xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/operators/CpuScale.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/operators/CpuScale.h"
25 
26 #include "arm_compute/runtime/NEON/NEScheduler.h"
27 #include "src/common/utils/Log.h"
28 #include "src/core/utils/ScaleUtils.h"
29 #include "src/cpu/kernels/CpuScaleKernel.h"
30 #include "support/Rounding.h"
31 
32 namespace arm_compute
33 {
34 namespace cpu
35 {
36 namespace
37 {
precompute_dx_dy_offsets(ITensor * dx,ITensor * dy,ITensor * offsets,float wr,float hr,SamplingPolicy sampling_policy,bool align_corners)38 void precompute_dx_dy_offsets(ITensor *dx, ITensor *dy, ITensor *offsets, float wr, float hr, SamplingPolicy sampling_policy, bool align_corners)
39 {
40     ARM_COMPUTE_ERROR_ON(offsets == nullptr);
41     float sampling_offset = 0.0f;
42     if(sampling_policy == SamplingPolicy::CENTER)
43     {
44         sampling_offset = 0.5f;
45     }
46 
47     Window win;
48     win.set(Window::DimX, Window::Dimension(0, offsets->info()->dimension(0), 1));
49     win.set(Window::DimY, Window::Dimension(0, offsets->info()->dimension(1), 1));
50 
51     if(dx != nullptr && dy != nullptr)
52     {
53         // Pre-compute the offset and pixel's distance for BILINEAR interpolation
54         Iterator offsets_it(offsets, win);
55         Iterator dx_it(dx, win);
56         Iterator dy_it(dy, win);
57 
58         execute_window_loop(win, [&](const Coordinates & id)
59         {
60             const float in_x  = (id.x() + sampling_offset) * wr - sampling_offset;
61             const float in_y  = (id.y() + sampling_offset) * hr - sampling_offset;
62             const int   in_xi = std::floor(in_x);
63             const int   in_yi = std::floor(in_y);
64 
65             *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
66             *reinterpret_cast<float *>(dx_it.ptr())        = in_x - in_xi;
67             *reinterpret_cast<float *>(dy_it.ptr())        = in_y - in_yi;
68         },
69         offsets_it, dx_it, dy_it);
70     }
71     else
72     {
73         // Pre-compute the offset for NEAREST interpolation
74         Iterator offsets_it(offsets, win);
75 
76         execute_window_loop(win, [&](const Coordinates & id)
77         {
78             const float float_in_xi                        = (id.x() + sampling_offset) * wr;
79             const auto  in_xi                              = static_cast<size_t>(align_corners ? arm_compute::utils::rounding::round_half_away_from_zero(float_in_xi) : std::floor(float_in_xi));
80             *reinterpret_cast<int32_t *>(offsets_it.ptr()) = in_xi;
81         },
82         offsets_it);
83     }
84 }
85 } // namespace
86 
configure(ITensorInfo * src,ITensorInfo * dst,const ScaleKernelInfo & info)87 void CpuScale::configure(ITensorInfo *src, ITensorInfo *dst, const ScaleKernelInfo &info)
88 {
89     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
90     ARM_COMPUTE_ERROR_THROW_ON(CpuScale::validate(src, dst, info));
91     ARM_COMPUTE_LOG_PARAMS(src, dst, info);
92 
93     _scale_info  = info;
94     _is_prepared = false;
95 
96     // Get data layout and width/height indices
97     _data_layout         = _scale_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : _scale_info.data_layout;
98     const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
99     const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
100 
101     // Compute the ratio between source width/height and destination width/height
102     const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
103     const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
104     const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);
105 
106     // Area interpolation behaves as Nearest Neighbour in case of up-sampling
107     InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
108                                          && hr <= 1.f) ?
109                                         InterpolationPolicy::NEAREST_NEIGHBOR :
110                                         _scale_info.interpolation_policy;
111 
112     // Get the tensor shape
113     TensorShape shape(dst->dimension(idx_width));
114     shape.set(1, dst->dimension(idx_height), false);
115 
116     TensorInfo tensor_info_offsets(shape, Format::S32);
117     TensorInfo tensor_info_dxdy(shape, Format::F32);
118 
119     auto dx           = std::make_unique<TensorInfo>(tensor_info_dxdy);
120     auto dy           = std::make_unique<TensorInfo>(tensor_info_dxdy);
121     auto offsets      = std::make_unique<TensorInfo>(tensor_info_offsets);
122     auto scale_kernel = std::make_unique<kernels::CpuScaleKernel>();
123     switch(policy_to_use)
124     {
125         case InterpolationPolicy::NEAREST_NEIGHBOR:
126         {
127             scale_kernel->configure(src, nullptr, nullptr, offsets.get(), dst, info);
128             break;
129         }
130         case InterpolationPolicy::BILINEAR:
131         {
132             scale_kernel->configure(src, dx.get(), dy.get(), offsets.get(), dst, info);
133             break;
134         }
135         case InterpolationPolicy::AREA:
136         {
137             scale_kernel->configure(src, nullptr, nullptr, nullptr, dst, info);
138             break;
139         }
140         default:
141             ARM_COMPUTE_ERROR("Unsupported interpolation mode");
142     }
143     _kernel = std::move(scale_kernel);
144 }
145 
validate(const ITensorInfo * src,const ITensorInfo * dst,const ScaleKernelInfo & info)146 Status CpuScale::validate(const ITensorInfo *src, const ITensorInfo *dst, const ScaleKernelInfo &info)
147 {
148     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
149     ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);
150 
151     ITensorInfo *offsets = nullptr;
152     ITensorInfo *dx      = nullptr;
153     ITensorInfo *dy      = nullptr;
154 
155     // Get data layout and width/height indices
156     const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
157     const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
158     const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
159 
160     // Compute the ratio between source width/height and destination width/height
161     const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);
162     const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_width), dst->dimension(idx_width), is_align_corners_used);
163     const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->dimension(idx_height), dst->dimension(idx_height), is_align_corners_used);
164 
165     // Area interpolation behaves as Nearest Neighbour in case of up-sampling
166     InterpolationPolicy policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;
167 
168     // Get the tensor shape of auxilary buffers
169     const TensorShape shape(dst->dimension(idx_width), dst->dimension(idx_height));
170     TensorInfo        tensor_info_offsets(shape, Format::S32);
171     TensorInfo        tensor_info_dx(shape, Format::F32);
172     TensorInfo        tensor_info_dy(shape, Format::F32);
173     switch(policy_to_use)
174     {
175         case InterpolationPolicy::NEAREST_NEIGHBOR:
176             offsets = &tensor_info_offsets;
177             break;
178         case InterpolationPolicy::BILINEAR:
179             offsets = &tensor_info_offsets;
180             dx      = &tensor_info_dx;
181             dy      = &tensor_info_dy;
182             break;
183         default:
184             break;
185     }
186 
187     ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuScaleKernel::validate(src->clone().get(), dx, dy, offsets, dst->clone().get(), info));
188     return Status{};
189 }
190 
prepare(ITensorPack & tensors)191 void CpuScale::prepare(ITensorPack &tensors)
192 {
193     if(!_is_prepared)
194     {
195         _is_prepared       = true;
196         const auto src     = tensors.get_const_tensor(TensorType::ACL_SRC);
197         auto       dst     = tensors.get_tensor(TensorType::ACL_DST);
198         auto       dx      = tensors.get_tensor(TensorType::ACL_INT_0);
199         auto       dy      = tensors.get_tensor(TensorType::ACL_INT_1);
200         auto       offsets = tensors.get_tensor(TensorType::ACL_INT_2);
201 
202         // Get data layout and width/height indices
203         const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
204         const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
205 
206         // Compute the ratio between source width/height and destination width/height
207         const bool is_align_corners_used = _scale_info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(_scale_info.sampling_policy);
208         const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_width), dst->info()->dimension(idx_width), is_align_corners_used);
209         const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(src->info()->dimension(idx_height), dst->info()->dimension(idx_height), is_align_corners_used);
210 
211         // Area interpolation behaves as Nearest Neighbour in case of up-sampling
212         InterpolationPolicy policy_to_use = (_scale_info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f
213                                              && hr <= 1.f) ?
214                                             InterpolationPolicy::NEAREST_NEIGHBOR :
215                                             _scale_info.interpolation_policy;
216         const SamplingPolicy sampling_policy = _scale_info.sampling_policy;
217 
218         bool precompute_indices_weights = arm_compute::scale_utils::is_precomputation_required(_data_layout, src->info()->data_type(), policy_to_use, _scale_info.border_mode);
219 
220         if(precompute_indices_weights)
221         {
222             switch(policy_to_use)
223             {
224                 case InterpolationPolicy::NEAREST_NEIGHBOR:
225                 {
226                     // Pre-compute offsets for nearest interpolation
227                     precompute_dx_dy_offsets(nullptr, nullptr, offsets, wr, hr, sampling_policy, is_align_corners_used);
228                     break;
229                 }
230                 case InterpolationPolicy::BILINEAR:
231                 {
232                     // Pre-compute dx, dy and offsets for bilinear interpolation
233                     precompute_dx_dy_offsets(dx, dy, offsets, wr, hr, sampling_policy, is_align_corners_used);
234                     break;
235                 }
236                 case InterpolationPolicy::AREA:
237                 {
238                     break;
239                 }
240                 default:
241                     ARM_COMPUTE_ERROR("Unsupported interpolation mode");
242             }
243         }
244         else
245         {
246             if(policy_to_use != InterpolationPolicy::NEAREST_NEIGHBOR && policy_to_use != InterpolationPolicy::BILINEAR && policy_to_use != InterpolationPolicy::AREA)
247             {
248                 ARM_COMPUTE_ERROR("Unsupported interpolation mode");
249             }
250         }
251     }
252 }
253 
run(ITensorPack & tensors)254 void CpuScale::run(ITensorPack &tensors)
255 {
256     ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
257     prepare(tensors);
258     NEScheduler::get().schedule_op(_kernel.get(), Window::DimY, _kernel->window(), tensors);
259 }
260 } // namespace cpu
261 } // namespace arm_compute
262