1 /*
2 * Copyright (c) 2018-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/graph/GraphBuilder.h"
25
26 #include "arm_compute/graph/Graph.h"
27 #include "arm_compute/graph/Utils.h"
28 #include "arm_compute/graph/algorithms/TopologicalSort.h"
29 #include "arm_compute/graph/nodes/Nodes.h"
30
31 #include "support/ToolchainSupport.h"
32
33 namespace arm_compute
34 {
35 namespace graph
36 {
37 namespace
38 {
check_nodeidx_pair(const NodeIdxPair & pair,const Graph & g)39 inline void check_nodeidx_pair(const NodeIdxPair &pair, const Graph &g)
40 {
41 ARM_COMPUTE_UNUSED(pair);
42 ARM_COMPUTE_UNUSED(g);
43 ARM_COMPUTE_ERROR_ON((pair.node_id >= g.nodes().size()) || (g.node((pair).node_id) == nullptr) || (pair.index >= g.node(pair.node_id)->num_outputs()));
44 }
45
set_node_params(Graph & g,NodeID nid,NodeParams & params)46 Status set_node_params(Graph &g, NodeID nid, NodeParams ¶ms)
47 {
48 INode *node = g.node(nid);
49 ARM_COMPUTE_RETURN_ERROR_ON(!node);
50
51 node->set_common_node_parameters(params);
52
53 return Status{};
54 }
55
set_accessor_on_node(Graph & g,NodeID nid,bool is_output,size_t idx,ITensorAccessorUPtr accessor)56 Status set_accessor_on_node(Graph &g, NodeID nid, bool is_output, size_t idx, ITensorAccessorUPtr accessor)
57 {
58 INode *node = g.node(nid);
59 ARM_COMPUTE_RETURN_ERROR_ON(!node);
60
61 Tensor *tensor = is_output ? node->output(idx) : node->input(idx);
62 ARM_COMPUTE_RETURN_ERROR_ON(!tensor);
63
64 tensor->set_accessor(std::move(accessor));
65
66 return Status{};
67 }
68
add_const_node_with_name(Graph & g,NodeParams params,const std::string & name,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)69 NodeID add_const_node_with_name(Graph &g, NodeParams params, const std::string &name, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
70 {
71 params.name = params.name.empty() ? "" : params.name + name;
72 auto nid = GraphBuilder::add_const_node(g, params, desc, std::move(accessor));
73 set_node_params(g, nid, params);
74 return nid;
75 }
76
77 template <typename NT, typename... Args>
create_simple_single_input_output_node(Graph & g,NodeParams & params,NodeIdxPair input,Args &&...args)78 NodeID create_simple_single_input_output_node(Graph &g, NodeParams ¶ms, NodeIdxPair input, Args &&... args)
79 {
80 check_nodeidx_pair(input, g);
81
82 NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
83 g.add_connection(input.node_id, input.index, nid, 0);
84 set_node_params(g, nid, params);
85
86 return nid;
87 }
88
89 template <typename NT, typename... Args>
create_simple_multiple_input_single_output_node(Graph & g,NodeParams & params,const std::vector<NodeIdxPair> & inputs,Args &&...args)90 NodeID create_simple_multiple_input_single_output_node(Graph &g, NodeParams ¶ms, const std::vector<NodeIdxPair> &inputs, Args &&... args)
91 {
92 ARM_COMPUTE_ERROR_ON(inputs.size() == 0);
93
94 NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
95
96 unsigned int i = 0;
97 for(const auto &input : inputs)
98 {
99 check_nodeidx_pair(input, g);
100 g.add_connection(input.node_id, input.index, nid, i++);
101 }
102 set_node_params(g, nid, params);
103
104 return nid;
105 }
106 } // namespace
107
add_const_node(Graph & g,NodeParams params,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)108 NodeID GraphBuilder::add_const_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
109 {
110 auto nid = g.add_node<ConstNode>(desc);
111 set_node_params(g, nid, params);
112 set_accessor_on_node(g, nid, true, 0, std::move(accessor));
113 return nid;
114 }
115
add_input_node(Graph & g,NodeParams params,const TensorDescriptor & desc,ITensorAccessorUPtr accessor)116 NodeID GraphBuilder::add_input_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
117 {
118 auto nid = g.add_node<InputNode>(desc);
119 set_node_params(g, nid, params);
120 set_accessor_on_node(g, nid, true, 0, std::move(accessor));
121 return nid;
122 }
123
add_output_node(Graph & g,NodeParams params,NodeIdxPair input,ITensorAccessorUPtr accessor)124 NodeID GraphBuilder::add_output_node(Graph &g, NodeParams params, NodeIdxPair input, ITensorAccessorUPtr accessor)
125 {
126 check_nodeidx_pair(input, g);
127
128 NodeID nid = g.add_node<OutputNode>();
129 g.add_connection(input.node_id, input.index, nid, 0);
130 set_node_params(g, nid, params);
131 set_accessor_on_node(g, nid, false, 0, std::move(accessor));
132
133 return nid;
134 }
135
add_activation_node(Graph & g,NodeParams params,NodeIdxPair input,ActivationLayerInfo act_info,const QuantizationInfo & out_quant_info)136 NodeID GraphBuilder::add_activation_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info,
137 const QuantizationInfo &out_quant_info)
138 {
139 return create_simple_single_input_output_node<ActivationLayerNode>(g, params, input, act_info, out_quant_info);
140 }
141
add_arg_min_max_node(Graph & g,NodeParams params,NodeIdxPair input,ReductionOperation op,unsigned int axis,DataType out_data_type,const QuantizationInfo & out_quant_info)142 NodeID GraphBuilder::add_arg_min_max_node(Graph &g, NodeParams params, NodeIdxPair input, ReductionOperation op, unsigned int axis,
143 DataType out_data_type, const QuantizationInfo &out_quant_info)
144 {
145 return create_simple_single_input_output_node<ArgMinMaxLayerNode>(g, params, input, op, axis, out_data_type, out_quant_info);
146 }
147
add_batch_normalization_node(Graph & g,NodeParams params,NodeIdxPair input,float epsilon,ITensorAccessorUPtr mean_accessor,ITensorAccessorUPtr var_accessor,ITensorAccessorUPtr beta_accessor,ITensorAccessorUPtr gamma_accessor)148 NodeID GraphBuilder::add_batch_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, float epsilon,
149 ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr var_accessor,
150 ITensorAccessorUPtr beta_accessor, ITensorAccessorUPtr gamma_accessor)
151 {
152 check_nodeidx_pair(input, g);
153
154 bool has_beta = (beta_accessor != nullptr);
155 bool has_gamma = (gamma_accessor != nullptr);
156
157 // Get input tensor descriptor
158 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
159
160 // Calculate Common Descriptor
161 TensorDescriptor common_desc = input_tensor_desc;
162 common_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
163
164 // Create mean and var nodes
165 auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
166 auto var_nid = add_const_node_with_name(g, params, "Variance", common_desc, std::move(var_accessor));
167
168 // Create beta node
169 NodeID beta_nid = EmptyNodeID;
170 if(has_beta)
171 {
172 beta_nid = add_const_node_with_name(g, params, "Beta", common_desc, std::move(beta_accessor));
173 }
174
175 // Create gamma node
176 NodeID gamma_nid = EmptyNodeID;
177 if(has_gamma)
178 {
179 gamma_nid = add_const_node_with_name(g, params, "Gamma", common_desc, std::move(gamma_accessor));
180 }
181
182 // Create batch normalization node and add connections
183 NodeID batch_norm_nid = g.add_node<BatchNormalizationLayerNode>(epsilon);
184 g.add_connection(input.node_id, input.index, batch_norm_nid, 0);
185 g.add_connection(mean_nid, 0, batch_norm_nid, 1);
186 g.add_connection(var_nid, 0, batch_norm_nid, 2);
187 if(has_beta)
188 {
189 g.add_connection(beta_nid, 0, batch_norm_nid, 3);
190 }
191 if(has_gamma)
192 {
193 g.add_connection(gamma_nid, 0, batch_norm_nid, 4);
194 }
195 set_node_params(g, batch_norm_nid, params);
196
197 return batch_norm_nid;
198 }
199
add_bounding_box_transform_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair deltas,BoundingBoxTransformInfo info)200 NodeID GraphBuilder::add_bounding_box_transform_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair deltas, BoundingBoxTransformInfo info)
201 {
202 check_nodeidx_pair(input, g);
203 check_nodeidx_pair(deltas, g);
204
205 NodeID nid = g.add_node<BoundingBoxTransformLayerNode>(info);
206
207 g.add_connection(input.node_id, input.index, nid, 0);
208 g.add_connection(deltas.node_id, deltas.index, nid, 1);
209
210 set_node_params(g, nid, params);
211 return nid;
212 }
213
add_channel_shuffle_node(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_groups)214 NodeID GraphBuilder::add_channel_shuffle_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_groups)
215 {
216 return create_simple_single_input_output_node<ChannelShuffleLayerNode>(g, params, input, num_groups);
217 }
218
add_convolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,unsigned int depth,PadStrideInfo conv_info,unsigned int num_groups,ConvolutionMethod method,FastMathHint fast_math_hint,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const QuantizationInfo & weights_quant_info,const QuantizationInfo & out_quant_info)219 NodeID GraphBuilder::add_convolution_node(Graph &g, NodeParams params, NodeIdxPair input,
220 Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo conv_info,
221 unsigned int num_groups, ConvolutionMethod method, FastMathHint fast_math_hint,
222 ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
223 const QuantizationInfo &weights_quant_info,
224 const QuantizationInfo &out_quant_info)
225 {
226 check_nodeidx_pair(input, g);
227 ARM_COMPUTE_ERROR_ON(depth == 0);
228 ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
229
230 bool has_bias = (bias_accessor != nullptr);
231
232 // Get input tensor descriptor
233 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
234 const DataLayout input_data_layout = input_tensor_desc.layout;
235
236 // Create weights node
237 TensorDescriptor w_desc = input_tensor_desc;
238 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
239 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
240 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
241 get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) / num_groups);
242 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
243 if(!weights_quant_info.empty())
244 {
245 w_desc.quant_info = weights_quant_info;
246 }
247
248 NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
249
250 // Create bias nodes
251 NodeID b_nid = EmptyNodeID;
252 if(has_bias)
253 {
254 TensorDescriptor b_desc = input_tensor_desc;
255 b_desc.shape = TensorShape(depth);
256 if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
257 {
258 b_desc.data_type = DataType::S32;
259 }
260 b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
261 }
262
263 // Create convolution node and connect
264 NodeID conv_nid = g.add_node<ConvolutionLayerNode>(conv_info, num_groups, method, fast_math_hint, out_quant_info);
265 g.add_connection(input.node_id, input.index, conv_nid, 0);
266 g.add_connection(w_nid, 0, conv_nid, 1);
267 if(has_bias)
268 {
269 g.add_connection(b_nid, 0, conv_nid, 2);
270 }
271 set_node_params(g, conv_nid, params);
272
273 return conv_nid;
274 }
275
add_deconvolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,unsigned int depth,PadStrideInfo deconv_info,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor)276 NodeID GraphBuilder::add_deconvolution_node(Graph &g, NodeParams params, NodeIdxPair input,
277 Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo deconv_info,
278 ITensorAccessorUPtr weights_accessor,
279 ITensorAccessorUPtr bias_accessor)
280 {
281 check_nodeidx_pair(input, g);
282 ARM_COMPUTE_ERROR_ON(depth == 0);
283 ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
284
285 bool has_bias = (bias_accessor != nullptr);
286
287 // Get input tensor descriptor
288 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
289 const DataLayout input_data_layout = input_tensor_desc.layout;
290
291 // Create weights node
292 TensorDescriptor w_desc = input_tensor_desc;
293 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
294 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
295 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
296 get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
297 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
298
299 NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
300
301 // Create bias nodes
302 NodeID b_nid = EmptyNodeID;
303 if(has_bias)
304 {
305 TensorDescriptor b_desc = input_tensor_desc;
306 b_desc.shape = TensorShape(depth);
307 if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
308 {
309 b_desc.data_type = DataType::S32;
310 }
311 b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
312 }
313
314 // Create convolution node and connect
315 NodeID deconv_nid = g.add_node<DeconvolutionLayerNode>(descriptors::DeconvolutionLayerDescriptor{ deconv_info });
316 g.add_connection(input.node_id, input.index, deconv_nid, 0);
317 g.add_connection(w_nid, 0, deconv_nid, 1);
318 if(has_bias)
319 {
320 g.add_connection(b_nid, 0, deconv_nid, 2);
321 }
322 set_node_params(g, deconv_nid, params);
323
324 return deconv_nid;
325 }
326
add_concatenate_node(Graph & g,NodeParams params,const std::vector<NodeIdxPair> & inputs,const descriptors::ConcatLayerDescriptor & concat_descriptor)327 NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, const descriptors::ConcatLayerDescriptor &concat_descriptor)
328 {
329 return create_simple_multiple_input_single_output_node<ConcatenateLayerNode>(g, params, inputs, inputs.size(), concat_descriptor);
330 }
331
add_depthwise_convolution_node(Graph & g,NodeParams params,NodeIdxPair input,Size2D kernel_spatial_extend,PadStrideInfo conv_info,int depth_multiplier,DepthwiseConvolutionMethod method,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const QuantizationInfo & quant_info,const QuantizationInfo & out_quant_info)332 NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend,
333 PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method,
334 ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo &quant_info, const QuantizationInfo &out_quant_info)
335 {
336 check_nodeidx_pair(input, g);
337 ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
338
339 bool has_bias = (bias_accessor != nullptr);
340
341 // Get input tensor descriptor
342 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
343 const DataLayout input_data_layout = input_tensor_desc.layout;
344
345 // Create weights node
346 TensorDescriptor w_desc = input_tensor_desc;
347 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
348 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
349 w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
350 get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
351 if(!quant_info.empty())
352 {
353 w_desc.quant_info = quant_info;
354 }
355
356 NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
357
358 // Create bias nodes
359 NodeID b_nid = EmptyNodeID;
360 if(has_bias)
361 {
362 TensorDescriptor b_desc = input_tensor_desc;
363 b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
364
365 if(is_data_type_quantized_asymmetric(b_desc.data_type))
366 {
367 b_desc.data_type = DataType::S32;
368 }
369
370 b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
371 }
372
373 // Create convolution node and connect
374 NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method, out_quant_info);
375 g.add_connection(input.node_id, input.index, conv_nid, 0);
376 g.add_connection(w_nid, 0, conv_nid, 1);
377 if(has_bias)
378 {
379 g.add_connection(b_nid, 0, conv_nid, 2);
380 }
381 set_node_params(g, conv_nid, params);
382
383 return conv_nid;
384 }
385
add_depth_to_space_node(Graph & g,NodeParams params,NodeIdxPair input,int32_t block_shape)386 NodeID GraphBuilder::add_depth_to_space_node(Graph &g, NodeParams params, NodeIdxPair input, int32_t block_shape)
387 {
388 return create_simple_single_input_output_node<DepthToSpaceLayerNode>(g, params, input, block_shape);
389 }
390
add_dequantization_node(Graph & g,NodeParams params,NodeIdxPair input)391 NodeID GraphBuilder::add_dequantization_node(Graph &g, NodeParams params, NodeIdxPair input)
392 {
393 return create_simple_single_input_output_node<DequantizationLayerNode>(g, params, input);
394 }
395
add_detection_output_node(Graph & g,NodeParams params,NodeIdxPair input_loc,NodeIdxPair input_conf,NodeIdxPair input_priorbox,const DetectionOutputLayerInfo & detect_info)396 NodeID GraphBuilder::add_detection_output_node(Graph &g, NodeParams params, NodeIdxPair input_loc, NodeIdxPair input_conf, NodeIdxPair input_priorbox, const DetectionOutputLayerInfo &detect_info)
397 {
398 check_nodeidx_pair(input_loc, g);
399 check_nodeidx_pair(input_conf, g);
400 check_nodeidx_pair(input_priorbox, g);
401
402 // Create detection_output node and connect
403 NodeID detect_nid = g.add_node<DetectionOutputLayerNode>(detect_info);
404 g.add_connection(input_loc.node_id, input_loc.index, detect_nid, 0);
405 g.add_connection(input_conf.node_id, input_conf.index, detect_nid, 1);
406 g.add_connection(input_priorbox.node_id, input_priorbox.index, detect_nid, 2);
407
408 set_node_params(g, detect_nid, params);
409
410 return detect_nid;
411 }
412
add_detection_post_process_node(Graph & g,NodeParams params,NodeIdxPair input_box_encoding,NodeIdxPair input_class_prediction,const DetectionPostProcessLayerInfo & detect_info,ITensorAccessorUPtr anchors_accessor,const QuantizationInfo & anchor_quant_info)413 NodeID GraphBuilder::add_detection_post_process_node(Graph &g, NodeParams params, NodeIdxPair input_box_encoding, NodeIdxPair input_class_prediction, const DetectionPostProcessLayerInfo &detect_info,
414 ITensorAccessorUPtr anchors_accessor, const QuantizationInfo &anchor_quant_info)
415 {
416 check_nodeidx_pair(input_box_encoding, g);
417 check_nodeidx_pair(input_class_prediction, g);
418
419 // Get input tensor descriptor
420 const TensorDescriptor input_box_encoding_tensor_desc = get_tensor_descriptor(g, g.node(input_box_encoding.node_id)->outputs()[0]);
421
422 // Calculate anchor descriptor
423 TensorDescriptor anchor_desc = input_box_encoding_tensor_desc;
424 if(!anchor_quant_info.empty())
425 {
426 anchor_desc.quant_info = anchor_quant_info;
427 }
428
429 // Create anchors nodes
430 auto anchors_nid = add_const_node_with_name(g, params, "Anchors", anchor_desc, std::move(anchors_accessor));
431
432 // Create detection_output node and connect
433 NodeID detect_nid = g.add_node<DetectionPostProcessLayerNode>(detect_info);
434 g.add_connection(input_box_encoding.node_id, input_box_encoding.index, detect_nid, 0);
435 g.add_connection(input_class_prediction.node_id, input_class_prediction.index, detect_nid, 1);
436 g.add_connection(anchors_nid, 0, detect_nid, 2);
437
438 set_node_params(g, detect_nid, params);
439
440 return detect_nid;
441 }
442
add_dummy_node(Graph & g,NodeParams params,NodeIdxPair input,TensorShape shape)443 NodeID GraphBuilder::add_dummy_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
444 {
445 return create_simple_single_input_output_node<DummyNode>(g, params, input, shape);
446 }
447
add_elementwise_node(Graph & g,NodeParams params,NodeIdxPair input0,NodeIdxPair input1,EltwiseOperation operation)448 NodeID GraphBuilder::add_elementwise_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, EltwiseOperation operation)
449 {
450 check_nodeidx_pair(input0, g);
451 check_nodeidx_pair(input1, g);
452
453 NodeID nid = g.add_node<EltwiseLayerNode>(descriptors::EltwiseLayerDescriptor{ operation });
454
455 g.add_connection(input0.node_id, input0.index, nid, 0);
456 g.add_connection(input1.node_id, input1.index, nid, 1);
457
458 set_node_params(g, nid, params);
459
460 return nid;
461 }
462
add_flatten_node(Graph & g,NodeParams params,NodeIdxPair input)463 NodeID GraphBuilder::add_flatten_node(Graph &g, NodeParams params, NodeIdxPair input)
464 {
465 return create_simple_single_input_output_node<FlattenLayerNode>(g, params, input);
466 }
467
add_fully_connected_layer(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_outputs,NodeID weights_nid,NodeID bias_nid,const FullyConnectedLayerInfo fc_info,const QuantizationInfo & out_quant_info,FastMathHint fast_math_hint)468 NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
469 NodeID weights_nid, NodeID bias_nid,
470 const FullyConnectedLayerInfo fc_info, const QuantizationInfo &out_quant_info, FastMathHint fast_math_hint)
471 {
472 check_nodeidx_pair(input, g);
473 ARM_COMPUTE_ERROR_ON(num_outputs == 0);
474 ARM_COMPUTE_ERROR_ON(weights_nid == EmptyNodeID);
475
476 const bool has_bias = (bias_nid != EmptyNodeID);
477
478 // Get input tensor descriptor
479 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
480
481 // Create fully connected node and connect
482 NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info, fast_math_hint);
483 g.add_connection(input.node_id, input.index, fc_nid, 0);
484 g.add_connection(weights_nid, 0, fc_nid, 1);
485 if(has_bias)
486 {
487 g.add_connection(bias_nid, 0, fc_nid, 2);
488 }
489
490 set_node_params(g, fc_nid, params);
491
492 return fc_nid;
493 }
494
add_fully_connected_layer(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_outputs,ITensorAccessorUPtr weights_accessor,ITensorAccessorUPtr bias_accessor,const FullyConnectedLayerInfo fc_info,const QuantizationInfo & weights_quant_info,const QuantizationInfo & out_quant_info,FastMathHint fast_math_hint)495 NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
496 ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
497 const FullyConnectedLayerInfo fc_info,
498 const QuantizationInfo &weights_quant_info, const QuantizationInfo &out_quant_info, FastMathHint fast_math_hint)
499 {
500 check_nodeidx_pair(input, g);
501 ARM_COMPUTE_ERROR_ON(num_outputs == 0);
502
503 bool has_bias = (bias_accessor != nullptr);
504
505 // Get input tensor descriptor
506 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
507
508 // Create weights node
509 TensorDescriptor w_desc = FullyConnectedLayerNode::compute_weights_descriptor(input_tensor_desc, num_outputs, fc_info, weights_quant_info);
510 NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
511
512 // Create bias nodes
513 NodeID b_nid = EmptyNodeID;
514 if(has_bias)
515 {
516 TensorDescriptor b_desc = input_tensor_desc;
517 b_desc.shape = TensorShape(num_outputs);
518 if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
519 {
520 b_desc.data_type = DataType::S32;
521 }
522 b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
523 }
524
525 // Create fully connected node and connect
526 NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info, fast_math_hint);
527 g.add_connection(input.node_id, input.index, fc_nid, 0);
528 g.add_connection(w_nid, 0, fc_nid, 1);
529 if(has_bias)
530 {
531 g.add_connection(b_nid, 0, fc_nid, 2);
532 }
533
534 set_node_params(g, fc_nid, params);
535
536 return fc_nid;
537 }
538
add_generate_proposals_node(Graph & g,NodeParams params,NodeIdxPair scores,NodeIdxPair deltas,NodeIdxPair anchors,GenerateProposalsInfo info)539 NodeID GraphBuilder::add_generate_proposals_node(Graph &g, NodeParams params, NodeIdxPair scores, NodeIdxPair deltas, NodeIdxPair anchors, GenerateProposalsInfo info)
540 {
541 check_nodeidx_pair(scores, g);
542 check_nodeidx_pair(deltas, g);
543 check_nodeidx_pair(anchors, g);
544
545 NodeID nid = g.add_node<GenerateProposalsLayerNode>(info);
546
547 g.add_connection(scores.node_id, scores.index, nid, 0);
548 g.add_connection(deltas.node_id, deltas.index, nid, 1);
549 g.add_connection(anchors.node_id, anchors.index, nid, 2);
550
551 set_node_params(g, nid, params);
552 return nid;
553 }
554
add_l2_normalize_node(Graph & g,NodeParams params,NodeIdxPair input,int axis,float epsilon)555 NodeID GraphBuilder::add_l2_normalize_node(Graph &g, NodeParams params, NodeIdxPair input, int axis, float epsilon)
556 {
557 return create_simple_single_input_output_node<L2NormalizeLayerNode>(g, params, input, axis, epsilon);
558 }
559
add_normalization_node(Graph & g,NodeParams params,NodeIdxPair input,NormalizationLayerInfo norm_info)560 NodeID GraphBuilder::add_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, NormalizationLayerInfo norm_info)
561 {
562 return create_simple_single_input_output_node<NormalizationLayerNode>(g, params, input, norm_info);
563 }
564
add_normalize_planar_yuv_node(Graph & g,NodeParams params,NodeIdxPair input,ITensorAccessorUPtr mean_accessor,ITensorAccessorUPtr std_accessor)565 NodeID GraphBuilder::add_normalize_planar_yuv_node(Graph &g, NodeParams params, NodeIdxPair input,
566 ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr std_accessor)
567 {
568 check_nodeidx_pair(input, g);
569
570 // Get input tensor descriptor
571 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
572
573 // Calculate Common Descriptor
574 TensorDescriptor common_desc = input_tensor_desc;
575 common_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
576
577 // Create mean and std nodes
578 auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
579 auto std_nid = add_const_node_with_name(g, params, "Std", common_desc, std::move(std_accessor));
580
581 // Create normalize planar YUV node and add connections
582 NodeID norm_planar_yuv_nid = g.add_node<NormalizePlanarYUVLayerNode>();
583 g.add_connection(input.node_id, input.index, norm_planar_yuv_nid, 0);
584 g.add_connection(mean_nid, 0, norm_planar_yuv_nid, 1);
585 g.add_connection(std_nid, 0, norm_planar_yuv_nid, 2);
586 set_node_params(g, norm_planar_yuv_nid, params);
587
588 return norm_planar_yuv_nid;
589 }
590
add_pad_node(Graph & g,NodeParams params,NodeIdxPair input,const PaddingList & paddings,PixelValue pad_value)591 NodeID GraphBuilder::add_pad_node(Graph &g, NodeParams params, NodeIdxPair input, const PaddingList &paddings, PixelValue pad_value)
592 {
593 return create_simple_single_input_output_node<PadLayerNode>(g, params, input, paddings, pad_value);
594 }
595
add_permute_node(Graph & g,NodeParams params,NodeIdxPair input,PermutationVector perm,DataLayout layout)596 NodeID GraphBuilder::add_permute_node(Graph &g, NodeParams params, NodeIdxPair input, PermutationVector perm, DataLayout layout)
597 {
598 return create_simple_single_input_output_node<PermuteLayerNode>(g, params, input, perm, layout);
599 }
600
add_prelu_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair alpha)601 NodeID GraphBuilder::add_prelu_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair alpha)
602 {
603 check_nodeidx_pair(input, g);
604 check_nodeidx_pair(alpha, g);
605
606 NodeID prelu_nid = g.add_node<PReluLayerNode>();
607 g.add_connection(input.node_id, input.index, prelu_nid, 0);
608 g.add_connection(alpha.node_id, alpha.index, prelu_nid, 1);
609
610 set_node_params(g, prelu_nid, params);
611
612 return prelu_nid;
613 }
614
add_pooling_node(Graph & g,NodeParams params,NodeIdxPair input,PoolingLayerInfo pool_info)615 NodeID GraphBuilder::add_pooling_node(Graph &g, NodeParams params, NodeIdxPair input, PoolingLayerInfo pool_info)
616 {
617 return create_simple_single_input_output_node<PoolingLayerNode>(g, params, input, pool_info);
618 }
619
add_print_node(Graph & g,NodeParams params,NodeIdxPair input,std::ostream & stream,const IOFormatInfo & format_info,const std::function<ITensor * (ITensor *)> transform)620 NodeID GraphBuilder::add_print_node(Graph &g, NodeParams params, NodeIdxPair input, std::ostream &stream, const IOFormatInfo &format_info, const std::function<ITensor *(ITensor *)> transform)
621 {
622 return create_simple_single_input_output_node<PrintLayerNode>(g, params, input, stream, format_info, transform);
623 }
624
add_priorbox_node(Graph & g,NodeParams params,NodeIdxPair input0,NodeIdxPair input1,const PriorBoxLayerInfo & prior_info)625 NodeID GraphBuilder::add_priorbox_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, const PriorBoxLayerInfo &prior_info)
626 {
627 check_nodeidx_pair(input0, g);
628 check_nodeidx_pair(input1, g);
629
630 // Create priorbox node and connect
631 NodeID prior_nid = g.add_node<PriorBoxLayerNode>(prior_info);
632 g.add_connection(input0.node_id, input0.index, prior_nid, 0);
633 g.add_connection(input1.node_id, input1.index, prior_nid, 1);
634
635 set_node_params(g, prior_nid, params);
636
637 return prior_nid;
638 }
639
add_quantization_node(Graph & g,NodeParams params,NodeIdxPair input,const QuantizationInfo & out_quant_info)640 NodeID GraphBuilder::add_quantization_node(Graph &g, NodeParams params, NodeIdxPair input, const QuantizationInfo &out_quant_info)
641 {
642 return create_simple_single_input_output_node<QuantizationLayerNode>(g, params, input, out_quant_info);
643 }
644
add_reduction_operation_node(Graph & g,NodeParams params,NodeIdxPair input,ReductionOperation op,int axis,bool keep_dims)645 NodeID GraphBuilder::add_reduction_operation_node(Graph &g, NodeParams params, NodeIdxPair input, ReductionOperation op, int axis, bool keep_dims)
646 {
647 return create_simple_single_input_output_node<ReductionLayerNode>(g, params, input, op, axis, keep_dims);
648 }
649
add_reorg_node(Graph & g,NodeParams params,NodeIdxPair input,int stride)650 NodeID GraphBuilder::add_reorg_node(Graph &g, NodeParams params, NodeIdxPair input, int stride)
651 {
652 return create_simple_single_input_output_node<ReorgLayerNode>(g, params, input, stride);
653 }
654
add_reshape_node(Graph & g,NodeParams params,NodeIdxPair input,TensorShape shape)655 NodeID GraphBuilder::add_reshape_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
656 {
657 return create_simple_single_input_output_node<ReshapeLayerNode>(g, params, input, shape);
658 }
659
add_resize_node(Graph & g,NodeParams params,NodeIdxPair input,InterpolationPolicy policy,float width_scale,float height_scale)660 NodeID GraphBuilder::add_resize_node(Graph &g, NodeParams params, NodeIdxPair input, InterpolationPolicy policy,
661 float width_scale, float height_scale)
662 {
663 return create_simple_single_input_output_node<ResizeLayerNode>(g, params, input, policy, width_scale, height_scale);
664 }
665
add_roi_align_node(Graph & g,NodeParams params,NodeIdxPair input,NodeIdxPair rois,ROIPoolingLayerInfo pool_info)666 NodeID GraphBuilder::add_roi_align_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair rois, ROIPoolingLayerInfo pool_info)
667 {
668 check_nodeidx_pair(input, g);
669 check_nodeidx_pair(rois, g);
670
671 NodeID nid = g.add_node<ROIAlignLayerNode>(pool_info);
672
673 g.add_connection(input.node_id, input.index, nid, 0);
674 g.add_connection(rois.node_id, rois.index, nid, 1);
675
676 set_node_params(g, nid, params);
677 return nid;
678 }
679
add_scale_layer(Graph & g,const NodeParams & params,NodeIdxPair input,ITensorAccessorUPtr mul_accessor,ITensorAccessorUPtr add_accessor)680 NodeID GraphBuilder::add_scale_layer(Graph &g, const NodeParams ¶ms, NodeIdxPair input, ITensorAccessorUPtr mul_accessor, ITensorAccessorUPtr add_accessor)
681 {
682 check_nodeidx_pair(input, g);
683
684 // Get input tensor descriptor
685 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
686 const DataLayout input_data_layout = input_tensor_desc.layout;
687
688 // Create mul node
689 TensorDescriptor mul_desc = input_tensor_desc;
690 const size_t C = input_tensor_desc.shape[get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL)];
691 mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), 1);
692 mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), 1);
693 mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL), C);
694 NodeID mul_const_nid = add_const_node_with_name(g, params, "Mul", mul_desc, std::move(mul_accessor));
695 NodeIdxPair mul_const_nidxp = { mul_const_nid, 0 };
696
697 // Create add node
698 TensorDescriptor add_desc = mul_desc;
699 NodeID add_const_nid = add_const_node_with_name(g, params, "Add", add_desc, std::move(add_accessor));
700 NodeIdxPair add_const_nidxp = { add_const_nid, 0 };
701
702 // Create node and connect
703 NodeID mul_node = GraphBuilder::add_elementwise_node(g, params, input, mul_const_nidxp, EltwiseOperation::Mul);
704 NodeIdxPair mulnode_nidxp = { mul_node, 0 };
705 NodeID add_node = GraphBuilder::add_elementwise_node(g, params, mulnode_nidxp, add_const_nidxp, EltwiseOperation::Add);
706
707 return add_node;
708 }
709
add_softmax_node(Graph & g,NodeParams params,NodeIdxPair input,float beta)710 NodeID GraphBuilder::add_softmax_node(Graph &g, NodeParams params, NodeIdxPair input, float beta)
711 {
712 return create_simple_single_input_output_node<SoftmaxLayerNode>(g, params, input, beta);
713 }
714
add_slice_node(Graph & g,NodeParams params,NodeIdxPair input,Coordinates & starts,Coordinates & ends)715 NodeID GraphBuilder::add_slice_node(Graph &g, NodeParams params, NodeIdxPair input, Coordinates &starts, Coordinates &ends)
716 {
717 return create_simple_single_input_output_node<SliceLayerNode>(g, params, input, starts, ends);
718 }
719
add_split_node(Graph & g,NodeParams params,NodeIdxPair input,unsigned int num_splits,unsigned int axis)720 NodeID GraphBuilder::add_split_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_splits, unsigned int axis)
721 {
722 return create_simple_single_input_output_node<SplitLayerNode>(g, params, input, num_splits, axis);
723 }
724
add_strided_slice_node(Graph & g,NodeParams params,NodeIdxPair input,Coordinates & starts,Coordinates & ends,BiStrides & strides,StridedSliceLayerInfo info)725 NodeID GraphBuilder::add_strided_slice_node(Graph &g, NodeParams params, NodeIdxPair input, Coordinates &starts, Coordinates &ends, BiStrides &strides, StridedSliceLayerInfo info)
726 {
727 return create_simple_single_input_output_node<StridedSliceLayerNode>(g, params, input, starts, ends, strides, info);
728 }
729
add_stack_node(Graph & g,NodeParams params,const std::vector<NodeIdxPair> & inputs,int axis)730 NodeID GraphBuilder::add_stack_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, int axis)
731 {
732 return create_simple_multiple_input_single_output_node<StackLayerNode>(g, params, inputs, inputs.size(), axis);
733 }
734
add_yolo_node(Graph & g,NodeParams params,NodeIdxPair input,ActivationLayerInfo act_info)735 NodeID GraphBuilder::add_yolo_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info)
736 {
737 check_nodeidx_pair(input, g);
738
739 // Get input tensor descriptor
740 const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
741 const bool is_nhwc = input_tensor_desc.layout == DataLayout::NHWC;
742
743 // Box format: [Objectness:1][Box:4][Classes:N]
744
745 // Activate objectness and front part of the box
746 const Coordinates box_start(0, 0, 0);
747 const Coordinates box_end = is_nhwc ? Coordinates(3, -1, -1) : Coordinates(-1, -1, 3);
748 NodeID box = g.add_node<SliceLayerNode>(box_start, box_end);
749 NodeID act_box = g.add_node<ActivationLayerNode>(act_info);
750 set_node_params(g, box, params);
751 set_node_params(g, act_box, params);
752 g.add_connection(input.node_id, input.index, box, 0);
753 g.add_connection(box, 0, act_box, 0);
754
755 // Immutable part
756 const Coordinates imm_start = is_nhwc ? Coordinates(3, 0, 0) : Coordinates(0, 0, 3);
757 const Coordinates imm_end = is_nhwc ? Coordinates(5, -1, -1) : Coordinates(-1, -1, 5);
758 NodeID imm = g.add_node<SliceLayerNode>(imm_start, imm_end);
759 set_node_params(g, imm, params);
760 g.add_connection(input.node_id, input.index, imm, 0);
761
762 // Activation classes and end part of box
763 const Coordinates cls_start = is_nhwc ? Coordinates(5, 0, 0) : Coordinates(0, 0, 5);
764 const Coordinates cls_end = Coordinates(-1, -1, -1);
765 NodeID cls = g.add_node<SliceLayerNode>(cls_start, cls_end);
766 NodeID cls_act = g.add_node<ActivationLayerNode>(act_info);
767 set_node_params(g, cls, params);
768 set_node_params(g, cls_act, params);
769 g.add_connection(input.node_id, input.index, cls, 0);
770 g.add_connection(cls, 0, cls_act, 0);
771
772 NodeID concat = g.add_node<ConcatenateLayerNode>(3, descriptors::ConcatLayerDescriptor(DataLayoutDimension::CHANNEL));
773 set_node_params(g, concat, params);
774 g.add_connection(act_box, 0, concat, 0);
775 g.add_connection(imm, 0, concat, 1);
776 g.add_connection(cls_act, 0, concat, 2);
777
778 return concat;
779 }
780 } // namespace graph
781 } // namespace arm_compute
782