xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLDirectDeconvolutionLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLDirectDeconvolutionLayer.h"
25 
26 #include "arm_compute/core/CL/CLKernelLibrary.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Utils.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "arm_compute/runtime/CL/CLScheduler.h"
32 #include "src/core/CL/kernels/CLDeconvolutionLayerUpsampleKernel.h"
33 #include "src/core/CL/kernels/CLFillBorderKernel.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 
36 #include "src/common/utils/Log.h"
37 
38 #include <memory>
39 #include <tuple>
40 
41 namespace arm_compute
42 {
43 using namespace arm_compute::misc::shape_calculator;
44 
CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)45 CLDirectDeconvolutionLayer::CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
46     : _memory_group(std::move(memory_manager)),
47       _scale_f(),
48       _conv_f(),
49       _flip_weights(),
50       _scaled_output(),
51       _original_weights(nullptr),
52       _weights_flipped(),
53       _flip_axis(),
54       _is_prepared(false)
55 {
56 }
57 
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * bias,ITensorInfo * output,const PadStrideInfo & info,const WeightsInfo & weights_info)58 Status CLDirectDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const PadStrideInfo &info,
59                                             const WeightsInfo &weights_info)
60 {
61     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
62     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::F16, DataType::F32);
63     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
64     const DataLayout data_layout = input->data_layout();
65 
66     const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
67     const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
68     const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
69 
70     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h));
71     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1);
72 
73     auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h), info);
74 
75     const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
76 
77     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
78 
79     if(input->data_type() != weights->data_type())
80     {
81         ARM_COMPUTE_RETURN_ERROR_ON(weights->data_type() != DataType::QSYMM8_PER_CHANNEL || !is_data_type_quantized_asymmetric(input->data_type()));
82     }
83 
84     if(bias != nullptr)
85     {
86         if(is_data_type_quantized_asymmetric(input->data_type()))
87         {
88             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
89         }
90         else
91         {
92             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
93         }
94         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias);
95     }
96 
97     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid.");
98     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid.");
99     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid.");
100 
101     unsigned int        deconv_pad_x    = 0;
102     unsigned int        deconv_pad_y    = 0;
103     const unsigned int  stride_x        = info.stride().first;
104     const unsigned int  stride_y        = info.stride().second;
105     const TensorShape   scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
106     TensorInfo          scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout));
107     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
108 
109     ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, info));
110     ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, weights_info));
111 
112     return Status{};
113 }
114 
configure(ICLTensor * input,ICLTensor * weights,const ICLTensor * bias,ICLTensor * output,const PadStrideInfo & info,const WeightsInfo & weights_info)115 void CLDirectDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
116                                            const WeightsInfo &weights_info)
117 {
118     configure(CLKernelLibrary::get().get_compile_context(), input, weights, bias, output, info, weights_info);
119 }
120 
configure(const CLCompileContext & compile_context,ICLTensor * input,ICLTensor * weights,const ICLTensor * bias,ICLTensor * output,const PadStrideInfo & info,const WeightsInfo & weights_info)121 void CLDirectDeconvolutionLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
122                                            const WeightsInfo &weights_info)
123 {
124     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
125     ARM_COMPUTE_LOG_PARAMS(input, weights, bias, output, info, weights_info);
126 
127     const unsigned int pad_left   = info.pad_left();
128     const unsigned int pad_right  = info.pad_right();
129     const unsigned int pad_top    = info.pad_top();
130     const unsigned int pad_bottom = info.pad_bottom();
131     const unsigned int stride_x   = info.stride().first;
132     const unsigned int stride_y   = info.stride().second;
133 
134     const DataLayout data_layout = input->info()->data_layout();
135 
136     const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
137     const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
138 
139     _original_weights = weights;
140     _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
141     _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
142     _flip_weights.configure(compile_context, weights, &_weights_flipped, &_flip_axis);
143 
144     auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h), info);
145 
146     const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
147 
148     // Output auto initialization if not yet initialized
149     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout));
150 
151     // Perform validation step
152     ARM_COMPUTE_ERROR_THROW_ON(CLDirectDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info));
153 
154     _is_prepared = weights_info.retain_internal_weights();
155 
156     _memory_group.manage(&_scaled_output);
157 
158     // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
159     unsigned int      deconv_pad_x    = 0;
160     unsigned int      deconv_pad_y    = 0;
161     const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
162 
163     unsigned int deconv_pad_left  = pad_right > pad_left ? pad_right - pad_left : 0;
164     unsigned int deconv_pad_right = pad_left > pad_right ? pad_left - pad_right : 0;
165     deconv_pad_x -= deconv_pad_left + deconv_pad_right;
166     ARM_COMPUTE_ERROR_ON((deconv_pad_x % 2) != 0);
167     deconv_pad_left += deconv_pad_x / 2;
168     deconv_pad_right += deconv_pad_x / 2;
169 
170     unsigned int deconv_pad_top    = pad_bottom > pad_top ? pad_bottom - pad_top : 0;
171     unsigned int deconv_pad_bottom = pad_top > pad_bottom ? pad_top - pad_bottom : 0;
172     deconv_pad_y -= deconv_pad_top + deconv_pad_bottom;
173     ARM_COMPUTE_ERROR_ON((deconv_pad_y % 2) != 0);
174     deconv_pad_top += deconv_pad_y / 2;
175     deconv_pad_bottom += deconv_pad_y / 2;
176 
177     TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
178     scale_out_info.set_data_layout(data_layout);
179     _scaled_output.allocator()->init(scale_out_info);
180 
181     // configure scale function
182     const PadStrideInfo upsample_info(stride_x, stride_y, deconv_pad_left, deconv_pad_right, deconv_pad_top, deconv_pad_bottom, DimensionRoundingType::FLOOR);
183     _scale_f.configure(compile_context, input, &_scaled_output, upsample_info);
184 
185     // Setup the function to convolve the upscaled output
186     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
187     _conv_f.configure(compile_context, &_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info);
188     _scaled_output.allocator()->allocate();
189 
190     // Setup flip axis data
191     _flip_axis.allocator()->allocate();
192     _flip_axis.map(true);
193     auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
194     if(weights->info()->data_layout() == DataLayout::NHWC)
195     {
196         axis_data[0] = 1;
197         axis_data[1] = 2;
198     }
199     else
200     {
201         axis_data[0] = 0;
202         axis_data[1] = 1;
203     }
204     _flip_axis.unmap();
205 }
206 
run()207 void CLDirectDeconvolutionLayer::run()
208 {
209     prepare();
210 
211     MemoryGroupResourceScope scope_mg(_memory_group);
212 
213     _scale_f.run();
214     _conv_f.run();
215 }
216 
prepare()217 void CLDirectDeconvolutionLayer::prepare()
218 {
219     if(!_is_prepared)
220     {
221         ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
222 
223         // Run weights flipping and mark original weights tensor as unused
224         _weights_flipped.allocator()->allocate();
225         _flip_weights.run();
226         _original_weights->mark_as_unused();
227 
228         // Prepare convolution
229         _conv_f.prepare();
230 
231         // Free flipped weights
232         if(!_weights_flipped.is_used())
233         {
234             _weights_flipped.allocator()->free();
235         }
236         _is_prepared = true;
237     }
238 }
239 } // namespace arm_compute
240