xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClQuantizeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClQuantizeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/Error.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34 
35 #include "src/core/CL/CLValidate.h"
36 #include "src/core/helpers/WindowHelpers.h"
37 
38 #include "support/Cast.h"
39 #include "support/StringSupport.h"
40 
41 namespace arm_compute
42 {
43 namespace opencl
44 {
45 namespace kernels
46 {
47 namespace
48 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * dst)49 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst)
50 {
51     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F32, DataType::F16);
53     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
54 
55     // Output must always be initialized
56     ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0);
57     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QASYMM16);
58     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
59 
60     return Status{};
61 }
62 } // namespace
63 
ClQuantizeKernel()64 ClQuantizeKernel::ClQuantizeKernel()
65 {
66     _type = CLKernelType::ELEMENTWISE;
67 }
68 
configure(const CLCompileContext & compile_context,const ITensorInfo * src,ITensorInfo * dst)69 void ClQuantizeKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src, ITensorInfo *dst)
70 {
71     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
72 
73     auto padding_info = get_padding_info({ src, dst });
74 
75     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst));
76 
77     const int  vec_size_x     = 16 / src->element_size();
78     const int  input_width_x  = src->tensor_shape().x();
79     const bool multi_access_x = (input_width_x / vec_size_x > 0);
80 
81     const UniformQuantizationInfo qinfo            = dst->quantization_info().uniform();
82     const DataType                output_data_type = dst->data_type();
83 
84     float   scale_to_apply  = qinfo.scale;
85     int32_t offset_to_apply = qinfo.offset;
86     if(is_data_type_quantized_asymmetric(src->data_type()))
87     {
88         /*
89          * In case of requantization of a quantized input tensor to an output tensor with another quantization
90          * instead of of apply dequantization and then a quantization functions, we just compute new scale and
91          * offset to apply.
92          *
93          * Assuming:
94          *   - q_i as input quantized value
95          *   - q_o as output quantized value
96          *   - z_i as input quantization offset value
97          *   - z_o as output quantization offset value
98          *   - s_i as input quantization scale value
99          *   - s_o as output quantization scale value
100          *   - z_n as new quantization offset value
101          *   - s_n as new quantization scale value
102          *
103          * q_o = ( q_i - z_i ) * s_i / s_o + z_o
104          *
105          * We can rewrite the formula as:
106          *
107          * q_o = ( q_i * s_i / s_o ) - z_i * s_i / s_o + z_o
108          *
109          * q_o = q_i / s_n + z_n
110          *
111          * Where:
112          *
113          * s_n = s_o / s_i
114          *
115          * z_n = - z_i * s_i / s_o + z_o
116          *
117          */
118         const UniformQuantizationInfo qinfo_in = src->quantization_info().uniform();
119         scale_to_apply /= qinfo_in.scale;
120         // In order to minimize flooring we convert the offset to a float,
121         // then compute the new offset in the float domain,
122         // finally we convert it back as int32_t
123         offset_to_apply -= static_cast<int32_t>(static_cast<float>(qinfo_in.offset) * qinfo_in.scale / qinfo.scale);
124     }
125 
126     // Create kernel
127     CLBuildOptions build_opts;
128     build_opts.add_option_if(is_data_type_float(src->data_type()), "-DIS_FLOAT");
129     build_opts.add_option("-DSCALE=" + float_to_string_with_full_precision(scale_to_apply));
130     build_opts.add_option("-DOFFSET=" + support::cpp11::to_string(offset_to_apply));
131     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(vec_size_x));
132     build_opts.add_option("-DDATA_TYPE_IN=" + get_cl_type_from_data_type(src->data_type()));
133     build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output_data_type));
134     build_opts.add_option_if(multi_access_x, "-DLAST_ACCESSED_X=" + support::cpp11::to_string(std::max<int>(input_width_x - vec_size_x, 0)));
135     std::pair<int, int> min_max_quant_values = quantization::get_min_max_values_from_quantized_data_type(output_data_type);
136     build_opts.add_option("-DMIN_QUANT_VAL=" + support::cpp11::to_string(min_max_quant_values.first));
137     build_opts.add_option("-DMAX_QUANT_VAL=" + support::cpp11::to_string(min_max_quant_values.second));
138 
139     _kernel = create_kernel(compile_context, "quantization_layer", build_opts.options());
140 
141     // Configure kernel window
142     Window win = calculate_max_window(*src, Steps());
143     if(multi_access_x)
144     {
145         win.set(Window::DimX, Window::Dimension(win.x().start(), ceil_to_multiple(win.x().end(), vec_size_x), vec_size_x));
146     }
147     ICLKernel::configure_internal(win);
148 
149     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
150 }
151 
validate(const ITensorInfo * src,const ITensorInfo * dst)152 Status ClQuantizeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
153 {
154     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst));
155     return Status{};
156 }
157 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)158 void ClQuantizeKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
159 {
160     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
161     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
162 
163     auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
164     auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
165 
166     Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), 3);
167     Window slice            = window_collapsed.first_slice_window_3D();
168 
169     do
170     {
171         unsigned int idx = 0;
172         add_3D_tensor_argument(idx, src, slice);
173         add_3D_tensor_argument(idx, dst, slice);
174         enqueue(queue, *this, slice, lws_hint());
175     }
176     while(window_collapsed.slide_window_slice_3D(slice));
177 }
178 } // namespace kernels
179 } // namespace opencl
180 } // namespace arm_compute
181