xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/AccessWindowStatic.h"
36 #include "src/core/CL/CLUtils.h"
37 #include "src/core/experimental/PostOpUtils.h"
38 #include "src/core/helpers/AutoConfiguration.h"
39 #include "src/core/helpers/WindowHelpers.h"
40 #include "src/core/utils/helpers/float_ops.h"
41 #include "support/Cast.h"
42 #include "support/StringSupport.h"
43 
44 namespace arm_compute
45 {
46 namespace opencl
47 {
48 namespace kernels
49 {
50 namespace
51 {
52 using ElementsProcessed = Steps;
53 
54 const auto post_op_utils = experimental::PostOpCLKernelUtils(
55 {
56     //  PostOp sequence                   -> {Kernel Postfix, PostOp Slots}
57     { {}, { "", {} } },
58     { { experimental::PostOpType::Activation }, { "", { 1 } } },
59 
60     { { experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 2 } } },
61     { { experimental::PostOpType::Eltwise_PRelu }, { "_post_act_eltwise_op_act", { 2 } } },
62 
63     { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add }, { "_post_act_eltwise_op_act", { 1, 2 } } },
64     { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_PRelu }, { "_post_act_eltwise_op_act", { 1, 2 } } },
65 
66     { { experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
67     { { experimental::PostOpType::Eltwise_PRelu, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 2, 3 } } },
68 
69     { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_Add, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } },
70     { { experimental::PostOpType::Activation, experimental::PostOpType::Eltwise_PRelu, experimental::PostOpType::Activation }, { "_post_act_eltwise_op_act", { 1, 2, 3 } } }
71 });
72 
validate_arguments(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * src2,const ITensorInfo * dst,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)73 Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
74                           const GEMMRHSMatrixInfo &rhs_info,
75                           const GEMMKernelInfo    &gemm_info)
76 {
77     ARM_COMPUTE_UNUSED(alpha);
78     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
79     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::F32, DataType::F16);
80     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
81     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
82     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
83     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
84     ARM_COMPUTE_RETURN_ERROR_ON(rhs_info.k0 > 16);
85     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
86     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
87     ARM_COMPUTE_RETURN_ERROR_ON_MSG((gemm_info.reinterpret_input_as_3d || gemm_info.depth_output_gemm3d != 0) && (src2 != nullptr)
88                                     && (!gemm_info.broadcast_bias),
89                                     "Bias addition only supported with broadcast mode in case the input or dst has to be reinterpreted as 3D");
90     ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
91     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for GEMM native");
92     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.is_post_op_sequence_supported(gemm_info.post_ops), "The sequence of Post Ops is not supported");
93 
94     const unsigned int m = gemm_info.m;
95     const unsigned int n = gemm_info.n;
96     const unsigned int k = gemm_info.k;
97 
98     ARM_COMPUTE_UNUSED(m);
99     ARM_COMPUTE_UNUSED(n);
100     ARM_COMPUTE_UNUSED(k);
101 
102     ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != k);
103     ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(0) != n);
104     ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(1) != k);
105     if(gemm_info.reinterpret_input_as_3d)
106     {
107         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != m);
108     }
109     else
110     {
111         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != m);
112     }
113 
114     if(src2 != nullptr && !(helpers::float_ops::is_zero(beta)))
115     {
116         const unsigned int src2_dim0 = src2->dimension(0);
117         const unsigned int src2_dim1 = src2->dimension(1);
118 
119         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src2, src1);
120         if(gemm_info.broadcast_bias)
121         {
122             ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim1 != 1 || src2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
123         }
124         else
125         {
126             ARM_COMPUTE_RETURN_ERROR_ON_MSG((src2_dim0 != n || src2_dim1 != m), "Incorrect dimension of bias matrix");
127         }
128     }
129 
130     if(dst->total_size() != 0)
131     {
132         const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
133         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
134         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
135         ARM_COMPUTE_RETURN_ERROR_ON_MSG(!post_op_utils.are_post_op_shapes_compliant(dst, gemm_info.post_ops), "The Post Op shapes are not compliant");
136     }
137 
138     return Status{};
139 }
140 
validate_and_configure_window(ITensorInfo * src0,ITensorInfo * src1,ITensorInfo * src2,ITensorInfo * dst,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info,ElementsProcessed & num_elements_processed)141 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info,
142                                                         const GEMMRHSMatrixInfo &rhs_info,
143                                                         const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed)
144 {
145     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
146     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
147     bool          reinterpret_input_as_3d             = gemm_info.reinterpret_input_as_3d;
148     bool          reinterpret_output_as_3d            = gemm_info.depth_output_gemm3d != 0;
149 
150     Window win{};
151     Window win_out{};
152     bool   window_changed = false;
153 
154     // In case both input and dst have to be reinterpreted as 3D tensors,
155     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
156     if(reinterpret_input_as_3d == reinterpret_output_as_3d)
157     {
158         reinterpret_output_as_3d = false;
159     }
160 
161     // dst tensor auto initialization if not yet initialized
162     auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
163 
164     TensorInfo tmp_info(*dst);
165 
166     if(reinterpret_output_as_3d)
167     {
168         // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
169         // the window needs to be constructed on the 2D collapsed version of the tensor
170         TensorShape tmp_shape(dst->tensor_shape());
171         tmp_shape.collapse(2U, 1U);
172         tmp_info.set_tensor_shape(tmp_shape);
173     }
174 
175     // Configure kernel window
176     num_elems_processed_per_iteration_x = rhs_info.n0;
177     num_elems_processed_per_iteration_y = lhs_info.m0;
178 
179     win     = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
180     win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
181 
182     AccessWindowStatic src0_access(src0, 0, 0,
183                                    src0->dimension(0),
184                                    src0->dimension(1));
185     AccessWindowStatic src1_access(src1, 0, 0,
186                                    ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x),
187                                    src1->dimension(1));
188     AccessWindowStatic dst_access(dst, 0, 0,
189                                   dst->dimension(0),
190                                   dst->dimension(1));
191 
192     if(src2 != nullptr)
193     {
194         const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
195 
196         AccessWindowStatic src2_access(src2, 0, 0,
197                                        ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x),
198                                        src2->dimension(1));
199 
200         window_changed = update_window_and_padding(win, src0_access, src1_access, src2_access) || // window used by the execute_window_loop
201                          update_window_and_padding(win_out, dst_access);                          // window used to update the padding requirements of dst tensor
202     }
203     else
204     {
205         window_changed = update_window_and_padding(win, src0_access, src1_access) || // window used by the execute_window_loop
206                          update_window_and_padding(win_out, dst_access);             // window used to update the padding requirements of dst tensor
207     }
208 
209     // Collapse along the Z direction
210     // This collapse needs to be here in order to tune the Z dimension of LWS
211     Window             collapsed             = win;
212     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
213     collapsed                                = win.collapse(win, dimension_to_collapse);
214 
215     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
216     return std::make_pair(err, collapsed);
217 }
218 } // namespace
219 
ClGemmMatrixMultiplyNativeKernel()220 ClGemmMatrixMultiplyNativeKernel::ClGemmMatrixMultiplyNativeKernel()
221 {
222     _type = CLKernelType::GEMM;
223 }
224 
configure(const CLCompileContext & compile_context,ITensorInfo * src0,ITensorInfo * src1,ITensorInfo * src2,ITensorInfo * dst,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)225 void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, float alpha,
226                                                  float                    beta,
227                                                  const GEMMLHSMatrixInfo &lhs_info,
228                                                  const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
229 {
230     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
231 
232     // dst tensor auto initialization if not yet initialized
233     auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)));
234 
235     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
236 
237     auto padding_info         = get_padding_info({ src0, dst });
238     _reinterpret_input_as_3d  = gemm_info.reinterpret_input_as_3d;
239     _reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
240     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
241     _add_bias                 = src2 != nullptr;
242     _num_post_op_args         = gemm_info.post_ops.total_num_arguments();
243 
244     // In case both input and dst have to be reinterpreted as 3D tensors,
245     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
246     if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
247     {
248         _reinterpret_input_as_3d  = false;
249         _reinterpret_output_as_3d = false;
250     }
251 
252     // Check if we need to slide the matrix B
253     const unsigned int num_dimensions_src0 = src0->num_dimensions();
254     _slide_matrix_b                        = (src1->num_dimensions() >= num_dimensions_src0);
255 
256     ElementsProcessed num_elements_processed{};
257 
258     // Configure kernel window
259     auto win_config = validate_and_configure_window(src0, src1, src2 != nullptr ? src2 : nullptr, dst, lhs_info, rhs_info, gemm_info, num_elements_processed);
260     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
261     IClKernel::configure_internal(win_config.second);
262 
263     // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
264     // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
265     // This means that the actual m used by the kernel is given by dst->dimension(1) and not by gemm_info.m
266     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : dst->dimension(1);
267 
268     const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(1) : src0->dimension(1);
269     const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? dst->dimension(2) : src0->dimension(2);
270 
271     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
272     const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
273     const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
274 
275     // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
276     // NOTE: This might have implications on heuristics and performance
277     const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
278     _m                             = internal_m;
279     _n                             = gemm_info.n;
280     _k                             = gemm_info.k;
281 
282     // Create build options
283     CLBuildOptions build_opts;
284     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
285     build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
286     build_opts.add_option_if(src2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
287     build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
288     build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS");
289     build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
290     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
291     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
292     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
293     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
294     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
295     build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
296     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
297     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
298     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
299     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
300     // If post_ops are used, then we disable the use of gemm_info.activation_info
301     if(gemm_info.post_ops.size() > 0)
302     {
303         post_op_utils.set_post_ops_cl_build_options(build_opts, gemm_info.post_ops);
304     }
305     else
306     {
307         build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
308         build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
309         build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
310     }
311 
312     std::string kernel_name("gemm_mm_native");
313     post_op_utils.set_post_ops_cl_kernel_name(kernel_name, gemm_info.post_ops);
314 
315     // A macro guard to compile ONLY the kernel of interest
316     build_opts.add_option("-D" + upper_string(kernel_name));
317 
318     // Create kernel
319     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
320 
321     // Set config_id for enabling LWS tuning
322     _config_id = kernel_name;
323     _config_id += "_";
324     _config_id += (_add_bias ? "add_bias_" : "");
325     _config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : "");
326     _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
327     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
328     _config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
329     _config_id += lower_string(string_from_data_type(src0->data_type()));
330     _config_id += "_";
331     _config_id += support::cpp11::to_string(dst->dimension(1));
332     _config_id += "_";
333     _config_id += support::cpp11::to_string(dst->dimension(0));
334     _config_id += "_";
335     _config_id += support::cpp11::to_string(gemm_info.k);
336     _config_id += "_";
337     _config_id += support::cpp11::to_string(dst->dimension(2));
338     _config_id += "_";
339     _config_id += support::cpp11::to_string(lhs_info.m0);
340     _config_id += "_";
341     _config_id += support::cpp11::to_string(rhs_info.n0);
342     _config_id += "_";
343     _config_id += support::cpp11::to_string(rhs_info.k0);
344 
345     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
346 }
347 
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * src2,const ITensorInfo * dst,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)348 Status ClGemmMatrixMultiplyNativeKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float alpha, float beta,
349                                                   const GEMMLHSMatrixInfo &lhs_info,
350                                                   const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
351 {
352     ElementsProcessed num_elements_processed{};
353     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info));
354     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
355                                                               src1->clone().get(),
356                                                               src2 != nullptr ? src2->clone().get() : nullptr,
357                                                               dst->clone().get(),
358                                                               lhs_info,
359                                                               rhs_info,
360                                                               gemm_info,
361                                                               num_elements_processed)
362                                 .first);
363 
364     return Status{};
365 }
366 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)367 void ClGemmMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
368 {
369     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
370     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
371 
372     const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
373     const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
374     const auto src2 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
375     auto       dst  = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
376 
377     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
378     ARM_COMPUTE_ERROR_ON(_add_bias && src2 == nullptr);
379 
380     if(src1->info()->num_dimensions() < 3)
381     {
382         // The stride_z for matrix B must be zero if we do not slice
383         ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
384     }
385 
386     Window slice          = window.first_slice_window_3D();
387     Window slice_matrix_b = slice;
388 
389     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
390     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
391 
392     if(_reinterpret_input_as_3d)
393     {
394         // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
395         unsigned int idx0;
396         if(_add_bias)
397         {
398             idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + (7 + _num_post_op_args);
399         }
400         else
401         {
402             idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + (6 + _num_post_op_args);
403         }
404         const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
405         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
406     }
407 
408     if(_reinterpret_output_as_3d)
409     {
410         // Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
411         unsigned int idx0;
412         if(_add_bias)
413         {
414             idx0 = (4 + _num_post_op_args) * num_arguments_per_2D_tensor() + 7 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
415         }
416         else
417         {
418             idx0 = (3 + _num_post_op_args) * num_arguments_per_2D_tensor() + 6 + (_reinterpret_input_as_3d ? 1 : 0) + _num_post_op_args;
419         }
420         const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
421         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
422     }
423 
424     do
425     {
426         Window slice_b = slice;
427         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
428         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
429         if(!_slide_matrix_b)
430         {
431             slice_b = slice_matrix_b;
432         }
433 
434         unsigned int idx = 0;
435         add_2D_tensor_argument(idx, src0, slice);
436         add_2D_tensor_argument(idx, src1, slice_b);
437         if(_add_bias)
438         {
439             add_2D_tensor_argument(idx, src2, slice);
440         }
441         add_2D_tensor_argument(idx, dst, slice);
442         // post op argument buffers
443         for(size_t i = 0; i < _num_post_op_args; ++i)
444         {
445             const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
446             add_2D_tensor_argument(idx, post_op_arg, slice);
447         }
448         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
449         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
450         if(_add_bias)
451         {
452             _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src2->info()->strides_in_bytes()[2]));
453         }
454         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
455         // post op argument stride_z
456         for(size_t i = 0; i < _num_post_op_args; ++i)
457         {
458             const auto post_op_arg = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(experimental::get_post_op_arg_type(i)));
459             _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(post_op_arg->info()->strides_in_bytes()[2]));
460         }
461 
462         // Pass m, n and k at runtime
463         _kernel.setArg<cl_int>(idx++, _m);
464         _kernel.setArg<cl_int>(idx++, _n);
465         _kernel.setArg<cl_int>(idx++, _k);
466 
467         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
468     }
469     while(window.slide_window_slice_3D(slice));
470 }
471 } // namespace kernels
472 } // namespace opencl
473 } // namespace arm_compute
474