xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLCropResize.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLCropResize.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/runtime/CL/CLScheduler.h"
28 #include "src/core/CL/kernels/CLFillBorderKernel.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 #include "src/core/helpers/WindowHelpers.h"
31 
32 #include "src/common/utils/Log.h"
33 
34 #include <cstddef>
35 
36 namespace arm_compute
37 {
38 namespace
39 {
configure_crop(const ICLTensor * input,ICLTensor * crop_boxes,ICLTensor * box_ind,ICLTensor * output,uint32_t crop_box_ind,Coordinates & start,Coordinates & end,uint32_t & batch_index)40 inline void configure_crop(const ICLTensor *input, ICLTensor *crop_boxes, ICLTensor *box_ind, ICLTensor *output, uint32_t crop_box_ind, Coordinates &start, Coordinates &end, uint32_t &batch_index)
41 {
42     batch_index = *(reinterpret_cast<int32_t *>(box_ind->ptr_to_element(Coordinates(crop_box_ind))));
43 
44     // _crop_box_ind is used to index crop_boxes and retrieve the appropriate crop box.
45     // The crop box is specified by normalized coordinates [y0, x0, y1, x1].
46     const float x0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(1, crop_box_ind)));
47     const float y0 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(0, crop_box_ind)));
48     const float x1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(3, crop_box_ind)));
49     const float y1 = *reinterpret_cast<const float *>(crop_boxes->ptr_to_element(Coordinates(2, crop_box_ind)));
50     // The normalized coordinates are scaled to retrieve the floating point image coordinates which are rounded to integers.
51     start = Coordinates(std::floor(x0 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
52                         std::floor(y0 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
53     end = Coordinates(std::floor(x1 * (input->info()->tensor_shape()[1] - 1) + 0.5f),
54                       std::floor(y1 * (input->info()->tensor_shape()[2] - 1) + 0.5f));
55     const TensorShape out_shape(input->info()->tensor_shape()[0], static_cast<uint32_t>(abs(end[0] - start[0])) + 1, static_cast<uint32_t>(abs(end[1] - start[1])) + 1);
56     output->info()->set_tensor_shape(out_shape);
57 }
58 } // namespace
59 
CLCropResize()60 CLCropResize::CLCropResize()
61     : _input(nullptr), _boxes(nullptr), _box_ind(nullptr), _output(nullptr), _num_boxes(0), _method(), _extrapolation_value(0), _scale(), _copy(), _crop_results(), _scaled_results(), _internal_functions()
62 {
63 }
64 
65 CLCropResize::~CLCropResize() = default;
66 
validate(const ITensorInfo * input,ITensorInfo * boxes,ITensorInfo * box_ind,const ITensorInfo * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)67 Status CLCropResize::validate(const ITensorInfo *input, ITensorInfo *boxes, ITensorInfo *box_ind, const ITensorInfo *output,
68                               Coordinates2D crop_size, InterpolationPolicy method, float extrapolation_value)
69 {
70     ARM_COMPUTE_RETURN_ERROR_ON(crop_size.x <= 0 || crop_size.y <= 0);
71     ARM_COMPUTE_RETURN_ERROR_ON(method == InterpolationPolicy::AREA);
72     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[0] != 4);
73     ARM_COMPUTE_RETURN_ERROR_ON(boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]);
74     TensorInfo temp_info;
75     ARM_COMPUTE_RETURN_ON_ERROR(CLCrop::validate(input->clone().get(), &temp_info, { 0, 0 }, { 1, 1 }, input->dimension(3) - 1, extrapolation_value));
76     if(output->total_size() > 0)
77     {
78         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32);
79         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
80         TensorShape out_shape(input->tensor_shape()[0], crop_size.x, crop_size.y, boxes->tensor_shape()[1]);
81         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), out_shape);
82     }
83     return Status{};
84 }
85 
configure(const ICLTensor * input,ICLTensor * boxes,ICLTensor * box_ind,ICLTensor * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)86 void CLCropResize::configure(const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size,
87                              InterpolationPolicy method, float extrapolation_value)
88 {
89     configure(CLKernelLibrary::get().get_compile_context(), input, boxes, box_ind, output, crop_size, method, extrapolation_value);
90 }
91 
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * boxes,ICLTensor * box_ind,ICLTensor * output,Coordinates2D crop_size,InterpolationPolicy method,float extrapolation_value)92 void CLCropResize::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *boxes, ICLTensor *box_ind, ICLTensor *output, Coordinates2D crop_size,
93                              InterpolationPolicy method, float extrapolation_value)
94 {
95     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, boxes, box_ind);
96     ARM_COMPUTE_ERROR_THROW_ON(CLCropResize::validate(input->info(), boxes->info(), box_ind->info(), output->info(), crop_size, method, extrapolation_value));
97     ARM_COMPUTE_LOG_PARAMS(input, boxes, box_ind, output, crop_size, method, extrapolation_value);
98 
99     TensorShape output_shape = TensorShape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y, boxes->info()->tensor_shape()[1]);
100     auto_init_if_empty(*output->info(), output_shape, 1, DataType::F32);
101 
102     _num_boxes = boxes->info()->tensor_shape()[1];
103     TensorShape out_shape(input->info()->tensor_shape()[0], crop_size.x, crop_size.y);
104 
105     _input               = input;
106     _boxes               = boxes;
107     _box_ind             = box_ind;
108     _output              = output;
109     _method              = method;
110     _extrapolation_value = extrapolation_value;
111 
112     // For each crop box:
113     // - The initial cropped image is produced as specified by boxes[i] from the 3D image input[box_ind[i]].
114     //   Possibly using a CLCrop and up to four CLFills.
115     // - A tensor is required to hold this initial cropped image.
116     // - A scale function is used to resize the cropped image to the size specified by crop_size.
117     // - A tensor is required to hold the final scaled image before it is copied into the 4D output
118     //   that will hold all final cropped and scaled 3D images using CLCopy.
119 
120     // The contents of _boxes and _box_ind are required to calculate the shape
121     // of the initial cropped image and thus are required to configure the
122     // kernels used for cropping and scaling.
123     _boxes->map(CLScheduler::get().queue());
124     _box_ind->map(CLScheduler::get().queue());
125     for(unsigned int num_box = 0; num_box < _num_boxes; ++num_box)
126     {
127         auto       crop_tensor = std::make_unique<CLTensor>();
128         TensorInfo crop_result_info(1, DataType::F32);
129         crop_result_info.set_data_layout(DataLayout::NHWC);
130         crop_tensor->allocator()->init(crop_result_info);
131         _crop_results.emplace_back(std::move(crop_tensor));
132 
133         auto       scale_tensor = std::make_unique<CLTensor>();
134         TensorInfo scaled_result_info(out_shape, 1, DataType::F32);
135         scaled_result_info.set_data_layout(DataLayout::NHWC);
136         scale_tensor->allocator()->init(scaled_result_info);
137         _scaled_results.emplace_back(std::move(scale_tensor));
138 
139         // Size of the crop box in _boxes has to be given before the configure
140         uint32_t    batch_index;
141         Coordinates start{};
142         Coordinates end{};
143         configure_crop(_input, _boxes, _box_ind, _crop_results[num_box].get(), num_box, start, end, batch_index);
144 
145         auto scale_kernel = std::make_unique<CLScale>();
146         scale_kernel->configure(compile_context, _crop_results[num_box].get(), _scaled_results[num_box].get(), ScaleKernelInfo{ _method, BorderMode::CONSTANT, PixelValue(_extrapolation_value), SamplingPolicy::TOP_LEFT });
147         _scale.emplace_back(std::move(scale_kernel));
148 
149         Window win = calculate_max_window(*_output->info());
150         win.set(3, Window::Dimension(num_box, num_box + 1, 1));
151 
152         auto copy_kernel = std::make_unique<CLCopy>();
153         copy_kernel->configure(compile_context, _scaled_results[num_box].get(), _output, &win);
154         _copy.emplace_back(std::move(copy_kernel));
155 
156         _crop_results[num_box]->allocator()->allocate();
157         _scaled_results[num_box]->allocator()->allocate();
158 
159         bool is_width_flipped  = end[0] < start[0];
160         bool is_height_flipped = end[1] < start[1];
161         /** The number of rows out of bounds at the start and end of _crop_results[num_box].get(). */
162         std::array<int32_t, 2> rows_out_of_bounds{ 0 };
163         /** The number of columns out of bounds at the start and end of _crop_results[num_box].get(). */
164         std::array<int32_t, 2> cols_out_of_bounds{ 0 };
165         if(is_height_flipped)
166         {
167             rows_out_of_bounds[0] = start[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(start[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0;
168             rows_out_of_bounds[1] = end[1] < 0 ? std::min(-end[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0;
169         }
170         else
171         {
172             rows_out_of_bounds[0] = start[1] < 0 ? std::min(-start[1], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2))) : 0;
173             rows_out_of_bounds[1] = end[1] >= static_cast<int32_t>(_input->info()->dimension(2)) ? std::min(end[1] - _input->info()->dimension(2) + 1, _crop_results[num_box].get()->info()->dimension(2)) : 0;
174         }
175         if(is_width_flipped)
176         {
177             cols_out_of_bounds[0] = start[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(start[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0;
178             cols_out_of_bounds[1] = end[0] < 0 ? std::min(-end[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0;
179         }
180         else
181         {
182             cols_out_of_bounds[0] = start[0] < 0 ? std::min(-start[0], static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1))) : 0;
183             cols_out_of_bounds[1] = end[0] >= static_cast<int32_t>(_input->info()->dimension(1)) ? std::min(end[0] - _input->info()->dimension(1) + 1, _crop_results[num_box].get()->info()->dimension(1)) : 0;
184         }
185 
186         Window full_window = calculate_max_window(*_crop_results[num_box].get()->info());
187 
188         //  Full _crop_results[num_box].get() window:
189         //  --------------------------------
190         //  |          Out of bounds       |
191         //  |          rows before         |
192         //  |------------------------------|
193         //  | Out of | In         | Out of |
194         //  | bounds | bounds     | bounds |
195         //  | cols   | elements   | cols   |
196         //  | before | copied     | after  |
197         //  |        | from input |        |
198         //  |------------------------------|
199         //  |        Out of bounds         |
200         //  |        rows after            |
201         //  |------------------------------|
202         // Use a separate _crop_results[num_box].get() window for each section of the full _crop_results[num_box].get() window.
203         // Fill all _crop_results[num_box].get() rows that have no elements that are within the input bounds
204         // with the extrapolation value using memset.
205         // First for the rows before the in bounds rows.
206         if(rows_out_of_bounds[0] > 0)
207         {
208             Window slice_fill_rows_before(full_window);
209             slice_fill_rows_before.set(2, Window::Dimension(0, rows_out_of_bounds[0], 1));
210             auto kernel = std::make_unique<CLFill>();
211             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_before);
212             //_internal_functions.emplace_back(std::move(kernel));
213             _internal_functions.push_back(std::move(kernel));
214         }
215 
216         Window slice_in(full_window);
217         slice_in.set(2, Window::Dimension(rows_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], 1));
218         slice_in.set(1, Window::Dimension(cols_out_of_bounds[0], _crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], 1));
219 
220         int rows_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(2)) - rows_out_of_bounds[0] - rows_out_of_bounds[1];
221         if(rows_in_bounds > 0)
222         {
223             // Fill all elements that share a row with an in bounds element with the extrapolation value.
224             if(cols_out_of_bounds[0] > 0)
225             {
226                 Window slice_fill_cols_before(slice_in);
227                 slice_fill_cols_before.set(1, Window::Dimension(0, cols_out_of_bounds[0], 1));
228                 auto kernel = std::make_unique<CLFill>();
229                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_before);
230                 //_internal_functions.emplace_back(std::move(kernel));
231                 _internal_functions.push_back(std::move(kernel));
232             }
233 
234             if(cols_out_of_bounds[1] > 0)
235             {
236                 Window slice_fill_cols_after(slice_in);
237                 slice_fill_cols_after.set(1, Window::Dimension(_crop_results[num_box].get()->info()->dimension(1) - cols_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(1), 1));
238                 auto kernel = std::make_unique<CLFill>();
239                 kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_cols_after);
240                 //_internal_functions.emplace_back(std::move(kernel));
241                 _internal_functions.push_back(std::move(kernel));
242             }
243 
244             // Copy all elements within the input bounds from the input tensor.
245             int cols_in_bounds = static_cast<int32_t>(_crop_results[num_box].get()->info()->dimension(1)) - cols_out_of_bounds[0] - cols_out_of_bounds[1];
246             if(cols_in_bounds > 0)
247             {
248                 Coordinates2D start_in{ is_width_flipped ? start[0] - cols_out_of_bounds[0] : start[0] + cols_out_of_bounds[0],
249                                         is_height_flipped ? start[1] - rows_out_of_bounds[0] : start[1] + rows_out_of_bounds[0] };
250                 Coordinates2D end_in{ is_width_flipped ? start_in.x - cols_in_bounds + 1 : start_in.x + cols_in_bounds - 1,
251                                       is_height_flipped ? start_in.y - rows_in_bounds + 1 : start_in.y + rows_in_bounds - 1 };
252                 auto kernel = std::make_unique<CLCrop>();
253 
254                 kernel->configure(compile_context, _input, _crop_results[num_box].get(), start_in, end_in, batch_index, extrapolation_value, &slice_in);
255                 //_internal_functions.emplace_back(std::move(kernel));
256                 _internal_functions.push_back(std::move(kernel));
257             }
258         }
259 
260         // Fill all rows after the in bounds elements with the extrapolation value.
261         if(rows_out_of_bounds[1] > 0)
262         {
263             Window slice_fill_rows_after(full_window);
264             slice_fill_rows_after.set(2, Window::Dimension(_crop_results[num_box].get()->info()->dimension(2) - rows_out_of_bounds[1], _crop_results[num_box].get()->info()->dimension(2), 1));
265             auto kernel = std::make_unique<CLFill>();
266             kernel->configure(compile_context, _crop_results[num_box].get(), extrapolation_value, &slice_fill_rows_after);
267             //_internal_functions.emplace_back(std::move(kernel));
268             _internal_functions.push_back(std::move(kernel));
269         }
270     }
271     _boxes->unmap(CLScheduler::get().queue());
272     _box_ind->unmap(CLScheduler::get().queue());
273     CLScheduler::get().sync();
274 }
275 
run()276 void CLCropResize::run()
277 {
278     ARM_COMPUTE_ERROR_ON_MSG(_output == nullptr, "Unconfigured function");
279 
280     for(unsigned int i = 0; i < _internal_functions.size(); ++i)
281     {
282         _internal_functions[i]->run();
283     }
284 
285     CLScheduler::get().sync();
286     for(auto &kernel : _scale)
287     {
288         kernel->run();
289     }
290     CLScheduler::get().sync();
291     for(auto &kernel : _copy)
292     {
293         kernel->run();
294     }
295     CLScheduler::get().sync();
296 }
297 } // namespace arm_compute
298