                                _core_pin{ -1 };
207     std::list<Thread>                 *_thread_pool{ nullptr };
208     unsigned int                       _wake_beg{ 0 };
209     unsigned int                       _wake_end{ 0 };
210 };
211 
Thread(int core_pin)212 Thread::Thread(int core_pin)
213     : _core_pin(core_pin)
214 {
215     _thread = std::thread(&Thread::worker_thread, this);
216 }
217 
~Thread()218 Thread::~Thread()
219 {
220     // Make sure worker thread has ended
221     if(_thread.joinable())
222     {
223         ThreadFeeder feeder;
224         set_workload(nullptr, feeder, ThreadInfo());
225         start();
226         _thread.join();
227     }
228 }
229 
set_workload(std::vector<IScheduler::Workload> * workloads,ThreadFeeder & feeder,const ThreadInfo & info)230 void Thread::set_workload(std::vector<IScheduler::Workload> *workloads, ThreadFeeder &feeder, const ThreadInfo &info)
231 {
232     _workloads = workloads;
233     _feeder    = &feeder;
234     _info      = info;
235 }
236 
start()237 void Thread::start()
238 {
239     {
240         std::lock_guard<std::mutex> lock(_m);
241         _wait_for_work = true;
242         _job_complete  = false;
243     }
244     _cv.notify_one();
245 }
246 
wait()247 void Thread::wait()
248 {
249     {
250         std::unique_lock<std::mutex> lock(_m);
251         _cv.wait(lock, [&] { return _job_complete; });
252     }
253 
254     if(_current_exception)
255     {
256         std::rethrow_exception(_current_exception);
257     }
258 }
259 
worker_thread()260 void Thread::worker_thread()
261 {
262     set_thread_affinity(_core_pin);
263 
264     while(true)
265     {
266         std::unique_lock<std::mutex> lock(_m);
267         _cv.wait(lock, [&] { return _wait_for_work; });
268         _wait_for_work = false;
269 
270         _current_exception = nullptr;
271 
272         // Exit if the worker thread has not been fed with workloads
273         if(_workloads == nullptr || _feeder == nullptr)
274         {
275             return;
276         }
277 
278         // Wake up more peer threads from thread pool if this job has been delegated to the current thread
279         if(_thread_pool != nullptr)
280         {
281             auto thread_it = _thread_pool->begin();
282             std::advance(thread_it, std::min(static_cast<unsigned int>(_thread_pool->size()), _wake_beg));
283             auto wake_end = std::min(_wake_end, static_cast<unsigned int>(_info.num_threads - 1));
284             for(unsigned int t = _wake_beg; t < wake_end; ++t, ++thread_it)
285             {
286                 thread_it->start();
287             }
288         }
289 
290 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
291         try
292         {
293 #endif /* ARM_COMPUTE_EXCEPTIONS_ENABLED */
294             process_workloads(*_workloads, *_feeder, _info);
295 
296 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
297         }
298         catch(...)
299         {
300             _current_exception = std::current_exception();
301         }
302 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
303         _workloads    = nullptr;
304         _job_complete = true;
305         lock.unlock();
306         _cv.notify_one();
307     }
308 }
309 } //namespace
310 
311 struct CPPScheduler::Impl final
312 {
313     constexpr static unsigned int m_default_wake_fanout = 4;
314     enum class Mode
315     {
316         Linear,
317         Fanout
318     };
319     enum class ModeToggle
320     {
321         None,
322         Linear,
323         Fanout
324     };
Implarm_compute::CPPScheduler::Impl325     explicit Impl(unsigned int thread_hint)
326         : _num_threads(thread_hint), _threads(_num_threads - 1), _mode(Mode::Linear), _wake_fanout(0U)
327     {
328         const auto mode_env_v = utility::tolower(utility::getenv("ARM_COMPUTE_CPP_SCHEDULER_MODE"));
329         if(mode_env_v == "linear")
330         {
331             _forced_mode = ModeToggle::Linear;
332         }
333         else if(mode_env_v == "fanout")
334         {
335             _forced_mode = ModeToggle::Fanout;
336         }
337         else
338         {
339             _forced_mode = ModeToggle::None;
340         }
341     }
set_num_threadsarm_compute::CPPScheduler::Impl342     void set_num_threads(unsigned int num_threads, unsigned int thread_hint)
343     {
344         _num_threads = num_threads == 0 ? thread_hint : num_threads;
345         _threads.resize(_num_threads - 1);
346         auto_switch_mode(_num_threads);
347     }
set_num_threads_with_affinityarm_compute::CPPScheduler::Impl348     void set_num_threads_with_affinity(unsigned int num_threads, unsigned int thread_hint, BindFunc func)
349     {
350         _num_threads = num_threads == 0 ? thread_hint : num_threads;
351 
352         // Set affinity on main thread
353         set_thread_affinity(func(0, thread_hint));
354 
355         // Set affinity on worked threads
356         _threads.clear();
357         for(auto i = 1U; i < _num_threads; ++i)
358         {
359             _threads.emplace_back(func(i, thread_hint));
360         }
361         auto_switch_mode(_num_threads);
362     }
auto_switch_modearm_compute::CPPScheduler::Impl363     void auto_switch_mode(unsigned int num_threads_to_use)
364     {
365         // If the environment variable is set to any of the modes, it overwrites the mode selected over num_threads_to_use
366         if(_forced_mode == ModeToggle::Fanout || (_forced_mode == ModeToggle::None && num_threads_to_use > 8))
367         {
368             set_fanout_mode(m_default_wake_fanout, num_threads_to_use);
369             ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Set CPPScheduler to Fanout mode, with wake up fanout : %d and %d threads to use\n", this->wake_fanout(), num_threads_to_use);
370         }
371         else // Equivalent to (_forced_mode == ModeToggle::Linear || (_forced_mode == ModeToggle::None && num_threads_to_use <= 8))
372         {
373             set_linear_mode();
374             ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE("Set CPPScheduler to Linear mode, with %d threads to use\n", num_threads_to_use);
375         }
376     }
set_linear_modearm_compute::CPPScheduler::Impl377     void set_linear_mode()
378     {
379         for(auto &thread : _threads)
380         {
381             thread.set_linear_mode();
382         }
383         _mode        = Mode::Linear;
384         _wake_fanout = 0U;
385     }
set_fanout_modearm_compute::CPPScheduler::Impl386     void set_fanout_mode(unsigned int wake_fanout, unsigned int num_threads_to_use)
387     {
388         ARM_COMPUTE_ERROR_ON(num_threads_to_use > _threads.size() + 1);
389         const auto actual_wake_fanout = std::max(2U, std::min(wake_fanout, num_threads_to_use - 1));
390         auto       thread_it          = _threads.begin();
391         for(auto i = 1U; i < num_threads_to_use; ++i, ++thread_it)
392         {
393             const auto wake_begin = i * actual_wake_fanout - 1;
394             const auto wake_end   = std::min((i + 1) * actual_wake_fanout - 1, num_threads_to_use - 1);
395             thread_it->set_fanout_mode(&_threads, wake_begin, wake_end);
396         }
397         // Reset the remaining threads's wake up schedule
398         while(thread_it != _threads.end())
399         {
400             thread_it->set_fanout_mode(&_threads, 0U, 0U);
401             ++thread_it;
402         }
403         _mode        = Mode::Fanout;
404         _wake_fanout = actual_wake_fanout;
405     }
num_threadsarm_compute::CPPScheduler::Impl406     unsigned int num_threads() const
407     {
408         return _num_threads;
409     }
wake_fanoutarm_compute::CPPScheduler::Impl410     unsigned int wake_fanout() const
411     {
412         return _wake_fanout;
413     }
modearm_compute::CPPScheduler::Impl414     Mode mode() const
415     {
416         return _mode;
417     }
418 
419     void run_workloads(std::vector<IScheduler::Workload> &workloads);
420 
421     unsigned int       _num_threads;
422     std::list<Thread>  _threads;
423     arm_compute::Mutex _run_workloads_mutex{};
424     Mode               _mode{ Mode::Linear };
425     ModeToggle         _forced_mode{ ModeToggle::None };
426     unsigned int       _wake_fanout{ 0 };
427 };
428 
429 /*
430  * This singleton has been deprecated and will be removed in future releases
431  */
get()432 CPPScheduler &CPPScheduler::get()
433 {
434     static CPPScheduler scheduler;
435     return scheduler;
436 }
437 
CPPScheduler()438 CPPScheduler::CPPScheduler()
439     : _impl(std::make_unique<Impl>(num_threads_hint()))
440 {
441 }
442 
443 CPPScheduler::~CPPScheduler() = default;
444 
set_num_threads(unsigned int num_threads)445 void CPPScheduler::set_num_threads(unsigned int num_threads)
446 {
447     // No changes in the number of threads while current workloads are running
448     arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
449     _impl->set_num_threads(num_threads, num_threads_hint());
450 }
451 
set_num_threads_with_affinity(unsigned int num_threads,BindFunc func)452 void CPPScheduler::set_num_threads_with_affinity(unsigned int num_threads, BindFunc func)
453 {
454     // No changes in the number of threads while current workloads are running
455     arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
456     _impl->set_num_threads_with_affinity(num_threads, num_threads_hint(), func);
457 }
458 
num_threads() const459 unsigned int CPPScheduler::num_threads() const
460 {
461     return _impl->num_threads();
462 }
463 
464 #ifndef DOXYGEN_SKIP_THIS
run_workloads(std::vector<IScheduler::Workload> & workloads)465 void CPPScheduler::run_workloads(std::vector<IScheduler::Workload> &workloads)
466 {
467     // Mutex to ensure other threads won't interfere with the setup of the current thread's workloads
468     // Other thread's workloads will be scheduled after the current thread's workloads have finished
469     // This is not great because different threads workloads won't run in parallel but at least they
470     // won't interfere each other and deadlock.
471     arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
472     const unsigned int                  num_threads_to_use = std::min(_impl->num_threads(), static_cast<unsigned int>(workloads.size()));
473     if(num_threads_to_use < 1)
474     {
475         return;
476     }
477     // Re-adjust the mode if the actual number of threads to use is different from the number of threads created
478     _impl->auto_switch_mode(num_threads_to_use);
479     int num_threads_to_start = 0;
480     switch(_impl->mode())
481     {
482         case CPPScheduler::Impl::Mode::Fanout:
483         {
484             num_threads_to_start = static_cast<int>(_impl->wake_fanout()) - 1;
485             break;
486         }
487         case CPPScheduler::Impl::Mode::Linear:
488         default:
489         {
490             num_threads_to_start = static_cast<int>(num_threads_to_use) - 1;
491             break;
492         }
493     }
494     ThreadFeeder feeder(num_threads_to_use, workloads.size());
495     ThreadInfo   info;
496     info.cpu_info          = &cpu_info();
497     info.num_threads       = num_threads_to_use;
498     unsigned int t         = 0;
499     auto         thread_it = _impl->_threads.begin();
500     // Set num_threads_to_use - 1 workloads to the threads as the remaining 1 is left to the main thread
501     for(; t < num_threads_to_use - 1; ++t, ++thread_it)
502     {
503         info.thread_id = t;
504         thread_it->set_workload(&workloads, feeder, info);
505     }
506     thread_it = _impl->_threads.begin();
507     for(int i = 0; i < num_threads_to_start; ++i, ++thread_it)
508     {
509         thread_it->start();
510     }
511     info.thread_id = t;                         // Set main thread's thread_id
512     process_workloads(workloads, feeder, info); // Main thread processes workloads
513 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
514     try
515     {
516 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
517         thread_it = _impl->_threads.begin();
518         for(unsigned int i = 0; i < num_threads_to_use - 1; ++i, ++thread_it)
519         {
520             thread_it->wait();
521         }
522 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
523     }
524     catch(const std::system_error &e)
525     {
526         std::cerr << "Caught system_error with code " << e.code() << " meaning " << e.what() << '\n';
527     }
528 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
529 }
530 #endif /* DOXYGEN_SKIP_THIS */
531 
schedule_op(ICPPKernel * kernel,const Hints & hints,const Window & window,ITensorPack & tensors)532 void CPPScheduler::schedule_op(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors)
533 {
534     schedule_common(kernel, hints, window, tensors);
535 }
536 
schedule(ICPPKernel * kernel,const Hints & hints)537 void CPPScheduler::schedule(ICPPKernel *kernel, const Hints &hints)
538 {
539     ITensorPack tensors;
540     schedule_common(kernel, hints, kernel->window(), tensors);
541 }
542 } // namespace arm_compute
543