xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClPool3dKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClPool3dKernel.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
29 #include "src/core/CL/CLValidate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/Cast.h"
33 #include "utils/TypePrinter.h"
34 
35 namespace arm_compute
36 {
37 namespace opencl
38 {
39 namespace kernels
40 {
41 using namespace arm_compute::misc::shape_calculator;
42 
43 namespace
44 {
validate_arguments(const ITensorInfo * src,const ITensorInfo * dst,const Pooling3dLayerInfo & pool_info)45 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const Pooling3dLayerInfo &pool_info)
46 {
47     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
48     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->data_layout() != DataLayout::NDHWC, "Only NDHWC layout supported");
49 
50     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(src);
51     ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_info.stride.x() == 0 || pool_info.stride.y() == 0 || pool_info.stride.z() == 0), "Strides cannot be zero.");
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32, DataType::QASYMM8_SIGNED, DataType::QASYMM8);
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG((!is_data_type_float(src->data_type())) && (!pool_info.exclude_padding
54                                                                                 && (pool_info.pool_type == PoolingType::AVG)),
55                                     "Exclude padding is unsupported for non-float types for Avg op");
56 
57     const auto         data_layout       = src->data_layout();
58     const int          idx_width         = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
59     const int          idx_height        = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
60     const int          idx_depth         = get_data_layout_dimension_index(data_layout, DataLayoutDimension::DEPTH);
61     const bool         is_global_pooling = pool_info.is_global_pooling;
62     const unsigned int pool_size_x       = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
63     const unsigned int pool_size_y       = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
64     const unsigned int pool_size_z       = is_global_pooling ? src->dimension(idx_depth) : pool_info.pool_size.depth;
65     int                output_width      = 0;
66     int                output_height     = 0;
67     int                output_depth      = 0;
68 
69     bool round_type_ceil_with_asymm_padding = (pool_info.round_type == DimensionRoundingType::CEIL) && (!is_symmetric(pool_info.padding));
70     ARM_COMPUTE_RETURN_ERROR_ON_MSG(round_type_ceil_with_asymm_padding, "Cannot use dimension round type CEIL when padding is asymmetric.");
71 
72     ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_pool_3d_region_entirely_outside_input(pool_info), "Pooling region that is entirely outside input tensor is unsupported");
73     std::tie(output_width, output_height, output_depth) = scaled_3d_dimensions_signed(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height],
74                                                                                       src->tensor_shape()[idx_depth], pool_size_x, pool_size_y,
75                                                                                       pool_size_z, pool_info);
76 
77     ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_width < 1 || output_height < 1 || output_depth < 1), "Calculated output dimension size is invalid");
78     // Checks performed when dst is configured
79     if(dst->total_size() != 0)
80     {
81         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
82         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
83         TensorInfo out_info(TensorInfo(compute_pool3d_shape(src->tensor_shape(), pool_info), 1, dst->data_type()));
84         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info);
85     }
86 
87     return Status{};
88 }
89 } // namespace
90 
ClPool3dKernel()91 ClPool3dKernel::ClPool3dKernel()
92 {
93     _type = CLKernelType::POOL;
94 }
95 
configure(const ClCompileContext & compile_context,const ITensorInfo * src,ITensorInfo * dst,const Pooling3dLayerInfo & pool_info)96 void ClPool3dKernel::configure(const ClCompileContext &compile_context, const ITensorInfo *src, ITensorInfo *dst, const Pooling3dLayerInfo &pool_info)
97 {
98     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
99     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info));
100     auto padding_info = get_padding_info({ src, dst });
101 
102     // Auto init if empty
103     TensorShape out_shape = compute_pool3d_shape(src->tensor_shape(), pool_info);
104     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
105 
106     // Set instance variables
107     _pool_info   = pool_info;
108     _data_layout = src->data_layout();
109 
110     _num_elems_processed_per_iteration = (dst->data_type() == DataType::F32) ? 2 : 4;
111     _num_elems_processed_per_iteration = adjust_vec_size(_num_elems_processed_per_iteration, dst->dimension(0));
112 
113     const PoolingType pool_type       = pool_info.pool_type;
114     const int         idx_width       = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
115     const int         idx_height      = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
116     const int         idx_depth       = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::DEPTH);
117     const int         idx_channel     = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::CHANNEL);
118     const int         idx_batch_size  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES);
119     const int         pool_size_x     = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
120     const int         pool_size_y     = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
121     const int         pool_size_z     = pool_info.is_global_pooling ? src->dimension(idx_depth) : pool_info.pool_size.depth;
122     const bool        exclude_padding = pool_info.exclude_padding;
123     const int         pool_stride_x   = pool_info.stride.x();
124     const int         pool_stride_y   = pool_info.stride.y();
125     const int         pool_stride_z   = pool_info.stride.z();
126     const int         pool_pad_top    = pool_info.padding.top;
127     const int         pool_pad_left   = pool_info.padding.left;
128     const int         pool_pad_front  = pool_info.padding.front;
129     const DataType    data_type       = src->data_type();
130 
131     // Set build options
132     CLBuildOptions build_opts;
133     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
134     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
135     build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
136     build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
137     build_opts.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y));
138     build_opts.add_option("-DSTRIDE_Z=" + support::cpp11::to_string(pool_stride_z));
139     build_opts.add_option("-DPAD_X=" + support::cpp11::to_string(pool_pad_left));
140     build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
141     build_opts.add_option("-DPAD_Z=" + support::cpp11::to_string(pool_pad_front));
142     build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
143     build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
144     build_opts.add_option("-DPOOL_SIZE_Z=" + support::cpp11::to_string(pool_size_z));
145     build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
146     build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
147     build_opts.add_option("-DSRC_DEPTH=" + support::cpp11::to_string(src->dimension(idx_depth)));
148 
149     // If datatype is quantized add relevant parameters
150     if(is_data_type_quantized_asymmetric(data_type) && src->quantization_info() != dst->quantization_info())
151     {
152         const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
153         const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
154 
155         build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
156         build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
157         build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
158         build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
159     }
160 
161     // Set the initial value for the pooling operation accordingly with the data type
162     if(pool_type == PoolingType::MAX)
163     {
164         if(is_data_type_quantized(data_type))
165         {
166             PixelValue type_min{};
167             std::tie(type_min, std::ignore) = get_min_max(data_type);
168             build_opts.add_option("-DINITIAL_VALUE=" + support::cpp11::to_string(type_min.get<int32_t>()));
169         }
170         else
171         {
172             build_opts.add_option("-DINITIAL_VALUE=" + float_to_string_with_full_precision(std::numeric_limits<float>::lowest()));
173         }
174     }
175     else
176     {
177         // Pool AVG and Pool L2 initial value
178         build_opts.add_option("-DINITIAL_VALUE=0");
179     }
180     // Create kernel
181     // Floating point mixed precision is support on F16 only
182     const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision && pool_type != PoolingType::MAX;
183 
184     // Wider accumulation is required to avoid accuracy loss
185     // Case 1: Floating point mixed precision (fp16 src data and fp32 accumulation)
186     DataType acc_data_type = data_type;
187     if(use_fp_mixed_precision)
188     {
189         acc_data_type = DataType::F32;
190     }
191     else if(is_data_type_quantized(data_type) && pool_type != PoolingType::MAX) // Use S32 for avg pooling to allow for integer division
192     {
193         acc_data_type = DataType::S32;
194     }
195 
196     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(acc_data_type));
197     build_opts.add_option_if(use_fp_mixed_precision, "-DFP_MIXED_PRECISION");
198     build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
199     build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(dst->dimension(idx_height)));
200     build_opts.add_option("-DDST_DEPTH=" + support::cpp11::to_string(dst->dimension(idx_depth)));
201     build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(dst->dimension(idx_channel)));
202     build_opts.add_option("-DDST_BATCH_SIZE=" + support::cpp11::to_string(dst->dimension(idx_batch_size)));
203     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(src->dimension(0) % _num_elems_processed_per_iteration));
204 
205     // if datatype is quantized use quantized kernel function
206     std::string kernel_name = (is_data_type_quantized_asymmetric(data_type) ? "pooling_3d_layer_MxN_ndhwc_quantized" : "pooling_3d_layer_MxN_ndhwc");
207     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
208 
209     // Configure kernel window
210     Window win = calculate_max_window(*dst, Steps(_num_elems_processed_per_iteration));
211     ICLKernel::configure_internal(win);
212 
213     // Set config_id for enabling LWS tuning
214     _config_id = "pooling_layer_3d";
215     _config_id += lower_string(string_from_data_type(data_type));
216     _config_id += "_";
217     _config_id += lower_string(string_from_data_layout(_data_layout));
218     _config_id += "_";
219     _config_id += support::cpp11::to_string(dst->dimension(idx_width));
220     _config_id += "_";
221     _config_id += support::cpp11::to_string(dst->dimension(idx_height));
222     _config_id += "_";
223     _config_id += support::cpp11::to_string(dst->dimension(idx_channel));
224     _config_id += "_";
225     _config_id += lower_string(string_from_data_layout(src->data_layout()));
226 
227     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
228 }
229 
validate(const ITensorInfo * src,const ITensorInfo * dst,const Pooling3dLayerInfo & pool_info)230 Status ClPool3dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const Pooling3dLayerInfo &pool_info)
231 {
232     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info));
233     return Status{};
234 }
235 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)236 void ClPool3dKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
237 {
238     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
239     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
240 
241     const auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
242     auto       dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST_0));
243 
244     // Collapse 3D window
245     Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
246 
247     // Set CL kernel arguments
248     unsigned int idx = 0;
249     // Passing of the window not needed, as the steps are not used for the pool3d kernel
250     add_5D_tensor_argument(idx, src, window);
251     add_5D_tensor_argument(idx, dst, window);
252     enqueue(queue, *this, window_collapsed, lws_hint());
253 }
254 } // namespace kernels
255 } // namespace opencl
256 } // namespace arm_compute
257