1 /*
2  * Copyright (c) 2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/TensorInfo.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 
31 #include "src/core/helpers/AutoConfiguration.h"
32 #include "src/core/helpers/WindowHelpers.h"
33 
34 #include "support/Cast.h"
35 
36 namespace arm_compute
37 {
38 namespace opencl
39 {
40 namespace kernels
41 {
42 using namespace misc::shape_calculator;
43 
44 namespace
45 {
46 using ElementsProcessed = Steps;
47 
validate_arguments(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMKernelInfo & gemm_info,const ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,const ITensorInfo * bias,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)48 Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
49                           const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
50                           const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
51 {
52     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!arm_matrix_multiply_supported(CLKernelLibrary::get().get_device()), "The extension cl_arm_matrix_multiply is not supported on the target platform");
54     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
55     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
56     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
57     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
58 
59     const GEMMRHSMatrixInfo       rhs_info     = gemm_info.rhs_info;
60     const GEMMLHSMatrixInfo       lhs_info     = gemm_info.lhs_info;
61     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
62 
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.k0 != 4 || lhs_info.k0 != 4, "Only 4 is supported as value for k0");
64     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(lhs_info.m0 == 1 || lhs_info.m0 == 2 || lhs_info.m0 == 4), "Only 1,2,4 are supported for m0");
65     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(rhs_info.n0 == 1 || rhs_info.n0 == 4 || rhs_info.n0 == 8), "Only 1,4,8 are supported for n0");
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
67 
68     const int m = gemm_info.m;
69     const int n = gemm_info.n;
70     const int k = gemm_info.k;
71 
72     TensorShape tensor_shape1{ src1->tensor_shape() };
73     tensor_shape1.set(0, n);
74     tensor_shape1.set(1, k);
75 
76     const TensorInfo tensor_info1          = src1->clone()->set_tensor_shape(tensor_shape1);
77     const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
78 
79     ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != static_cast<unsigned int>(k));
80     if(gemm_info.reinterpret_input_as_3d)
81     {
82         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != static_cast<unsigned int>(m));
83     }
84     else
85     {
86         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != static_cast<unsigned int>(m));
87     }
88     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
89 
90     const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
91     if(dst->total_size() != 0)
92     {
93         const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(expected_dst_shape);
94         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
95         if(output_stage.type == GEMMLowpOutputStageType::NONE)
96         {
97             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
98         }
99         else
100         {
101             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
102         }
103     }
104 
105     if(bias != nullptr)
106     {
107         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
108         ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != bias->dimension(0));
109     }
110 
111     ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN) || (output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT),
112                                     "Only GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT is supported");
113 
114     // Checks performed if the dst stage needs to be fused
115     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
116     {
117         // If a_offset == 0, vector_sum_col can be a nullptr
118         if(gemm_info.a_offset != 0)
119         {
120             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
121             ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != expected_dst_shape[0]);
122         }
123 
124         // If b_offset == 0, vector_sum_row can be a nullptr
125         if(gemm_info.b_offset != 0)
126         {
127             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
128 
129             // Check if mm result is a 3D reinterpretation
130             const bool reinterpret_as_3d = expected_dst_shape.num_dimensions() > 1 && expected_dst_shape.y() != vector_sum_row->tensor_shape().x();
131 
132             // Validate input
133             ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (expected_dst_shape[1] * expected_dst_shape[2]));
134             ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != expected_dst_shape[1]);
135 
136             if(expected_dst_shape.num_dimensions() > 1)
137             {
138                 const unsigned int dst_batch_idx = reinterpret_as_3d ? 3 : 2;
139 
140                 TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
141                 vector_sum_row_shape.collapse_from(1);
142                 TensorShape collapsed_dst_shape(expected_dst_shape);
143                 collapsed_dst_shape.collapse_from(dst_batch_idx);
144 
145                 ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != collapsed_dst_shape[dst_batch_idx],
146                                                 "vector_sum_row must have the same number of batches of dst tensor");
147 
148                 if(gemm_info.a_offset != 0)
149                 {
150                     TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
151                     vector_sum_col_shape.collapse_from(1);
152 
153                     ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
154                                                     "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
155                 }
156             }
157         }
158 
159         if(dst->total_size() != 0)
160         {
161             ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != dst->data_type());
162         }
163         ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
164 
165         if(output_multipliers != nullptr && output_shifts != nullptr)
166         {
167             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
168             ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
169             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
170             ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
171             if(output_stage.is_quantized_per_channel)
172             {
173                 ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_shifts->dimension(0));
174                 ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_multipliers->dimension(0));
175             }
176         }
177     }
178     return Status{};
179 }
180 
validate_and_configure_window(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst,const GEMMKernelInfo & gemm_info,ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,ITensorInfo * bias,ITensorInfo * output_multipliers,ITensorInfo * output_shifts,ElementsProcessed & num_elements_processed)181 std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
182                                                         ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
183                                                         ITensorInfo *output_multipliers, ITensorInfo *output_shifts, ElementsProcessed &num_elements_processed)
184 {
185     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
186 
187     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
188     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
189     bool          reinterpret_output_as_3d            = (gemm_info.depth_output_gemm3d != 0);
190 
191     Window win{};
192     bool   window_changed = false;
193 
194     constexpr unsigned int mmul_n0 = 4;
195     constexpr unsigned int mmul_m0 = 4;
196     constexpr unsigned int mmul_k0 = 16;
197 
198     reinterpret_output_as_3d = false;
199     // dst tensor auto initialization if not yet initialized
200     const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
201     if(output_stage.type != GEMMLowpOutputStageType::NONE)
202     {
203         auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(output_stage.output_data_type));
204     }
205     else
206     {
207         auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(DataType::S32));
208     }
209 
210     TensorInfo tmp_info(*dst);
211 
212     if(reinterpret_output_as_3d)
213     {
214         // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
215         // the window needs to be constructed on the 2D collapsed version of the tensor
216         TensorShape tmp_shape(dst->tensor_shape());
217         tmp_shape.collapse(2U, 1U);
218         tmp_info.set_tensor_shape(tmp_shape);
219     }
220 
221     // Configure kernel window
222     num_elems_processed_per_iteration_x = 1;
223     num_elems_processed_per_iteration_y = 1;
224 
225     win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
226 
227     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
228     {
229         if(gemm_info.a_offset != 0)
230         {
231             AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration_x);
232             window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access);
233         }
234         // No access window needed for vector_sum_row
235         ARM_COMPUTE_UNUSED(vector_sum_row);
236 
237         if(bias != nullptr)
238         {
239             AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration_x);
240             window_changed = window_changed || update_window_and_padding(win, bias_access);
241         }
242 
243         if(output_multipliers != nullptr && output_stage.is_quantized_per_channel)
244         {
245             AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_processed_per_iteration_x);
246             AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_processed_per_iteration_x);
247             window_changed = window_changed || update_window_and_padding(win, output_multipliers_access, output_shifts_access);
248         }
249     }
250 
251     // Collapse along the Z direction
252     // This collapse needs to be here in order to tune the Z dimension of LWS
253     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
254     Window             collapsed             = win.collapse(win, dimension_to_collapse);
255 
256     // Reconfigure window size, one arm_matrix_multiply kernel needs 16 threads to finish.
257     Window::Dimension x_dimension = collapsed.x();
258     Window::Dimension y_dimension = collapsed.y();
259 
260     // Make M and N multiple of M0 and N0 respectively
261     const unsigned int ceil_to_multiple_n_n0 = ceil_to_multiple(x_dimension.end(), gemm_info.rhs_info.n0);
262     const unsigned int ceil_to_multiple_m_m0 = ceil_to_multiple(y_dimension.end(), gemm_info.lhs_info.m0);
263 
264     // Divide M and N by M0 and N0 respectively
265     const unsigned int n_div_n0 = ceil_to_multiple_n_n0 / gemm_info.rhs_info.n0;
266     const unsigned int m_div_m0 = ceil_to_multiple_m_m0 / gemm_info.lhs_info.m0;
267 
268     // Make n_div_n0 and m_div_m0 multiple of mmul_n0 and mmul_k0 respectively
269     const unsigned int ceil_to_multiple_n_div_n0_mmul_n0 = ceil_to_multiple(n_div_n0, mmul_n0);
270     const unsigned int ceil_to_multiple_m_div_m0_mmul_m0 = ceil_to_multiple(m_div_m0, mmul_k0);
271 
272     // Ensure x_dimension is multiple of MMUL block size (mmul_n0 * mmul_m0)
273     x_dimension.set_end(ceil_to_multiple_n_div_n0_mmul_n0 * mmul_n0);
274     y_dimension.set_end(ceil_to_multiple_m_div_m0_mmul_m0 / mmul_m0);
275 
276     collapsed.set(Window::DimX, x_dimension);
277     collapsed.set(Window::DimY, y_dimension);
278 
279     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
280     return std::make_pair(err, collapsed);
281 }
282 } // namespace
283 
ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel()284 ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel()
285 {
286     _type = CLKernelType::GEMM;
287 }
288 
configure(const CLCompileContext & compile_context,const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst,const GEMMKernelInfo & gemm_info,ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,ITensorInfo * bias,ITensorInfo * output_multipliers,ITensorInfo * output_shifts)289 void ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst,
290                                                                   const GEMMKernelInfo &gemm_info,
291                                                                   ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
292                                                                   ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
293 {
294     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
295     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
296 
297     auto                          padding_info = get_padding_info({ src0, src1, dst, vector_sum_row });
298     const GEMMRHSMatrixInfo       rhs_info     = gemm_info.rhs_info;
299     const GEMMLHSMatrixInfo       lhs_info     = gemm_info.lhs_info;
300     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
301     const int32_t                 a_offset     = gemm_info.a_offset;
302     const int32_t                 b_offset     = gemm_info.b_offset;
303     constexpr int                 mmul_m0      = 4;
304     constexpr int                 mmul_n0      = 4;
305     constexpr int                 mmul_k0      = 16;
306 
307     _m = gemm_info.m;
308     _n = gemm_info.n;
309     _k = gemm_info.k;
310 
311     ElementsProcessed num_elements_processed{};
312 
313     // Configure kernel window
314     auto win_config = validate_and_configure_window(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts, num_elements_processed);
315     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
316     ICLKernel::configure_internal(win_config.second);
317 
318     const unsigned int m0_leftover = _m % lhs_info.m0;
319     const unsigned int n0_leftover = _n % rhs_info.n0;
320 
321     // Create build options
322     CLBuildOptions build_opts;
323     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
324     build_opts.add_option("-DVEC_TYPE=" + get_cl_type_from_data_type(src0->data_type()) + "4");
325     build_opts.add_option("-DACC_DATA_TYPE=int");
326     build_opts.add_option("-DOUT_DATA_TYPE=" + get_cl_type_from_data_type(dst->data_type()));
327     build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
328     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
329     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
330     build_opts.add_option("-DM0_LEFTOVER=" + support::cpp11::to_string(m0_leftover));
331     build_opts.add_option("-DN0_LEFTOVER=" + support::cpp11::to_string(n0_leftover));
332     build_opts.add_option("-DMMUL_M0=" + support::cpp11::to_string(mmul_m0));
333     build_opts.add_option("-DMMUL_N0=" + support::cpp11::to_string(mmul_n0));
334     build_opts.add_option("-DMMUL_K0=" + support::cpp11::to_string(mmul_k0));
335     build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
336     build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
337     build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
338 
339     std::string kernel_name("gemmlowp_mm_reshaped_only_rhs_mmul");
340 
341     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
342     {
343         build_opts.add_option("-DFUSED_OUTPUT_STAGE_FIXED_POINT");
344         _fuse_output_stage = true;
345         // If a_offset == 0, vector_sum_col can be a nullptr
346         if(a_offset != 0 && vector_sum_col != nullptr)
347         {
348             build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
349             build_opts.add_option_if(vector_sum_col->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
350         }
351         // If b_offset == 0, vector_sum_row can be a nullptr
352         build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
353         build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * src0->dimension(0)));
354         build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
355         build_opts.add_option_if(gemm_info.broadcast_bias == true, "-DBROADCAST_BIAS");
356         build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
357         build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0]));
358         build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0]));
359 
360         const int min = output_stage.gemmlowp_min_bound;
361         const int max = output_stage.gemmlowp_max_bound;
362 
363         PixelValue min_val{};
364         PixelValue max_val{};
365         std::tie(min_val, max_val) = get_min_max(dst->data_type());
366         build_opts.add_option_if(min != min_val.get<int32_t>(), "-DMIN_BOUND=" + support::cpp11::to_string(min));
367         build_opts.add_option_if(max != max_val.get<int32_t>(), "-DMAX_BOUND=" + support::cpp11::to_string(max));
368     }
369 
370     // A macro guard to compile ONLY the kernel of interest
371     build_opts.add_option("-D" + upper_string(kernel_name));
372 
373     // Create kernel
374     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
375 
376     // Set config_id for enabling LWS tuning
377     _config_id = kernel_name;
378     _config_id += "_";
379     _config_id += (bias != nullptr ? "add_bias_" : "");
380     _config_id += (gemm_info.broadcast_bias ? "broadcast_bias_" : "");
381     _config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
382     _config_id += lower_string(string_from_data_type(src0->data_type()));
383     _config_id += "_";
384     _config_id += support::cpp11::to_string(_m);
385     _config_id += "_";
386     _config_id += support::cpp11::to_string(_n);
387     _config_id += "_";
388     _config_id += support::cpp11::to_string(_k);
389     _config_id += "_";
390     _config_id += support::cpp11::to_string(lhs_info.m0);
391     _config_id += "_";
392     _config_id += support::cpp11::to_string(rhs_info.n0);
393 
394     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
395 }
396 
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMKernelInfo & gemm_info,const ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,const ITensorInfo * bias,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)397 Status ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
398                                                                    const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
399                                                                    const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
400 {
401     ElementsProcessed num_elements_processed{};
402     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
403     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
404                                                               src1->clone().get(),
405                                                               dst->clone().get(),
406                                                               gemm_info,
407                                                               vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
408                                                               vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
409                                                               bias != nullptr ? bias->clone().get() : nullptr,
410                                                               output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr,
411                                                               output_shifts != nullptr ? output_shifts->clone().get() : nullptr,
412                                                               num_elements_processed)
413                                 .first);
414 
415     return Status{};
416 }
417 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)418 void ClGemmLowpMatrixMultiplyReshapedOnlyRhsMMULKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
419 {
420     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
421     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
422 
423     const auto src0           = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
424     const auto src1           = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
425     const auto src2           = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
426     const auto vector_sum_col = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_COL_SUM));
427     const auto vector_sum_row = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_ROW_SUM));
428     auto       dst            = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
429 
430     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
431 
432     if(src1->info()->num_dimensions() < 3)
433     {
434         // The stride_z for matrix B must be zero if we do not slice
435         ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
436     }
437 
438     cl::Image2D src1_image2d;
439 
440     Window slice = window.first_slice_window_3D();
441 
442     do
443     {
444         unsigned int idx = 0;
445 
446         add_3d_tensor_nhw_argument(idx, src0);
447         add_3d_tensor_nhw_argument(idx, src1);
448 
449         // Bias buffer (_add_bias == true)
450         if(src2 != nullptr)
451         {
452             add_3d_tensor_nhw_argument(idx, src2);
453         }
454         // dst buffer
455         add_3d_tensor_nhw_argument(idx, dst);
456 
457         // Pass m, n and k at runtime as signed ints, to ensure results of any subtraction they could be operand in, would still be signed.
458         _kernel.setArg<cl_int>(idx++, _m);
459         _kernel.setArg<cl_int>(idx++, _n);
460         _kernel.setArg<cl_int>(idx++, _k);
461 
462         if(_fuse_output_stage)
463         {
464             if(vector_sum_col != nullptr)
465             {
466                 add_3d_tensor_nhw_argument(idx, vector_sum_col);
467             }
468             if(vector_sum_row != nullptr)
469             {
470                 add_3d_tensor_nhw_argument(idx, vector_sum_row);
471             }
472         }
473 
474         enqueue(queue, *this, slice, cl::NDRange(32, 2), false);
475     }
476     while(window.slide_window_slice_3D(slice));
477 }
478 } // namespace kernels
479 } // namespace opencl
480 } // namespace arm_compute
481