1 /*
2 * Copyright (c) 2021-2023 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/operators/CpuFullyConnected.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/ITensorPack.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31 #include "arm_compute/runtime/NEON/NEScheduler.h"
32 #include "src/common/utils/Log.h"
33 #include "src/core/helpers/AutoConfiguration.h"
34 #include "src/core/helpers/MemoryHelpers.h"
35 #include "src/cpu/kernels/CpuTransposeKernel.h"
36 #include "src/cpu/operators/CpuConvertFullyConnectedWeights.h"
37 #include "src/cpu/operators/CpuFlatten.h"
38 #include "src/cpu/operators/CpuGemm.h"
39 #include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
40 #include "src/cpu/utils/CpuAuxTensorHandler.h"
41
42 namespace arm_compute
43 {
44 namespace cpu
45 {
46 using namespace arm_compute::experimental;
47 using namespace arm_compute::misc::shape_calculator;
48
49 namespace
50 {
51 // Get min, max bound of a quantized asymmetric dst tensor, with the effect of fused activation
get_quantized_asymmetric_output_min_max(const QuantizationInfo & q_info,const ActivationLayerInfo & act_info,DataType data_type)52 std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
53 {
54 PixelValue type_min{};
55 PixelValue type_max{};
56 std::tie(type_min, type_max) = get_min_max(data_type);
57 const UniformQuantizationInfo q_unif = q_info.uniform();
58
59 if(act_info.enabled())
60 {
61 switch(act_info.activation())
62 {
63 case ActivationLayerInfo::ActivationFunction::RELU:
64 type_min = PixelValue(q_unif.offset);
65 break;
66 case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
67 type_min = PixelValue(q_unif.offset);
68 type_max = PixelValue(act_info.a(), data_type, q_info);
69 break;
70 case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
71 type_min = PixelValue(act_info.b(), data_type, q_info);
72 type_max = PixelValue(act_info.a(), data_type, q_info);
73 break;
74 default:
75 ARM_COMPUTE_ERROR("Activation function not supported.");
76 break;
77 }
78 }
79
80 return std::make_pair(type_min, type_max);
81 }
82
get_gemmlowp_output_stage_info(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * dst,const ActivationLayerInfo & act,GEMMLowpOutputStageInfo & gemmlowp_output_stage_info)83 Status get_gemmlowp_output_stage_info(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const ActivationLayerInfo &act,
84 GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
85 {
86 const auto data_type = src->data_type();
87 const QuantizationInfo oq_info = dst->quantization_info();
88 const UniformQuantizationInfo iq_unif = src->quantization_info().uniform();
89 const UniformQuantizationInfo wq_unif = weights->quantization_info().uniform();
90 const UniformQuantizationInfo oq_unif = oq_info.uniform();
91
92 float multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
93 int32_t output_multiplier;
94 int32_t output_shift;
95
96 ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
97
98 PixelValue type_min{};
99 PixelValue type_max{};
100 std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
101
102 gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
103 gemmlowp_output_stage_info.gemmlowp_shift = output_shift;
104 gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
105 gemmlowp_output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
106 gemmlowp_output_stage_info.gemmlowp_min_bound = type_min.get<int32_t>();
107 gemmlowp_output_stage_info.gemmlowp_max_bound = type_max.get<int32_t>();
108
109 return Status{};
110 }
111
validate_mm(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const ActivationLayerInfo & act,bool enable_fast_math,WeightFormat weight_format)112 Status validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ActivationLayerInfo &act, bool enable_fast_math, WeightFormat weight_format)
113 {
114 if(is_data_type_quantized_asymmetric(src->data_type()))
115 {
116 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
117 // Extract and negate src and weights offset
118 const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
119 const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
120
121 GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
122 ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(src, weights, dst, act, gemmlowp_output_stage_info));
123
124 GEMMInfo gemm_info;
125 gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
126 gemm_info.set_fast_math(enable_fast_math);
127
128 // Validate gemmlowp function
129 TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
130 TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
131 ARM_COMPUTE_RETURN_ON_ERROR(CpuGemmLowpMatrixMultiplyCore::validate(&src_info,
132 &weights_info,
133 biases,
134 dst,
135 gemm_info));
136 }
137 else
138 {
139 GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
140 gemm_info.set_weight_format(weight_format);
141 gemm_info.set_fixed_format(weight_format != WeightFormat::UNSPECIFIED);
142 gemm_info.set_fast_math(enable_fast_math);
143 ARM_COMPUTE_RETURN_ON_ERROR(CpuGemm::validate(src, weights, biases, dst, 1.f, 1.0f, gemm_info));
144 }
145
146 return Status{};
147 }
148 } // namespace
149
CpuFullyConnected()150 CpuFullyConnected::CpuFullyConnected()
151 : _flatten(nullptr),
152 _convert_weights(nullptr),
153 _transpose_weights(nullptr),
154 _mm_gemm(nullptr),
155 _mm_gemmlowp(nullptr),
156 _flattened_src(),
157 _converted_weights(),
158 _reshaped_weights(),
159 _trans_weights(),
160 _trans_weights_idx(AuxTensorIdx::Count),
161 _aux_mem(Count),
162 _needs_weights_conversion(false),
163 _needs_weights_reshape(false),
164 _is_fc_after_conv(false),
165 _is_quantized_asymmetric(false),
166 _is_prepared(false),
167 _enable_fast_math(false),
168 _fixed_format(false),
169 _weight_format(arm_compute::WeightFormat::UNSPECIFIED)
170 {
171 }
172
173 CpuFullyConnected::~CpuFullyConnected() = default;
174
configure_mm(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const ActivationLayerInfo & act)175 void CpuFullyConnected::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
176 {
177 if(_is_quantized_asymmetric)
178 {
179 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
180 // Extract and negate src and weights offset
181 const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
182 const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
183
184 TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
185 TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
186
187 // Configure gemmlowp function and output stage for asymmetric quantized types
188 GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
189 const Status status = get_gemmlowp_output_stage_info(&src_info, &weights_info, dst, act, gemmlowp_output_stage_info);
190 ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
191
192 GEMMInfo gemm_info;
193 gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
194 gemm_info.set_activation_info(act);
195 gemm_info.set_fast_math(_enable_fast_math);
196 _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
197 _mm_gemmlowp->configure(&src_info, &weights_info, biases, dst, gemm_info);
198 }
199 else
200 {
201 // Configure matrix multiply kernel
202 GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
203 gemm_info.set_activation_info(act);
204 gemm_info.set_fast_math(_enable_fast_math);
205 gemm_info.set_fixed_format(_fixed_format);
206 gemm_info.set_weight_format(_weight_format);
207 _mm_gemm = std::make_unique<CpuGemm>();
208 _mm_gemm->configure(src, weights, biases, dst, 1.f, 1.0f, gemm_info);
209 }
210 }
211
configure_conv_fc(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const ActivationLayerInfo & act)212 void CpuFullyConnected::configure_conv_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
213 {
214 ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
215
216 // If the fully connected layer is called after a convolution layer, the src tensor must be linearized
217
218 // Initialize output tensor for flatten
219 auto_init_if_empty(_flattened_src, src->clone()->set_tensor_shape(compute_flatten_shape(src)));
220
221 _flatten = std::make_unique<CpuFlatten>();
222 _flatten->configure(src, &_flattened_src);
223
224 // Configure matrix multiply kernel
225 configure_mm(&_flattened_src, weights, biases, dst, act);
226 }
227
configure_fc_fc(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const ActivationLayerInfo & act)228 void CpuFullyConnected::configure_fc_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
229 {
230 ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
231
232 // Configure matrix multiply kernel
233 configure_mm(src, weights, biases, dst, act);
234 }
235
configure(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,FullyConnectedLayerInfo fc_info,const WeightsInfo & weights_info)236 void CpuFullyConnected::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
237 FullyConnectedLayerInfo fc_info, const WeightsInfo &weights_info)
238 {
239 // Perform validate step
240 ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
241 ARM_COMPUTE_ERROR_THROW_ON(CpuFullyConnected::validate(src,
242 weights,
243 biases != nullptr ? biases : nullptr,
244 dst,
245 fc_info,
246 weights_info));
247 ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, fc_info);
248
249 _needs_weights_conversion = false;
250 _needs_weights_reshape = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
251 _needs_weights_reshape = _needs_weights_reshape && !fc_info.retain_internal_weights;
252 _is_fc_after_conv = true;
253 _is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
254 _is_prepared = false;
255 _trans_weights_idx = AuxTensorIdx::Count;
256 _enable_fast_math = fc_info.enable_fast_math;
257 _fixed_format = weights_info.weight_format() != WeightFormat::UNSPECIFIED;
258 _weight_format = weights_info.weight_format();
259
260 // With the Fully Connected layer we can have 4 different cases:
261 // 1) Convolution layer -> Fully Connected layer without batches
262 // 2) Fully Connected layer -> Fully Connected layer without batches
263 // 3) Convolution layer -> Fully Connected layer with batches
264 // 4) Fully Connected layer -> Fully Connected layer with batches
265
266 const ITensorInfo *weights_to_use = weights;
267
268 // Check if we have a fully connected layer with batches
269 const bool is_batched_fc_layer = dst->dimension(1) > 1;
270 if(is_batched_fc_layer)
271 {
272 _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3, src->tensor_shape().cend(), dst->tensor_shape().cbegin() + 1));
273 }
274 else
275 {
276 _is_fc_after_conv = src->num_dimensions() > 1;
277 }
278
279 // Reshape weights if needed
280 if(_needs_weights_reshape)
281 {
282 // Reshape the weights
283 _transpose_weights = std::make_unique<kernels::CpuTransposeKernel>();
284 _transpose_weights->configure(weights, &_reshaped_weights);
285 weights_to_use = &_reshaped_weights;
286 _trans_weights_idx = AuxTensorIdx::TransposedWeights;
287 }
288
289 // Convert weights if needed
290 if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
291 {
292 // Convert weights
293 _convert_weights = std::make_unique<CpuConvertFullyConnectedWeights>();
294 _convert_weights->configure(weights_to_use,
295 &_converted_weights,
296 src->tensor_shape(),
297 fc_info.weights_trained_layout);
298
299 weights_to_use = &_converted_weights;
300 _needs_weights_conversion = true;
301 _trans_weights_idx = AuxTensorIdx::ConvertedWeights;
302 }
303
304 if(_is_fc_after_conv)
305 {
306 // Fully Connected layer after a Convolution Layer without batches
307 configure_conv_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
308 }
309 else
310 {
311 // Fully Connected layer after a Fully Connected Layer without batches
312 configure_fc_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
313 }
314
315 // Retain the tensorinfo with the weights to use
316 if(_needs_weights_reshape || _needs_weights_conversion)
317 {
318 _trans_weights = *weights_to_use;
319 }
320
321 // Set auxiliary memory requirements
322 auto gemm_mem_req = (_is_quantized_asymmetric) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
323 for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
324 {
325 _aux_mem[i] = gemm_mem_req[i];
326 }
327
328 if(_aux_mem[Pretranspose].size > 0)
329 {
330 // Release permuted weights at the end of prepare as they are further transposed by the assembly dispatch
331 // Do not release them if biases are dynamic and data type is quantized, since the weights tensor will be used for biases offset calculation
332 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), (_is_quantized_asymmetric && biases
333 && !(biases->are_values_constant())) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare,
334 _reshaped_weights.total_size());
335 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
336 }
337 else
338 {
339 _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), _needs_weights_conversion ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _reshaped_weights.total_size());
340 _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Persistent, _converted_weights.total_size());
341 }
342 _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
343 }
344
has_opt_impl(arm_compute::WeightFormat & expected_weight_format,const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,FullyConnectedLayerInfo fc_info,WeightsInfo weights_info)345 Status CpuFullyConnected::has_opt_impl(arm_compute::WeightFormat &expected_weight_format, const ITensorInfo *src, const ITensorInfo *weights,
346 const ITensorInfo *biases, const ITensorInfo *dst, FullyConnectedLayerInfo fc_info, WeightsInfo weights_info)
347 {
348 GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
349 gemm_info.set_activation_info(fc_info.activation_info);
350 gemm_info.set_fast_math(fc_info.enable_fast_math);
351 gemm_info.set_fixed_format(weights_info.weight_format() != WeightFormat::UNSPECIFIED);
352 gemm_info.set_weight_format(weights_info.weight_format());
353
354 return CpuGemm::has_opt_impl(expected_weight_format, src, weights, biases, dst, gemm_info);
355 }
356
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,FullyConnectedLayerInfo fc_info,const WeightsInfo & weights_info)357 Status CpuFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
358 FullyConnectedLayerInfo fc_info, const WeightsInfo &weights_info)
359 {
360 ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
361 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
362 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
363
364 if (is_fixed_format_fast_math(weights_info.weight_format()))
365 {
366 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(src, DataType::F32);
367 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(weights, DataType::BFLOAT16);
368 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(dst, DataType::F32);
369 }
370 else
371 {
372 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
373 }
374
375 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
376 ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
377 && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
378 ARM_COMPUTE_RETURN_ERROR_ON(!weights->are_values_constant() && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
379
380 bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
381 bool is_fc_after_conv = true;
382
383 const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)));
384 const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
385 const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
386
387 // With the Fully Connected layer we can have 4 different cases:
388 // 1) Convolution layer -> Fully Connected layer without batches
389 // 2) Fully Connected layer -> Fully Connected layer without batches
390 // 3) Convolution layer -> Fully Connected layer with batches
391 // 4) Fully Connected layer -> Fully Connected layer with batches
392
393 const ITensorInfo *src_to_use = src;
394 const ITensorInfo *weights_to_use = weights;
395
396 // Check if we have a fully connected layer with batches
397 const bool is_batched_fc_layer = dst->dimension(1) > 1;
398
399 if(biases != nullptr)
400 {
401 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
402 if(is_data_type_quantized(src->data_type()))
403 {
404 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
405 }
406 else
407 {
408 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
409 }
410 }
411
412 if(is_batched_fc_layer)
413 {
414 is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3, src->tensor_shape().cend(), dst->tensor_shape().cbegin() + 1));
415 }
416 else
417 {
418 is_fc_after_conv = src->num_dimensions() > 1;
419 }
420
421 if(!weights_reshaped)
422 {
423 // Validate reshape weights kernel
424 ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuTransposeKernel::validate(weights, &reshaped_weights));
425 weights_to_use = &reshaped_weights;
426 }
427
428 if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
429 {
430 // Validate convert weights kernel
431 ARM_COMPUTE_RETURN_ON_ERROR(CpuConvertFullyConnectedWeights::validate(weights_to_use,
432 &converted_weights,
433 src->tensor_shape(),
434 fc_info.weights_trained_layout));
435 weights_to_use = &converted_weights;
436 }
437
438 if(is_fc_after_conv)
439 {
440 // Fully Connected layer after a Convolution Layer without batches
441 ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
442
443 // Validate flatten kernel
444 ARM_COMPUTE_RETURN_ON_ERROR(CpuFlatten::validate(src, &flatten_src));
445 src_to_use = &flatten_src;
446 }
447 else
448 {
449 // Fully Connected layer after a Fully Connected Layer without batches
450 ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
451 }
452 // Validate matrix multiply kernel
453 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(src_to_use, weights_to_use, biases, dst, fc_info.activation_info, fc_info.enable_fast_math, weights_info.weight_format()));
454
455 return Status{};
456 }
457
run(ITensorPack & tensors)458 void CpuFullyConnected::run(ITensorPack &tensors)
459 {
460 prepare(tensors);
461
462 auto src = tensors.get_const_tensor(ACL_SRC_0);
463
464 CpuAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
465 CpuAuxTensorHandler transformed_wei(offset_int_vec(_trans_weights_idx), _trans_weights, tensors, false);
466
467 // Linearize src if it comes from a convolutional layer
468 if(_is_fc_after_conv)
469 {
470 ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
471 _flatten->run(flatten_pack);
472 }
473
474 ITensorPack gemm_pack = tensors;
475 gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
476 if(_needs_weights_reshape || _needs_weights_conversion)
477 {
478 gemm_pack.add_const_tensor(ACL_SRC_1, transformed_wei.get());
479 }
480
481 // Run matrix multiply
482 if(_is_quantized_asymmetric)
483 {
484 _mm_gemmlowp->run(gemm_pack);
485 }
486 else
487 {
488 _mm_gemm->run(gemm_pack);
489 }
490 }
491
prepare(ITensorPack & tensors)492 void CpuFullyConnected::prepare(ITensorPack &tensors)
493 {
494 if(!_is_prepared)
495 {
496 auto weights = tensors.get_const_tensor(ACL_SRC_1);
497
498 CpuAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
499 CpuAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
500
501 // Pointer to current weights
502 const ITensor *cur_weights = weights;
503
504 // Reshape of the weights (happens only once)
505 if(_needs_weights_reshape)
506 {
507 // Run reshape weights kernel and mark weights as unused
508 ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
509 NEScheduler::get().schedule_op(_transpose_weights.get(), Window::DimY, _transpose_weights->window(), transpose_pack);
510
511 cur_weights->mark_as_unused();
512 cur_weights = reshaped_weights.get();
513 }
514
515 // Convert weights if needed (happens only once)
516 if(_needs_weights_conversion)
517 {
518 ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
519 _convert_weights->run(convert_pack);
520
521 cur_weights->mark_as_unused();
522 cur_weights = converted_weights.get();
523 }
524
525 ITensorPack gemm_pack = tensors;
526 gemm_pack.add_const_tensor(ACL_SRC_1, cur_weights);
527
528 // Prepare GEMM prepare and release unused weights
529 if(!_is_quantized_asymmetric)
530 {
531 _mm_gemm->prepare(gemm_pack);
532 }
533 else
534 {
535 _mm_gemmlowp->prepare(gemm_pack);
536 }
537
538 _is_prepared = true;
539 }
540 }
541
workspace() const542 experimental::MemoryRequirements CpuFullyConnected::workspace() const
543 {
544 return _aux_mem;
545 }
546 } // namespace cpu
547 } // namespace arm_compute
548