xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/operators/CpuGemm.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CPU_GEMM_H
25 #define ARM_COMPUTE_CPU_GEMM_H
26 
27 #include "src/cpu/ICpuOperator.h"
28 
29 #include "arm_compute/core/ITensorPack.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Types.h"
32 #include "src/cpu/kernels/CpuGemmInterleave4x4Kernel.h"
33 #include "src/cpu/kernels/CpuGemmMatrixAdditionKernel.h"
34 #include "src/cpu/kernels/CpuGemmMatrixMultiplyKernel.h"
35 #include "src/cpu/kernels/CpuGemmTranspose1xWKernel.h"
36 #include "src/cpu/operators/CpuActivation.h"
37 #include "src/cpu/operators/CpuAdd.h"
38 #include "src/cpu/operators/internal/CpuGemmAssemblyDispatch.h"
39 
40 #include <memory>
41 
42 namespace arm_compute
43 {
44 namespace cpu
45 {
46 /** Basic function to execute GEMM. This function calls the following kernels:
47  *
48  * If optimized assembly is available:
49  *  -# @ref cpu::CpuGemmAssemblyDispatch
50  *  -# @ref cpu::CpuActivation (if alpha != 1.0)
51  * Else:
52  *  -# @ref cpu::kernels::CpuGemmInterleave4x4Kernel (if the output tensor is a matrix)
53  *  -# @ref cpu::kernels::CpuGemmTranspose1xWKernel (if the output tensor is a matrix)
54  *  -# @ref cpu::kernels::CpuGemmMatrixMultiplyKernel
55  * In both cases:
56  *  -# @ref cpu::kernels::CpuGemmMatrixAdditionKernel (if c != nullptr and beta != 0.0 and is not reshaped once)
57  * Else:
58  *  -# @ref cpu::CpuAdd (if c != nullptr and is reshaped once and not optimized assembly in place)
59  *
60  *  -# @ref cpu::CpuActivation (if activation is specified in GEMMInfo)
61  */
62 class CpuGemm : public ICpuOperator
63 {
64 public:
65     /** Default constructor */
66     CpuGemm() = default;
67     /** Default destructor */
68     ~CpuGemm() = default;
69     /** Configure operator for a given list of arguments
70      *
71      * Valid data layouts:
72      * - All
73      *
74      * Valid data type configurations:
75      * |src0         |src1        |src2      |dst            |
76      * |:------------|:-----------|:---------|:--------------|
77      * |F32          |F32         |F32       |F32            |
78      * |F16          |F16         |F16       |F16            |
79      * |BFLOAT16     |BFLOAT16    |BFLOAT16  |FP32           |
80      *
81      * @note GEMM: General Matrix Multiply - [alpha * A * B + beta * C].
82      * @note GEMM: The tensors a, b, c, d must have the same data type. You should not mix data types when calling this function.
83      *
84      * @note Batched GEMM only supports broadcasting cases where RHS rank < LHS rank but not the other way around
85      *
86      * @param[in]  a         First input tensor info (Matrix A or Vector A). Data type supported: BFLOAT16/F16/F32
87      * @param[in]  b         Second input tensor info (Matrix B). Data type supported: same as @p a
88      * @param[in]  c         Third input tensor info (Matrix C). It can be a nullptr if just the multiplication between @p a and @p b is needed. Data type supported: same as @p a
89      * @param[out] d         Output tensor info. Data type supported: same as @p a
90      * @param[in]  alpha     Weight of the matrix product
91      * @param[in]  beta      Weight of matrix C
92      * @param[in]  gemm_info (Optional) Specifies if the matrix A and/or matrix B have been reshaped and
93      *                       if the reshape of matrix B should happen only for the first run
94      */
95     void configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d,
96                    float alpha, float beta, const GEMMInfo &gemm_info = GEMMInfo());
97     /** Static function to check if given info will lead to a valid configuration of @ref CpuGemm.
98      *
99      * Similar to @ref CpuGemm::configure()
100      *
101      * @return a status
102      */
103     static Status validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d,
104                            float alpha, float beta, const GEMMInfo &gemm_info = GEMMInfo());
105 
106     /** Indicates whether or not there is an optimal assembly implementation that can be used to process the given parameters.
107      *
108      * This method has the same use of @ref
109      * NEGEMMConvolutionLayer::has_opt_impl, with the only caveat that
110      * the value of arm_compute::WeightFormat need to be passed via the
111      * parameter gemm_info.
112      */
113     static Status has_opt_impl(arm_compute::WeightFormat &weight_format, const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d,
114                                const GEMMInfo &gemm_info = GEMMInfo());
115 
116     // Inherited methods overridden:
117     void run(ITensorPack &tensors) override;
118     void prepare(ITensorPack &constants) override;
119     experimental::MemoryRequirements workspace() const override;
120 
121     /** Indicates if the convolution executes in variable weights mode.
122      *
123      * When ACL executes convolution in variable weights mode, it does
124      * not perform any processing of the weights tensor. Instead, it
125      * utilizes the data as it is given by the user.
126      */
127     bool isVarWeightsKernel() const;
128 
129 private:
130     enum AuxTensorIdx
131     {
132         AsmGemmWorkspace = 0,
133         Pretraspose,
134         InterleavedLHS,
135         TransposedRHS,
136         TempResult,
137         Count
138     };
139 
140     std::unique_ptr<kernels::CpuGemmInterleave4x4Kernel>  _interleave_kernel{ nullptr };
141     std::unique_ptr<kernels::CpuGemmTranspose1xWKernel>   _transpose_kernel{ nullptr };
142     std::unique_ptr<kernels::CpuGemmMatrixMultiplyKernel> _mm_kernel{ nullptr };
143     std::unique_ptr<CpuGemmAssemblyDispatch>              _asm_glue{ nullptr };
144     std::unique_ptr<kernels::CpuGemmMatrixAdditionKernel> _ma_kernel{ nullptr };
145     std::unique_ptr<CpuActivation>                        _alpha_scale_func{ nullptr };
146     std::unique_ptr<CpuAdd>                               _add_bias{ nullptr };
147     std::unique_ptr<CpuActivation>                        _activation_func{ nullptr };
148 
149     TensorInfo _tmp_a{};
150     TensorInfo _tmp_b{};
151     TensorInfo _tmp_d{};
152 
153     bool _run_vector_matrix_multiplication{ false };
154     bool _run_alpha_scale{ false };
155     bool _run_addition{ false };
156     bool _run_bias_addition{ false };
157     bool _run_activation{ false };
158     bool _reshape_b_only_on_first_run{ false };
159     bool _is_prepared{ false };
160 
161     experimental::MemoryRequirements _aux_mem{ Count };
162 };
163 } // namespace cpu
164 } // namespace arm_compute
165 #endif /*ARM_COMPUTE_CPU_GEMM_H */
166