xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLArgMinMaxLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "arm_compute/runtime/CL/functions/CLArgMinMaxLayer.h"
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/TensorInfo.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/core/Validate.h"
31 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
32 #include "src/core/CL/CLValidate.h"
33 #include "src/core/CL/kernels/CLArgMinMaxLayerKernel.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/runtime/Utils.h"
36 
37 #include "src/common/utils/Log.h"
38 
39 namespace arm_compute
40 {
CLArgMinMaxLayer(std::shared_ptr<IMemoryManager> memory_manager)41 CLArgMinMaxLayer::CLArgMinMaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
42     : _memory_group(std::move(memory_manager)), _results_vector(), _not_reshaped_output(), _reduction_kernels_vector(), _reshape(), _num_of_stages(), _reduction_axis()
43 {
44 }
45 
46 CLArgMinMaxLayer::~CLArgMinMaxLayer() = default;
47 
validate(const ITensorInfo * input,int axis,const ITensorInfo * output,const ReductionOperation & op)48 Status CLArgMinMaxLayer::validate(const ITensorInfo *input, int axis, const ITensorInfo *output, const ReductionOperation &op)
49 {
50     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
51     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S32, DataType::F16, DataType::F32);
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG(op != ReductionOperation::ARG_IDX_MAX && op != ReductionOperation::ARG_IDX_MIN, "Invalid reduction operation");
54     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= static_cast<int>(TensorShape::num_max_dimensions), "Reduction axis greater than max number of dimensions");
55     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
56     const unsigned int num_of_stages = utils::calculate_number_of_stages_only_x_axis(input->dimension(0), axis);
57 
58     DataType   output_data_type = DataType::S32;
59     TensorInfo not_reshaped_output;
60     const auto input_num_channles = input->num_channels();
61     const auto input_qinfo        = input->quantization_info();
62 
63     if(output->total_size() != 0)
64     {
65         output_data_type                       = output->data_type();
66         const TensorInfo expected_output_shape = output->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, false));
67         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output_shape, output);
68     }
69 
70     auto shape_before_reshape = input->tensor_shape();
71     shape_before_reshape.set(axis, 1);
72     auto initialize_tensorinfo = [](TensorInfo & ti, TensorShape shape, DataType data_type, int num_channels, QuantizationInfo qinfo)
73     {
74         ti.set_data_type(data_type).set_tensor_shape(shape).set_num_channels(num_channels).set_quantization_info(qinfo);
75     };
76 
77     initialize_tensorinfo(not_reshaped_output, shape_before_reshape, output_data_type, input_num_channles, input_qinfo);
78 
79     if(num_of_stages == 1)
80     {
81         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, &not_reshaped_output, axis, op));
82     }
83     else
84     {
85         // Create temporary tensor infos
86         std::vector<TensorInfo> sums_vector(num_of_stages - 1);
87 
88         // Create intermediate tensor info
89         TensorShape shape{ input->tensor_shape() };
90 
91         for(unsigned int i = 0; i < num_of_stages - 1; i++)
92         {
93             shape.set(0, ceil(shape.x() / 128.f));
94             sums_vector[i].set_data_type(input->data_type());
95             sums_vector[i].set_tensor_shape(shape);
96             sums_vector[i].set_num_channels(input->num_channels());
97         }
98 
99         // Validate ReductionOperation only on first kernel
100         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, &sums_vector[0], axis, op));
101 
102         // Validate ReductionOperation on intermediate stages
103         for(unsigned int i = 1; i < num_of_stages - 1; ++i)
104         {
105             ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[i - 1], &sums_vector[i], axis, op));
106         }
107 
108         // Validate ReductionOperation on the last stage
109         const unsigned int last_stage = num_of_stages - 1;
110         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[last_stage - 1], &not_reshaped_output, axis, op));
111     }
112     ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&not_reshaped_output, output));
113     return Status{};
114 }
115 
configure(const ICLTensor * input,int axis,ICLTensor * output,const ReductionOperation & op)116 void CLArgMinMaxLayer::configure(const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op)
117 {
118     configure(CLKernelLibrary::get().get_compile_context(), input, axis, output, op);
119 }
120 
configure(const CLCompileContext & compile_context,const ICLTensor * input,int axis,ICLTensor * output,const ReductionOperation & op)121 void CLArgMinMaxLayer::configure(const CLCompileContext &compile_context, const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op)
122 {
123     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
124     ARM_COMPUTE_LOG_PARAMS(input, axis, output, op);
125 
126     _num_of_stages  = utils::calculate_number_of_stages_only_x_axis(input->info()->dimension(0), axis);
127     _reduction_axis = axis;
128 
129     const TensorShape output_shape     = arm_compute::misc::shape_calculator::compute_reduced_shape(input->info()->tensor_shape(), axis, false);
130     DataType          output_data_type = (output->info()->data_type() == DataType::UNKNOWN) ? DataType::S32 : output->info()->data_type();
131     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true));
132 
133     // Configure reduction operation kernels
134     _reduction_kernels_vector.reserve(_num_of_stages);
135 
136     auto add_reduction_kernel = [this, &compile_context, axis, op](const ICLTensor * input, const ICLTensor * prev_output, ICLTensor * output)
137     {
138         _reduction_kernels_vector.emplace_back(std::make_unique<CLArgMinMaxLayerKernel>());
139         _reduction_kernels_vector.back()->configure(compile_context, input, prev_output, output, axis, op);
140     };
141 
142     _memory_group.manage(&_not_reshaped_output);
143     // Create temporary tensors
144     if(_num_of_stages == 1)
145     {
146         add_reduction_kernel(input, nullptr, &_not_reshaped_output);
147     }
148     else
149     {
150         _results_vector.resize(_num_of_stages - 1);
151         TensorShape shape{ input->info()->tensor_shape() };
152         for(unsigned int i = 0; i < _num_of_stages - 1; i++)
153         {
154             shape.set(0, ceil(shape.x() / 128.f));
155             _results_vector[i].allocator()->init(input->info()->clone()->set_tensor_shape(shape).set_data_type(output_data_type));
156         }
157 
158         // Apply ReductionOperation only on first kernel
159         _memory_group.manage(&_results_vector[0]);
160         add_reduction_kernel(input, nullptr, &_results_vector[0]);
161 
162         // Apply ReductionOperation on intermediate stages
163         for(unsigned int i = 1; i < _num_of_stages - 1; ++i)
164         {
165             _memory_group.manage(&_results_vector[i]);
166             add_reduction_kernel(input, &_results_vector[i - 1], &_results_vector[i]);
167             _results_vector[i - 1].allocator()->allocate();
168         }
169 
170         // Apply ReductionOperation on the last stage
171         const unsigned int last_stage = _num_of_stages - 1;
172         add_reduction_kernel(input, &_results_vector[last_stage - 1], &_not_reshaped_output);
173         _results_vector[last_stage - 1].allocator()->allocate();
174     }
175     _reshape.configure(compile_context, &_not_reshaped_output, output);
176     _not_reshaped_output.allocator()->allocate();
177 }
178 
run()179 void CLArgMinMaxLayer::run()
180 {
181     MemoryGroupResourceScope scope_mg(_memory_group);
182 
183     for(unsigned int i = 0; i < _num_of_stages; ++i)
184     {
185         CLScheduler::get().enqueue(*_reduction_kernels_vector[i], false);
186     }
187     _reshape.run();
188 }
189 } // namespace arm_compute
190