xref: /aosp_15_r20/external/ComputeLibrary/src/graph/GraphBuilder.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph/GraphBuilder.h"
25 
26 #include "arm_compute/graph/Graph.h"
27 #include "arm_compute/graph/Utils.h"
28 #include "arm_compute/graph/algorithms/TopologicalSort.h"
29 #include "arm_compute/graph/nodes/Nodes.h"
30 
31 #include "support/ToolchainSupport.h"
32 
33 namespace arm_compute
34 {
35 namespace graph
36 {
37 namespace
38 {
check_nodeidx_pair(const NodeIdxPair & pair,const Graph & g)39 inline void check_nodeidx_pair(const NodeIdxPair &pair, const Graph &g)
40 {
41     ARM_COMPUTE_UNUSED(pair);
42     ARM_COMPUTE_UNUSED(g);
43     ARM_COMPUTE_ERROR_ON((pair.node_id >= g.nodes().size()) || (g.node((pair).node_id) == nullptr) || (pair.index >= g.node(pair.node_id)->num_outputs()));
44 }
45 
set_node_params(Graph & g,NodeID nid,NodeParams & params)46 Status set_node_params(Graph &g, NodeID nid, NodeParams &params)
47 {
48     INode *node = g.node(nid);
49     ARM_COMPUTE_RETURN_ERROR_ON(!node);
50 
51     node->set_common_node_parameters(params);
52 
53     return Status{};
54 }
55 
set_accessor_on_node(Graph & g,NodeID nid,bool is_output,size_t idx,ITensorAccessorUPtr accessor)56 Status set_accessor_on_node(Graph &g, NodeID nid, bool is_output, size_t idx, ITensorAccessorUPtr accessor)
57 {
58     INode *node = g.node(nid);
59     ARM_COMPUTE_RETURN_ERROR_ON(!node);
60 
61     Tensor *tensor = is_output ? node->output(idx) : node->input(idx);
62     ARM_COMPUTE_RETURN_ERROR_ON(!tensor);
63 
64     tensor->set_accessor(std::move(accessor));
65 
66     return Status{};
67 }
68 
add_const_node_with_name(Graph & g,NodeParams params,const std::string & name,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)69 NodeID add_const_node_with_name(Graph &g, NodeParams params, const std::string &name, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
70 {
71     params.name = params.name.empty() ? "" : params.name + name;
72     auto nid    = GraphBuilder::add_const_node(g, params, desc, std::move(accessor));
73     set_node_params(g, nid, params);
74     return nid;
75 }
76 
77 template <typename NT, typename... Args>
create_simple_single_input_output_node(Graph & g,NodeParams & params,NodeIdxPair input,Args &&...args)78 NodeID create_simple_single_input_output_node(Graph &g, NodeParams &params, NodeIdxPair input, Args &&... args)
79 {
80     check_nodeidx_pair(input, g);
81 
82     NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
83     g.add_connection(input.node_id, input.index, nid, 0);
84     set_node_params(g, nid, params);
85 
86     return nid;
87 }
88 
89 template <typename NT, typename... Args>
create_simple_multiple_input_single_output_node(Graph & g,NodeParams & params,const std::vector<NodeIdxPair> & inputs,Args &&...args)90 NodeID create_simple_multiple_input_single_output_node(Graph &g, NodeParams &params, const std::vector<NodeIdxPair> &inputs, Args &&... args)
91 {
92     ARM_COMPUTE_ERROR_ON(inputs.size() == 0);
93 
94     NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
95 
96     unsigned int i = 0;
97     for(const auto &input : inputs)
98     {
99         check_nodeidx_pair(input, g);
100         g.add_connection(input.node_id, input.index, nid, i++);
101     }
102     set_node_params(g, nid, params);
103 
104     return nid;
105 }
106 } // namespace
107 
add_const_node(Graph & g,NodeParams params,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)108 NodeID GraphBuilder::add_const_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
109 {
110     auto nid = g.add_node<ConstNode>(desc);
111     set_node_params(g, nid, params);
112     set_accessor_on_node(g, nid, true, 0, std::move(accessor));
113     return nid;
114 }
115 
add_input_node(Graph & g,NodeParams params,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)116 NodeID GraphBuilder::add_input_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
117 {
118     auto nid = g.add_node<InputNode>(desc);
119     set_node_params(g, nid, params);
120     set_accessor_on_node(g, nid, true, 0, std::move(accessor));
121     return nid;
122 }
123 
add_output_node(Graph & g,NodeParams params,NodeIdxPair input,ITensorAccessorUPtr accessor)124 NodeID GraphBuilder::add_output_node(Graph &g, NodeParams params, NodeIdxPair input, ITensorAccessorUPtr accessor)
125 {
126     check_nodeidx_pair(input, g);
127 
128     NodeID nid = g.add_node<OutputNode>();
129     g.add_connection(input.node_id, input.index, nid, 0);
130     set_node_params(g, nid, params);
131     set_accessor_on_node(g, nid, false, 0, std::move(accessor));
132 
133     return nid;
134 }
135 
add_activation_node(Graph & g,NodeParams params,NodeIdxPair input,ActivationLayerInfo act_info,const QuantizationInfo & out_quant_info)136 NodeID GraphBuilder::add_activation_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info,
137                                          const QuantizationInfo &out_quant_info)
138 {
139     return create_simple_single_input_output_node<ActivationLayerNode>(g, params, input, act_info, out_quant_info);
140 }
141 
add_arg_min_max_node(Graph & g,NodeParams params,NodeIdxPair input,ReductionOperation op,unsigned int axis,DataType out_data_type,const QuantizationInfo & out_quant_info)142 NodeID GraphBuilder::add_arg_min_max_node(Graph &g, NodeParams params, NodeIdxPair input, ReductionOperation op, unsigned int axis,
143                                           DataType out_data_type, const QuantizationInfo &out_quant_info)
144 {
145     return create_simple_single_input_output_node<ArgMinMaxLayerNode>(g, params, input, op, axis, out_data_type, out_quant_info);
146 }
147 
add_batch_normalization_node(Graph & g,NodeParams params,NodeIdxPair input,float epsilon,ITensorAccessorUPtr mean_accessor,ITensorAccessorUPtr var_accessor,ITensorAccessorUPtr beta_accessor,ITensorAccessorUPtr gamma_accessor)148 NodeID GraphBuilder::add_batch_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, float epsilon,
149                                                   ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr var_accessor,
150                                                   ITensorAccessorUPtr beta_accessor, ITensorAccessorUPtr gamma_accessor)
151 {
152     check_nodeidx_pair(input, g);
153 
154     bool has_beta  = (beta_accessor != nullptr);
155     bool has_gamma = (gamma_accessor != nullptr);
156 
157     // Get input tensor descriptor
158     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
159 
160     // Calculate Common Descriptor
161     TensorDescriptor common_desc = input_tensor_desc;
162     common_desc.shape            = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
163 
164     // Create mean and var nodes
165     auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
166     auto var_nid  = add_const_node_with_name(g, params, "Variance", common_desc, std::move(var_accessor));
167 
168     // Create beta node
169     NodeID beta_nid = EmptyNodeID;
170     if(has_beta)
171     {
172         beta_nid = add_const_node_with_name(g, params, "Beta", common_desc, std::move(beta_accessor));
173     }
174 
175     // Create gamma node
176     NodeID gamma_nid = EmptyNodeID;
177     if(has_gamma)
178     {
179         gamma_nid = add_const_node_with_name(g, params, "Gamma", common_desc, std::move(gamma_accessor));
180     }
181 
182     // Create batch normalization node and add connections
183     NodeID batch_norm_nid = g.add_node<BatchNormalizationLayerNode>(epsilon);
184     g.add_connection(input.node_id, input.index, batch_norm_nid, 0);
185     g.add_connection(mean_nid, 0, batch_norm_nid, 1);
186     g.add_connection(var_nid, 0, batch_norm_nid, 2);
187     if(has_beta)
188     {
189         g.add_connection(beta_nid, 0, batch_norm_nid, 3);
190     }
191     if(has_gamma)
192     {
193         g.add_connection(gamma_nid, 0, batch_norm_nid, 4);
194     }
195     set_node_params(g, batch_norm_nid, params);
196 
197     return batch_norm_nid;
198 }
199 
add_bounding_box_transform_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair deltas,BoundingBoxTransformInfo info)200 NodeID GraphBuilder::add_bounding_box_transform_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair deltas, BoundingBoxTransformInfo info)
201 {
202     check_nodeidx_pair(input, g);
203     check_nodeidx_pair(deltas, g);
204 
205     NodeID nid = g.add_node<BoundingBoxTransformLayerNode>(info);
206 
207     g.add_connection(input.node_id, input.index, nid, 0);
208     g.add_connection(deltas.node_id, deltas.index, nid, 1);
209 
210     set_node_params(g, nid, params);
211     return nid;
212 }
213 
add_channel_shuffle_node(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_groups)214 NodeID GraphBuilder::add_channel_shuffle_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_groups)
215 {
216     return create_simple_single_input_output_node<ChannelShuffleLayerNode>(g, params, input, num_groups);
217 }
218 
add_convolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,unsigned int depth,PadStrideInfo conv_info,unsigned int num_groups,ConvolutionMethod method,FastMathHint fast_math_hint,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const QuantizationInfo & weights_quant_info,const QuantizationInfo & out_quant_info)219 NodeID GraphBuilder::add_convolution_node(Graph &g, NodeParams params, NodeIdxPair input,
220                                           Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo conv_info,
221                                           unsigned int num_groups, ConvolutionMethod method, FastMathHint fast_math_hint,
222                                           ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
223                                           const QuantizationInfo &weights_quant_info,
224                                           const QuantizationInfo &out_quant_info)
225 {
226     check_nodeidx_pair(input, g);
227     ARM_COMPUTE_ERROR_ON(depth == 0);
228     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
229 
230     bool has_bias = (bias_accessor != nullptr);
231 
232     // Get input tensor descriptor
233     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
234     const DataLayout       input_data_layout = input_tensor_desc.layout;
235 
236     // Create weights node
237     TensorDescriptor w_desc = input_tensor_desc;
238     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
239     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
240     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
241                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) / num_groups);
242     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
243     if(!weights_quant_info.empty())
244     {
245         w_desc.quant_info = weights_quant_info;
246     }
247 
248     NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
249 
250     // Create bias nodes
251     NodeID b_nid = EmptyNodeID;
252     if(has_bias)
253     {
254         TensorDescriptor b_desc = input_tensor_desc;
255         b_desc.shape            = TensorShape(depth);
256         if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
257         {
258             b_desc.data_type = DataType::S32;
259         }
260         b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
261     }
262 
263     // Create convolution node and connect
264     NodeID conv_nid = g.add_node<ConvolutionLayerNode>(conv_info, num_groups, method, fast_math_hint, out_quant_info);
265     g.add_connection(input.node_id, input.index, conv_nid, 0);
266     g.add_connection(w_nid, 0, conv_nid, 1);
267     if(has_bias)
268     {
269         g.add_connection(b_nid, 0, conv_nid, 2);
270     }
271     set_node_params(g, conv_nid, params);
272 
273     return conv_nid;
274 }
275 
add_deconvolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,unsigned int depth,PadStrideInfo deconv_info,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor)276 NodeID GraphBuilder::add_deconvolution_node(Graph &g, NodeParams params, NodeIdxPair input,
277                                             Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo deconv_info,
278                                             ITensorAccessorUPtr weights_accessor,
279                                             ITensorAccessorUPtr bias_accessor)
280 {
281     check_nodeidx_pair(input, g);
282     ARM_COMPUTE_ERROR_ON(depth == 0);
283     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
284 
285     bool has_bias = (bias_accessor != nullptr);
286 
287     // Get input tensor descriptor
288     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
289     const DataLayout       input_data_layout = input_tensor_desc.layout;
290 
291     // Create weights node
292     TensorDescriptor w_desc = input_tensor_desc;
293     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
294     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
295     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
296                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
297     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
298 
299     NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
300 
301     // Create bias nodes
302     NodeID b_nid = EmptyNodeID;
303     if(has_bias)
304     {
305         TensorDescriptor b_desc = input_tensor_desc;
306         b_desc.shape            = TensorShape(depth);
307         if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
308         {
309             b_desc.data_type = DataType::S32;
310         }
311         b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
312     }
313 
314     // Create convolution node and connect
315     NodeID deconv_nid = g.add_node<DeconvolutionLayerNode>(descriptors::DeconvolutionLayerDescriptor{ deconv_info });
316     g.add_connection(input.node_id, input.index, deconv_nid, 0);
317     g.add_connection(w_nid, 0, deconv_nid, 1);
318     if(has_bias)
319     {
320         g.add_connection(b_nid, 0, deconv_nid, 2);
321     }
322     set_node_params(g, deconv_nid, params);
323 
324     return deconv_nid;
325 }
326 
add_concatenate_node(Graph & g,NodeParams params,const std::vector<NodeIdxPair> & inputs,const descriptors::ConcatLayerDescriptor & concat_descriptor)327 NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, const descriptors::ConcatLayerDescriptor &concat_descriptor)
328 {
329     return create_simple_multiple_input_single_output_node<ConcatenateLayerNode>(g, params, inputs, inputs.size(), concat_descriptor);
330 }
331 
add_depthwise_convolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,PadStrideInfo conv_info,int depth_multiplier,DepthwiseConvolutionMethod method,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const QuantizationInfo & quant_info,const QuantizationInfo & out_quant_info)332 NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend,
333                                                     PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method,
334                                                     ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo &quant_info, const QuantizationInfo &out_quant_info)
335 {
336     check_nodeidx_pair(input, g);
337     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
338 
339     bool has_bias = (bias_accessor != nullptr);
340 
341     // Get input tensor descriptor
342     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
343     const DataLayout       input_data_layout = input_tensor_desc.layout;
344 
345     // Create weights node
346     TensorDescriptor w_desc = input_tensor_desc;
347     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
348     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
349     w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
350                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
351     if(!quant_info.empty())
352     {
353         w_desc.quant_info = quant_info;
354     }
355 
356     NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
357 
358     // Create bias nodes
359     NodeID b_nid = EmptyNodeID;
360     if(has_bias)
361     {
362         TensorDescriptor b_desc = input_tensor_desc;
363         b_desc.shape            = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
364 
365         if(is_data_type_quantized_asymmetric(b_desc.data_type))
366         {
367             b_desc.data_type = DataType::S32;
368         }
369 
370         b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
371     }
372 
373     // Create convolution node and connect
374     NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method, out_quant_info);
375     g.add_connection(input.node_id, input.index, conv_nid, 0);
376     g.add_connection(w_nid, 0, conv_nid, 1);
377     if(has_bias)
378     {
379         g.add_connection(b_nid, 0, conv_nid, 2);
380     }
381     set_node_params(g, conv_nid, params);
382 
383     return conv_nid;
384 }
385 
add_depth_to_space_node(Graph & g,NodeParams params,NodeIdxPair input,int32_t block_shape)386 NodeID GraphBuilder::add_depth_to_space_node(Graph &g, NodeParams params, NodeIdxPair input, int32_t block_shape)
387 {
388     return create_simple_single_input_output_node<DepthToSpaceLayerNode>(g, params, input, block_shape);
389 }
390 
add_dequantization_node(Graph & g,NodeParams params,NodeIdxPair input)391 NodeID GraphBuilder::add_dequantization_node(Graph &g, NodeParams params, NodeIdxPair input)
392 {
393     return create_simple_single_input_output_node<DequantizationLayerNode>(g, params, input);
394 }
395 
add_detection_output_node(Graph & g,NodeParams params,NodeIdxPair input_loc,NodeIdxPair input_conf,NodeIdxPair input_priorbox,const DetectionOutputLayerInfo & detect_info)396 NodeID GraphBuilder::add_detection_output_node(Graph &g, NodeParams params, NodeIdxPair input_loc, NodeIdxPair input_conf, NodeIdxPair input_priorbox, const DetectionOutputLayerInfo &detect_info)
397 {
398     check_nodeidx_pair(input_loc, g);
399     check_nodeidx_pair(input_conf, g);
400     check_nodeidx_pair(input_priorbox, g);
401 
402     // Create detection_output node and connect
403     NodeID detect_nid = g.add_node<DetectionOutputLayerNode>(detect_info);
404     g.add_connection(input_loc.node_id, input_loc.index, detect_nid, 0);
405     g.add_connection(input_conf.node_id, input_conf.index, detect_nid, 1);
406     g.add_connection(input_priorbox.node_id, input_priorbox.index, detect_nid, 2);
407 
408     set_node_params(g, detect_nid, params);
409 
410     return detect_nid;
411 }
412 
add_detection_post_process_node(Graph & g,NodeParams params,NodeIdxPair input_box_encoding,NodeIdxPair input_class_prediction,const DetectionPostProcessLayerInfo & detect_info,ITensorAccessorUPtr anchors_accessor,const QuantizationInfo & anchor_quant_info)413 NodeID GraphBuilder::add_detection_post_process_node(Graph &g, NodeParams params, NodeIdxPair input_box_encoding, NodeIdxPair input_class_prediction, const DetectionPostProcessLayerInfo &detect_info,
414                                                      ITensorAccessorUPtr anchors_accessor, const QuantizationInfo &anchor_quant_info)
415 {
416     check_nodeidx_pair(input_box_encoding, g);
417     check_nodeidx_pair(input_class_prediction, g);
418 
419     // Get input tensor descriptor
420     const TensorDescriptor input_box_encoding_tensor_desc = get_tensor_descriptor(g, g.node(input_box_encoding.node_id)->outputs()[0]);
421 
422     // Calculate anchor descriptor
423     TensorDescriptor anchor_desc = input_box_encoding_tensor_desc;
424     if(!anchor_quant_info.empty())
425     {
426         anchor_desc.quant_info = anchor_quant_info;
427     }
428 
429     // Create anchors nodes
430     auto anchors_nid = add_const_node_with_name(g, params, "Anchors", anchor_desc, std::move(anchors_accessor));
431 
432     // Create detection_output node and connect
433     NodeID detect_nid = g.add_node<DetectionPostProcessLayerNode>(detect_info);
434     g.add_connection(input_box_encoding.node_id, input_box_encoding.index, detect_nid, 0);
435     g.add_connection(input_class_prediction.node_id, input_class_prediction.index, detect_nid, 1);
436     g.add_connection(anchors_nid, 0, detect_nid, 2);
437 
438     set_node_params(g, detect_nid, params);
439 
440     return detect_nid;
441 }
442 
add_dummy_node(Graph & g,NodeParams params,NodeIdxPair input,TensorShape shape)443 NodeID GraphBuilder::add_dummy_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
444 {
445     return create_simple_single_input_output_node<DummyNode>(g, params, input, shape);
446 }
447 
add_elementwise_node(Graph & g,NodeParams params,NodeIdxPair input0,NodeIdxPair input1,EltwiseOperation operation)448 NodeID GraphBuilder::add_elementwise_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, EltwiseOperation operation)
449 {
450     check_nodeidx_pair(input0, g);
451     check_nodeidx_pair(input1, g);
452 
453     NodeID nid = g.add_node<EltwiseLayerNode>(descriptors::EltwiseLayerDescriptor{ operation });
454 
455     g.add_connection(input0.node_id, input0.index, nid, 0);
456     g.add_connection(input1.node_id, input1.index, nid, 1);
457 
458     set_node_params(g, nid, params);
459 
460     return nid;
461 }
462 
add_flatten_node(Graph & g,NodeParams params,NodeIdxPair input)463 NodeID GraphBuilder::add_flatten_node(Graph &g, NodeParams params, NodeIdxPair input)
464 {
465     return create_simple_single_input_output_node<FlattenLayerNode>(g, params, input);
466 }
467 
add_fully_connected_layer(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_outputs,NodeID weights_nid,NodeID bias_nid,const FullyConnectedLayerInfo fc_info,const QuantizationInfo & out_quant_info,FastMathHint fast_math_hint)468 NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
469                                                NodeID weights_nid, NodeID bias_nid,
470                                                const FullyConnectedLayerInfo fc_info, const QuantizationInfo &out_quant_info, FastMathHint fast_math_hint)
471 {
472     check_nodeidx_pair(input, g);
473     ARM_COMPUTE_ERROR_ON(num_outputs == 0);
474     ARM_COMPUTE_ERROR_ON(weights_nid == EmptyNodeID);
475 
476     const bool has_bias = (bias_nid != EmptyNodeID);
477 
478     // Get input tensor descriptor
479     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
480 
481     // Create fully connected node and connect
482     NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info, fast_math_hint);
483     g.add_connection(input.node_id, input.index, fc_nid, 0);
484     g.add_connection(weights_nid, 0, fc_nid, 1);
485     if(has_bias)
486     {
487         g.add_connection(bias_nid, 0, fc_nid, 2);
488     }
489 
490     set_node_params(g, fc_nid, params);
491 
492     return fc_nid;
493 }
494 
add_fully_connected_layer(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_outputs,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const FullyConnectedLayerInfo fc_info,const QuantizationInfo & weights_quant_info,const QuantizationInfo & out_quant_info,FastMathHint fast_math_hint)495 NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
496                                                ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
497                                                const FullyConnectedLayerInfo fc_info,
498                                                const QuantizationInfo &weights_quant_info, const QuantizationInfo &out_quant_info, FastMathHint fast_math_hint)
499 {
500     check_nodeidx_pair(input, g);
501     ARM_COMPUTE_ERROR_ON(num_outputs == 0);
502 
503     bool has_bias = (bias_accessor != nullptr);
504 
505     // Get input tensor descriptor
506     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
507 
508     // Create weights node
509     TensorDescriptor w_desc = FullyConnectedLayerNode::compute_weights_descriptor(input_tensor_desc, num_outputs, fc_info, weights_quant_info);
510     NodeID           w_nid  = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
511 
512     // Create bias nodes
513     NodeID b_nid = EmptyNodeID;
514     if(has_bias)
515     {
516         TensorDescriptor b_desc = input_tensor_desc;
517         b_desc.shape            = TensorShape(num_outputs);
518         if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
519         {
520             b_desc.data_type = DataType::S32;
521         }
522         b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
523     }
524 
525     // Create fully connected node and connect
526     NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info, fast_math_hint);
527     g.add_connection(input.node_id, input.index, fc_nid, 0);
528     g.add_connection(w_nid, 0, fc_nid, 1);
529     if(has_bias)
530     {
531         g.add_connection(b_nid, 0, fc_nid, 2);
532     }
533 
534     set_node_params(g, fc_nid, params);
535 
536     return fc_nid;
537 }
538 
add_generate_proposals_node(Graph & g,NodeParams params,NodeIdxPair scores,NodeIdxPair deltas,NodeIdxPair anchors,GenerateProposalsInfo info)539 NodeID GraphBuilder::add_generate_proposals_node(Graph &g, NodeParams params, NodeIdxPair scores, NodeIdxPair deltas, NodeIdxPair anchors, GenerateProposalsInfo info)
540 {
541     check_nodeidx_pair(scores, g);
542     check_nodeidx_pair(deltas, g);
543     check_nodeidx_pair(anchors, g);
544 
545     NodeID nid = g.add_node<GenerateProposalsLayerNode>(info);
546 
547     g.add_connection(scores.node_id, scores.index, nid, 0);
548     g.add_connection(deltas.node_id, deltas.index, nid, 1);
549     g.add_connection(anchors.node_id, anchors.index, nid, 2);
550 
551     set_node_params(g, nid, params);
552     return nid;
553 }
554 
add_l2_normalize_node(Graph & g,NodeParams params,NodeIdxPair input,int axis,float epsilon)555 NodeID GraphBuilder::add_l2_normalize_node(Graph &g, NodeParams params, NodeIdxPair input, int axis, float epsilon)
556 {
557     return create_simple_single_input_output_node<L2NormalizeLayerNode>(g, params, input, axis, epsilon);
558 }
559 
add_normalization_node(Graph & g,NodeParams params,NodeIdxPair input,NormalizationLayerInfo norm_info)560 NodeID GraphBuilder::add_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, NormalizationLayerInfo norm_info)
561 {
562     return create_simple_single_input_output_node<NormalizationLayerNode>(g, params, input, norm_info);
563 }
564 
add_normalize_planar_yuv_node(Graph & g,NodeParams params,NodeIdxPair input,ITensorAccessorUPtr mean_accessor,ITensorAccessorUPtr std_accessor)565 NodeID GraphBuilder::add_normalize_planar_yuv_node(Graph &g, NodeParams params, NodeIdxPair input,
566                                                    ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr std_accessor)
567 {
568     check_nodeidx_pair(input, g);
569 
570     // Get input tensor descriptor
571     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
572 
573     // Calculate Common Descriptor
574     TensorDescriptor common_desc = input_tensor_desc;
575     common_desc.shape            = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
576 
577     // Create mean and std nodes
578     auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
579     auto std_nid  = add_const_node_with_name(g, params, "Std", common_desc, std::move(std_accessor));
580 
581     // Create normalize planar YUV node and add connections
582     NodeID norm_planar_yuv_nid = g.add_node<NormalizePlanarYUVLayerNode>();
583     g.add_connection(input.node_id, input.index, norm_planar_yuv_nid, 0);
584     g.add_connection(mean_nid, 0, norm_planar_yuv_nid, 1);
585     g.add_connection(std_nid, 0, norm_planar_yuv_nid, 2);
586     set_node_params(g, norm_planar_yuv_nid, params);
587 
588     return norm_planar_yuv_nid;
589 }
590 
add_pad_node(Graph & g,NodeParams params,NodeIdxPair input,const PaddingList & paddings,PixelValue pad_value)591 NodeID GraphBuilder::add_pad_node(Graph &g, NodeParams params, NodeIdxPair input, const PaddingList &paddings, PixelValue pad_value)
592 {
593     return create_simple_single_input_output_node<PadLayerNode>(g, params, input, paddings, pad_value);
594 }
595 
add_permute_node(Graph & g,NodeParams params,NodeIdxPair input,PermutationVector perm,DataLayout layout)596 NodeID GraphBuilder::add_permute_node(Graph &g, NodeParams params, NodeIdxPair input, PermutationVector perm, DataLayout layout)
597 {
598     return create_simple_single_input_output_node<PermuteLayerNode>(g, params, input, perm, layout);
599 }
600 
add_prelu_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair alpha)601 NodeID GraphBuilder::add_prelu_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair alpha)
602 {
603     check_nodeidx_pair(input, g);
604     check_nodeidx_pair(alpha, g);
605 
606     NodeID prelu_nid = g.add_node<PReluLayerNode>();
607     g.add_connection(input.node_id, input.index, prelu_nid, 0);
608     g.add_connection(alpha.node_id, alpha.index, prelu_nid, 1);
609 
610     set_node_params(g, prelu_nid, params);
611 
612     return prelu_nid;
613 }
614 
add_pooling_node(Graph & g,NodeParams params,NodeIdxPair input,PoolingLayerInfo pool_info)615 NodeID GraphBuilder::add_pooling_node(Graph &g, NodeParams params, NodeIdxPair input, PoolingLayerInfo pool_info)
616 {
617     return create_simple_single_input_output_node<PoolingLayerNode>(g, params, input, pool_info);
618 }
619 
add_print_node(Graph & g,NodeParams params,NodeIdxPair input,std::ostream & stream,const IOFormatInfo & format_info,const std::function<ITensor * (ITensor *)> transform)620 NodeID GraphBuilder::add_print_node(Graph &g, NodeParams params, NodeIdxPair input, std::ostream &stream, const IOFormatInfo &format_info, const std::function<ITensor *(ITensor *)> transform)
621 {
622     return create_simple_single_input_output_node<PrintLayerNode>(g, params, input, stream, format_info, transform);
623 }
624 
add_priorbox_node(Graph & g,NodeParams params,NodeIdxPair input0,NodeIdxPair input1,const PriorBoxLayerInfo & prior_info)625 NodeID GraphBuilder::add_priorbox_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, const PriorBoxLayerInfo &prior_info)
626 {
627     check_nodeidx_pair(input0, g);
628     check_nodeidx_pair(input1, g);
629 
630     // Create priorbox node and connect
631     NodeID prior_nid = g.add_node<PriorBoxLayerNode>(prior_info);
632     g.add_connection(input0.node_id, input0.index, prior_nid, 0);
633     g.add_connection(input1.node_id, input1.index, prior_nid, 1);
634 
635     set_node_params(g, prior_nid, params);
636 
637     return prior_nid;
638 }
639 
add_quantization_node(Graph & g,NodeParams params,NodeIdxPair input,const QuantizationInfo & out_quant_info)640 NodeID GraphBuilder::add_quantization_node(Graph &g, NodeParams params, NodeIdxPair input, const QuantizationInfo &out_quant_info)
641 {
642     return create_simple_single_input_output_node<QuantizationLayerNode>(g, params, input, out_quant_info);
643 }
644 
add_reduction_operation_node(Graph & g,NodeParams params,NodeIdxPair input,ReductionOperation op,int axis,bool keep_dims)645 NodeID GraphBuilder::add_reduction_operation_node(Graph &g, NodeParams params, NodeIdxPair input, ReductionOperation op, int axis, bool keep_dims)
646 {
647     return create_simple_single_input_output_node<ReductionLayerNode>(g, params, input, op, axis, keep_dims);
648 }
649 
add_reorg_node(Graph & g,NodeParams params,NodeIdxPair input,int stride)650 NodeID GraphBuilder::add_reorg_node(Graph &g, NodeParams params, NodeIdxPair input, int stride)
651 {
652     return create_simple_single_input_output_node<ReorgLayerNode>(g, params, input, stride);
653 }
654 
add_reshape_node(Graph & g,NodeParams params,NodeIdxPair input,TensorShape shape)655 NodeID GraphBuilder::add_reshape_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
656 {
657     return create_simple_single_input_output_node<ReshapeLayerNode>(g, params, input, shape);
658 }
659 
add_resize_node(Graph & g,NodeParams params,NodeIdxPair input,InterpolationPolicy policy,float width_scale,float height_scale)660 NodeID GraphBuilder::add_resize_node(Graph &g, NodeParams params, NodeIdxPair input, InterpolationPolicy policy,
661                                      float width_scale, float height_scale)
662 {
663     return create_simple_single_input_output_node<ResizeLayerNode>(g, params, input, policy, width_scale, height_scale);
664 }
665 
add_roi_align_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair rois,ROIPoolingLayerInfo pool_info)666 NodeID GraphBuilder::add_roi_align_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair rois, ROIPoolingLayerInfo pool_info)
667 {
668     check_nodeidx_pair(input, g);
669     check_nodeidx_pair(rois, g);
670 
671     NodeID nid = g.add_node<ROIAlignLayerNode>(pool_info);
672 
673     g.add_connection(input.node_id, input.index, nid, 0);
674     g.add_connection(rois.node_id, rois.index, nid, 1);
675 
676     set_node_params(g, nid, params);
677     return nid;
678 }
679 
add_scale_layer(Graph & g,const NodeParams & params,NodeIdxPair input,ITensorAccessorUPtr mul_accessor,ITensorAccessorUPtr add_accessor)680 NodeID GraphBuilder::add_scale_layer(Graph &g, const NodeParams &params, NodeIdxPair input, ITensorAccessorUPtr mul_accessor, ITensorAccessorUPtr add_accessor)
681 {
682     check_nodeidx_pair(input, g);
683 
684     // Get input tensor descriptor
685     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
686     const DataLayout       input_data_layout = input_tensor_desc.layout;
687 
688     // Create mul node
689     TensorDescriptor mul_desc = input_tensor_desc;
690     const size_t     C        = input_tensor_desc.shape[get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL)];
691     mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), 1);
692     mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), 1);
693     mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL), C);
694     NodeID      mul_const_nid   = add_const_node_with_name(g, params, "Mul", mul_desc, std::move(mul_accessor));
695     NodeIdxPair mul_const_nidxp = { mul_const_nid, 0 };
696 
697     // Create add node
698     TensorDescriptor add_desc        = mul_desc;
699     NodeID           add_const_nid   = add_const_node_with_name(g, params, "Add", add_desc, std::move(add_accessor));
700     NodeIdxPair      add_const_nidxp = { add_const_nid, 0 };
701 
702     // Create node and connect
703     NodeID      mul_node      = GraphBuilder::add_elementwise_node(g, params, input, mul_const_nidxp, EltwiseOperation::Mul);
704     NodeIdxPair mulnode_nidxp = { mul_node, 0 };
705     NodeID      add_node      = GraphBuilder::add_elementwise_node(g, params, mulnode_nidxp, add_const_nidxp, EltwiseOperation::Add);
706 
707     return add_node;
708 }
709 
add_softmax_node(Graph & g,NodeParams params,NodeIdxPair input,float beta)710 NodeID GraphBuilder::add_softmax_node(Graph &g, NodeParams params, NodeIdxPair input, float beta)
711 {
712     return create_simple_single_input_output_node<SoftmaxLayerNode>(g, params, input, beta);
713 }
714 
add_slice_node(Graph & g,NodeParams params,NodeIdxPair input,Coordinates & starts,Coordinates & ends)715 NodeID GraphBuilder::add_slice_node(Graph &g, NodeParams params, NodeIdxPair input, Coordinates &starts, Coordinates &ends)
716 {
717     return create_simple_single_input_output_node<SliceLayerNode>(g, params, input, starts, ends);
718 }
719 
add_split_node(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_splits,unsigned int axis)720 NodeID GraphBuilder::add_split_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_splits, unsigned int axis)
721 {
722     return create_simple_single_input_output_node<SplitLayerNode>(g, params, input, num_splits, axis);
723 }
724 
add_strided_slice_node(Graph & g,NodeParams params,NodeIdxPair input,Coordinates & starts,Coordinates & ends,BiStrides & strides,StridedSliceLayerInfo info)725 NodeID GraphBuilder::add_strided_slice_node(Graph &g, NodeParams params, NodeIdxPair input, Coordinates &starts, Coordinates &ends, BiStrides &strides, StridedSliceLayerInfo info)
726 {
727     return create_simple_single_input_output_node<StridedSliceLayerNode>(g, params, input, starts, ends, strides, info);
728 }
729 
add_stack_node(Graph & g,NodeParams params,const std::vector<NodeIdxPair> & inputs,int axis)730 NodeID GraphBuilder::add_stack_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, int axis)
731 {
732     return create_simple_multiple_input_single_output_node<StackLayerNode>(g, params, inputs, inputs.size(), axis);
733 }
734 
add_yolo_node(Graph & g,NodeParams params,NodeIdxPair input,ActivationLayerInfo act_info)735 NodeID GraphBuilder::add_yolo_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info)
736 {
737     check_nodeidx_pair(input, g);
738 
739     // Get input tensor descriptor
740     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
741     const bool             is_nhwc           = input_tensor_desc.layout == DataLayout::NHWC;
742 
743     // Box format: [Objectness:1][Box:4][Classes:N]
744 
745     // Activate objectness and front part of the box
746     const Coordinates box_start(0, 0, 0);
747     const Coordinates box_end = is_nhwc ? Coordinates(3, -1, -1) : Coordinates(-1, -1, 3);
748     NodeID            box     = g.add_node<SliceLayerNode>(box_start, box_end);
749     NodeID            act_box = g.add_node<ActivationLayerNode>(act_info);
750     set_node_params(g, box, params);
751     set_node_params(g, act_box, params);
752     g.add_connection(input.node_id, input.index, box, 0);
753     g.add_connection(box, 0, act_box, 0);
754 
755     // Immutable part
756     const Coordinates imm_start = is_nhwc ? Coordinates(3, 0, 0) : Coordinates(0, 0, 3);
757     const Coordinates imm_end   = is_nhwc ? Coordinates(5, -1, -1) : Coordinates(-1, -1, 5);
758     NodeID            imm       = g.add_node<SliceLayerNode>(imm_start, imm_end);
759     set_node_params(g, imm, params);
760     g.add_connection(input.node_id, input.index, imm, 0);
761 
762     // Activation classes and end part of box
763     const Coordinates cls_start = is_nhwc ? Coordinates(5, 0, 0) : Coordinates(0, 0, 5);
764     const Coordinates cls_end   = Coordinates(-1, -1, -1);
765     NodeID            cls       = g.add_node<SliceLayerNode>(cls_start, cls_end);
766     NodeID            cls_act   = g.add_node<ActivationLayerNode>(act_info);
767     set_node_params(g, cls, params);
768     set_node_params(g, cls_act, params);
769     g.add_connection(input.node_id, input.index, cls, 0);
770     g.add_connection(cls, 0, cls_act, 0);
771 
772     NodeID concat = g.add_node<ConcatenateLayerNode>(3, descriptors::ConcatLayerDescriptor(DataLayoutDimension::CHANNEL));
773     set_node_params(g, concat, params);
774     g.add_connection(act_box, 0, concat, 0);
775     g.add_connection(imm, 0, concat, 1);
776     g.add_connection(cls_act, 0, concat, 2);
777 
778     return concat;
779 }
780 } // namespace graph
781 } // namespace arm_compute
782