1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 
36 #include "src/core/AccessWindowStatic.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 
40 #include "support/Cast.h"
41 #include "support/StringSupport.h"
42 
43 #include <tuple>
44 
45 namespace arm_compute
46 {
47 namespace opencl
48 {
49 namespace kernels
50 {
51 using namespace misc::shape_calculator;
52 
53 namespace
54 {
55 using ElementsProcessed = Steps;
56 
validate_arguments(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMKernelInfo & gemm_info,const ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,const ITensorInfo * bias,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)57 Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
58                           const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
59                           const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
60 {
61     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
62     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
63     if(src0->data_type() == DataType::QASYMM8)
64     {
65         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
66     }
67     else
68     {
69         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QSYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
70     }
71     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
72     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
73 
74     const GEMMRHSMatrixInfo       rhs_info     = gemm_info.rhs_info;
75     const GEMMLHSMatrixInfo       lhs_info     = gemm_info.lhs_info;
76     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
77 
78     ARM_COMPUTE_RETURN_ERROR_ON_MSG((((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3) || (rhs_info.k0 > 16)), "Only 2,3,4,8,16 are supported for k0");
79     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
80     ARM_COMPUTE_RETURN_ERROR_ON_MSG((((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3) || rhs_info.n0 > 16), "Only 2,3,4,8,16 are supported for n0");
81     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
82 
83     const int m = gemm_info.m;
84     const int n = gemm_info.n;
85     const int k = gemm_info.k;
86 
87     TensorShape tensor_shape1{ src1->tensor_shape() };
88     tensor_shape1.set(0, n);
89     tensor_shape1.set(1, k);
90 
91     const TensorInfo tensor_info1          = src1->clone()->set_tensor_shape(tensor_shape1);
92     const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
93 
94     ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != static_cast<unsigned int>(k));
95     if(gemm_info.reinterpret_input_as_3d)
96     {
97         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != static_cast<unsigned int>(m));
98     }
99     else
100     {
101         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != static_cast<unsigned int>(m));
102     }
103     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
104 
105     const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
106     if(dst->total_size() != 0)
107     {
108         const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(expected_dst_shape);
109         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
110         if(output_stage.type == GEMMLowpOutputStageType::NONE)
111         {
112             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
113         }
114         else
115         {
116             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
117         }
118     }
119 
120     if(bias != nullptr)
121     {
122         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
123         ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
124         ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != bias->dimension(0));
125     }
126 
127     ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN) || (output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT),
128                                     "Only GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT is supported");
129 
130     // Checks performed if the dst stage needs to be fused
131     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
132     {
133         // If a_offset == 0, vector_sum_col can be a nullptr
134         if(gemm_info.a_offset != 0)
135         {
136             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
137             ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != expected_dst_shape[0]);
138         }
139 
140         // If b_offset == 0, vector_sum_row can be a nullptr
141         if(gemm_info.b_offset != 0)
142         {
143             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
144 
145             // Check if mm result is a 3D reinterpretation
146             const bool reinterpret_as_3d = expected_dst_shape.num_dimensions() > 1 && expected_dst_shape.y() != vector_sum_row->tensor_shape().x();
147 
148             // Validate input
149             ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (expected_dst_shape[1] * expected_dst_shape[2]));
150             ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != expected_dst_shape[1]);
151 
152             if(expected_dst_shape.num_dimensions() > 1)
153             {
154                 const unsigned int dst_batch_idx = reinterpret_as_3d ? 3 : 2;
155 
156                 TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
157                 vector_sum_row_shape.collapse_from(1);
158                 TensorShape collapsed_dst_shape(expected_dst_shape);
159                 collapsed_dst_shape.collapse_from(dst_batch_idx);
160 
161                 ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != collapsed_dst_shape[dst_batch_idx],
162                                                 "vector_sum_row must have the same number of batches of dst tensor");
163 
164                 if(gemm_info.a_offset != 0)
165                 {
166                     TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
167                     vector_sum_col_shape.collapse_from(1);
168 
169                     ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
170                                                     "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
171                 }
172             }
173         }
174 
175         if(dst->total_size() != 0)
176         {
177             ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != dst->data_type());
178         }
179         ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
180 
181         if(output_multipliers != nullptr && output_shifts != nullptr)
182         {
183             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
184             ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
185             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
186             ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
187             if(output_stage.is_quantized_per_channel)
188             {
189                 ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_shifts->dimension(0));
190                 ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_multipliers->dimension(0));
191             }
192         }
193     }
194     return Status{};
195 }
196 
validate_and_configure_window(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst,const GEMMKernelInfo & gemm_info,ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,ITensorInfo * bias,ITensorInfo * output_multipliers,ITensorInfo * output_shifts,ElementsProcessed & num_elements_processed)197 std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
198                                                         ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
199                                                         ITensorInfo *output_multipliers, ITensorInfo *output_shifts, ElementsProcessed &num_elements_processed)
200 {
201     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
202 
203     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
204     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
205     bool          reinterpret_input_as_3d             = gemm_info.reinterpret_input_as_3d;
206     bool          reinterpret_output_as_3d            = (gemm_info.depth_output_gemm3d != 0);
207 
208     Window win{};
209     Window win_out{};
210     bool   window_changed = false;
211 
212     // In case both input and dst have to be reinterpreted as 3D tensors,
213     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
214     if(reinterpret_input_as_3d == reinterpret_output_as_3d)
215     {
216         reinterpret_output_as_3d = false;
217     }
218 
219     // dst tensor auto initialization if not yet initialized
220     const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
221     if(output_stage.type != GEMMLowpOutputStageType::NONE)
222     {
223         auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(output_stage.output_data_type));
224     }
225     else
226     {
227         auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(DataType::S32));
228     }
229 
230     TensorInfo tmp_info(*dst);
231 
232     if(reinterpret_output_as_3d)
233     {
234         // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
235         // the window needs to be constructed on the 2D collapsed version of the tensor
236         TensorShape tmp_shape(dst->tensor_shape());
237         tmp_shape.collapse(2U, 1U);
238         tmp_info.set_tensor_shape(tmp_shape);
239     }
240 
241     // Configure kernel window
242     num_elems_processed_per_iteration_x = gemm_info.rhs_info.n0;
243     num_elems_processed_per_iteration_y = gemm_info.lhs_info.m0;
244 
245     win     = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
246     win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
247 
248     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
249     {
250         if(gemm_info.a_offset != 0)
251         {
252             AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration_x);
253             window_changed = window_changed || update_window_and_padding(win_out, vector_sum_col_access);
254         }
255         // No access window needed for vector_sum_row
256         ARM_COMPUTE_UNUSED(vector_sum_row);
257 
258         if(bias != nullptr)
259         {
260             AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration_x);
261             window_changed = window_changed || update_window_and_padding(win_out, bias_access);
262         }
263 
264         if(output_multipliers != nullptr && output_stage.is_quantized_per_channel)
265         {
266             AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_processed_per_iteration_x);
267             AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_processed_per_iteration_x);
268             window_changed = window_changed || update_window_and_padding(win_out, output_multipliers_access, output_shifts_access);
269         }
270     }
271 
272     // Collapse along the Z direction
273     // This collapse needs to be here in order to tune the Z dimension of LWS
274     Window             collapsed             = win;
275     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
276     collapsed                                = win.collapse(win, dimension_to_collapse);
277 
278     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
279     return std::make_pair(err, collapsed);
280 }
281 } // namespace
282 
ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel()283 ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel()
284 {
285     _type = CLKernelType::GEMM;
286 }
287 
configure(const CLCompileContext & compile_context,const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst,const GEMMKernelInfo & gemm_info,ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,ITensorInfo * bias,ITensorInfo * output_multipliers,ITensorInfo * output_shifts)288 void ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst,
289                                                               const GEMMKernelInfo &gemm_info,
290                                                               ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
291                                                               ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
292 {
293     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
294     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
295 
296     auto                          padding_info = get_padding_info({ src0, src1, dst, vector_sum_row });
297     const GEMMRHSMatrixInfo       rhs_info     = gemm_info.rhs_info;
298     const GEMMLHSMatrixInfo       lhs_info     = gemm_info.lhs_info;
299     const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
300     const int32_t                 a_offset     = gemm_info.a_offset;
301     const int32_t                 b_offset     = gemm_info.b_offset;
302 
303     _reinterpret_input_as_3d  = gemm_info.reinterpret_input_as_3d;
304     _reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d != 0);
305     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
306     _is_quantized_per_channel = output_stage.is_quantized_per_channel;
307 
308     // In case both input and dst have to be reinterpreted as 3D tensors,
309     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
310     if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
311     {
312         _reinterpret_input_as_3d  = false;
313         _reinterpret_output_as_3d = false;
314     }
315 
316     // Check if we need to slide the matrix B
317     const unsigned int num_dimensions_src0 = src0->num_dimensions();
318     _slide_matrix_b                        = (src1->num_dimensions() >= num_dimensions_src0);
319 
320     ElementsProcessed num_elements_processed{};
321 
322     // Configure kernel window
323     auto win_config = validate_and_configure_window(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts, num_elements_processed);
324     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
325     ICLKernel::configure_internal(win_config.second);
326 
327     // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
328     // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
329     // This means that the actual m used by the kernel is given by dst->dimension(1) and not by gemm_info.m
330     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : dst->dimension(1);
331 
332     // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
333     // NOTE: This might have implications on heuristics and performance
334     const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
335 
336     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
337     const unsigned int partial_store_m0 = internal_m % internal_m0;
338     const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
339 
340     // Create build options
341     CLBuildOptions build_opts;
342     build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
343     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
344     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(dst->dimension(1)));
345     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(dst->dimension(2)));
346     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
347     build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
348     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
349     build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
350     build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
351     build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
352     build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
353     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
354     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
355     build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
356     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
357     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
358     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
359     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(src0->data_type()));
360 
361     std::string kernel_name("gemmlowp_mm_reshaped_only_rhs_");
362     kernel_name += rhs_info.transpose ? "t" : "nt";
363 
364     if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
365     {
366         kernel_name += "_fused_output_stage_fixedpoint";
367         _fuse_output_stage = true;
368         // If a_offset == 0, vector_sum_col can be a nullptr
369         if(a_offset != 0 && vector_sum_col != nullptr)
370         {
371             build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
372             build_opts.add_option_if(vector_sum_col->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
373         }
374         // If b_offset == 0, vector_sum_row can be a nullptr
375         build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
376         build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * src0->dimension(0)));
377         build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
378         build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
379         // In case of _is_quantized_per_channel, RESULT_MULTIPLIER and RESULT_SHIFT are not utilized, but they are passed as a part of T_QUANTIZE8 macro.
380         if(!_is_quantized_per_channel)
381         {
382             build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0]));
383             build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0]));
384         }
385         else
386         {
387             build_opts.add_option("-DRESULT_MULTIPLIER=0");
388             build_opts.add_option("-DRESULT_SHIFT=0");
389         }
390         build_opts.add_option_if(_is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
391 
392         const int min = output_stage.gemmlowp_min_bound;
393         const int max = output_stage.gemmlowp_max_bound;
394 
395         PixelValue min_val{};
396         PixelValue max_val{};
397         std::tie(min_val, max_val) = get_min_max(dst->data_type());
398         build_opts.add_option_if(min != min_val.get<int32_t>(), "-DMIN_BOUND=" + support::cpp11::to_string(min));
399         build_opts.add_option_if(max != max_val.get<int32_t>(), "-DMAX_BOUND=" + support::cpp11::to_string(max));
400     }
401 
402     // A macro guard to compile ONLY the kernel of interest
403     build_opts.add_option("-D" + upper_string(kernel_name));
404 
405     // Create kernel
406     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
407 
408     // Set config_id for enabling LWS tuning
409     _config_id = kernel_name;
410     _config_id += "_";
411     _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
412     _config_id += "_";
413     _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
414     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
415     _config_id += support::cpp11::to_string(dst->dimension(1));
416     _config_id += "_";
417     _config_id += support::cpp11::to_string(dst->dimension(0));
418     _config_id += "_";
419     _config_id += support::cpp11::to_string(gemm_info.k);
420     _config_id += "_";
421     _config_id += support::cpp11::to_string(dst->dimension(2));
422     _config_id += "_";
423     _config_id += support::cpp11::to_string(lhs_info.m0);
424     _config_id += "_";
425     _config_id += support::cpp11::to_string(rhs_info.n0);
426     _config_id += "_";
427     _config_id += support::cpp11::to_string(rhs_info.k0);
428     _config_id += "_";
429     _config_id += support::cpp11::to_string(rhs_info.h0);
430     _config_id += "_";
431     _config_id += support::cpp11::to_string(rhs_info.interleave);
432     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
433 }
434 
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMKernelInfo & gemm_info,const ITensorInfo * vector_sum_col,const ITensorInfo * vector_sum_row,const ITensorInfo * bias,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)435 Status ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
436                                                                const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
437                                                                const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
438 {
439     ElementsProcessed num_elements_processed{};
440     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
441     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
442                                                               src1->clone().get(),
443                                                               dst->clone().get(),
444                                                               gemm_info,
445                                                               vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
446                                                               vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
447                                                               bias != nullptr ? bias->clone().get() : nullptr,
448                                                               output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr,
449                                                               output_shifts != nullptr ? output_shifts->clone().get() : nullptr,
450                                                               num_elements_processed)
451                                 .first);
452 
453     return Status{};
454 }
455 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)456 void ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
457 {
458     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
459     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
460 
461     const auto src0               = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
462     const auto src1               = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
463     const auto bias               = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_BIAS));
464     const auto vector_sum_col     = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_COL_SUM));
465     const auto vector_sum_row     = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_ROW_SUM));
466     const auto output_shifts      = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SHIFTS));
467     const auto output_multipliers = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_MULTIPLIERS));
468     auto       dst                = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
469 
470     if(src1->info()->num_dimensions() < 3)
471     {
472         // The stride_z for matrix B must be zero if we do not slice
473         ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
474     }
475 
476     Window slice          = window.first_slice_window_3D();
477     Window slice_matrix_b = slice;
478 
479     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
480     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
481 
482     if(_reinterpret_input_as_3d)
483     {
484         // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
485         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3;
486         const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
487         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
488     }
489 
490     if(_reinterpret_output_as_3d)
491     {
492         // Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
493         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
494         const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
495         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
496     }
497 
498     // Set window for vector_sum_col
499     Window win_vector_sum_col = slice;
500     win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
501     win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
502 
503     // Set window for vector_sum_row
504     Window win_vector_sum_row = slice;
505     win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
506     win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
507     win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
508 
509     Window biases_slice = slice;
510     biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
511     biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
512 
513     do
514     {
515         Window slice_b = slice;
516         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
517         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
518         if(!_slide_matrix_b)
519         {
520             slice_b = slice_matrix_b;
521         }
522 
523         unsigned int idx = 0;
524         add_2D_tensor_argument(idx, src0, slice);
525         add_2D_tensor_argument(idx, src1, slice_b);
526         add_2D_tensor_argument(idx, dst, slice);
527         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
528         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
529         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
530         if(_reinterpret_input_as_3d)
531         {
532             // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
533             idx++;
534         }
535 
536         if(_reinterpret_output_as_3d)
537         {
538             // Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
539             idx++;
540         }
541 
542         if(_fuse_output_stage)
543         {
544             add_2D_tensor_argument_if((vector_sum_col != nullptr), idx, vector_sum_col, win_vector_sum_col);
545             add_2D_tensor_argument_if((vector_sum_row != nullptr), idx, vector_sum_row, win_vector_sum_row);
546             add_1D_tensor_argument_if((bias != nullptr), idx, bias, biases_slice);
547             add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_multipliers, biases_slice);
548             add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_shifts, biases_slice);
549         }
550         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
551     }
552     while(window.slide_window_slice_3D(slice));
553 }
554 } // namespace kernels
555 } // namespace opencl
556 } // namespace arm_compute
557