1 /*
2 * Copyright (c) 2021-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/internal/CpuPool2dAssemblyWrapperKernel.h"
25 #include "arm_compute/core/Utils.h"
26 #include "arm_compute/core/Validate.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
29 #include "src/core/CPP/Validate.h"
30 #include "src/core/NEON/INEKernel.h"
31 #include "src/core/helpers/AutoConfiguration.h"
32 #include "src/core/helpers/WindowHelpers.h"
33
34 #include <arm_neon.h>
35
36 namespace arm_compute
37 {
38 namespace cpu
39 {
40 namespace kernels
41 {
42 using namespace arm_compute::misc::shape_calculator;
43
configure(const ITensorInfo * src,ITensorInfo * dst,const PoolingLayerInfo & info,const CPUInfo & cpu_info)44 void CpuPool2dAssemblyWrapperKernel::configure(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
45 {
46 ARM_COMPUTE_UNUSED(cpu_info);
47 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
48
49 // dst initialization if not yet initialized
50 auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, info)));
51
52 #if defined(__aarch64__)
53 const bool requantize = src->quantization_info() != dst->quantization_info();
54
55 switch(src->data_type())
56 {
57 case DataType::QASYMM8:
58 if(requantize)
59 {
60 create_arm_pooling_requant<uint8_t, uint8_t>(src, dst, info, cpu_info);
61 }
62 else
63 {
64 create_arm_pooling<uint8_t, uint8_t>(src, dst, info, cpu_info);
65 }
66 break;
67 case DataType::QASYMM8_SIGNED:
68 if(requantize)
69 {
70 create_arm_pooling_requant<int8_t, int8_t>(src, dst, info, cpu_info);
71 }
72 else
73 {
74 create_arm_pooling<int8_t, int8_t>(src, dst, info, cpu_info);
75 }
76 break;
77 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
78 case DataType::F16:
79 create_arm_pooling<float16_t, float16_t>(src, dst, info, cpu_info);
80 break;
81 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
82 case DataType::F32:
83 create_arm_pooling<float, float>(src, dst, info, cpu_info);
84 break;
85 default:
86 break;
87 }
88 #endif // defined(__aarch64__)
89
90 Window win = calculate_max_window(*dst, Steps());
91 INEKernel::configure(win);
92 }
93
validate(const ITensorInfo * src,const ITensorInfo * dst,const PoolingLayerInfo & info)94 Status CpuPool2dAssemblyWrapperKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info)
95 {
96 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
97
98 #ifndef __aarch64__
99 ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
100 #endif /* __aarch64__ */
101 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
102 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
103 ARM_COMPUTE_RETURN_ERROR_ON_MSG((src->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
104 ARM_COMPUTE_RETURN_ERROR_ON_MSG((info.pool_type != PoolingType::AVG) && (info.pool_type != PoolingType::MAX),
105 "Only AVG and MAX pooling are supported by assembly kernels");
106
107 ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_pool_region_entirely_outside_input(info), "Pooling region that is entirely outside input tensor is unsupported by assembly kernels");
108
109 if(dst->total_size() > 0)
110 {
111 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
112
113 const auto src_qinfo = src->quantization_info().uniform();
114 const auto dst_qinfo = dst->quantization_info().uniform();
115
116 if(src_qinfo != dst_qinfo)
117 {
118 const float multiplier = src_qinfo.scale / dst_qinfo.scale;
119 int32_t dst_multiplier{};
120 int32_t dst_shift{};
121 ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift));
122 }
123 else
124 {
125 if(src->data_type() == DataType::QASYMM8)
126 {
127 const bool has_padding = info.pad_stride_info.has_padding();
128 ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
129 }
130 }
131 }
132 else
133 {
134 if(src->data_type() == DataType::QASYMM8)
135 {
136 // If dst is not configured, the quantization info are the same
137 const bool has_padding = info.pad_stride_info.has_padding();
138 ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
139 }
140 }
141 return Status{};
142 }
143
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)144 void CpuPool2dAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
145 {
146 ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
147 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
148 ARM_COMPUTE_UNUSED(window);
149 ARM_COMPUTE_UNUSED(info);
150
151 ARM_COMPUTE_ERROR_ON(tensors.empty());
152
153 const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC);
154 ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
155 ITensor *workspace = tensors.get_tensor(TensorType::ACL_INT_0);
156
157 const auto in_ptr = src->buffer() + src->info()->offset_first_element_in_bytes();
158 auto out_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes();
159 auto working_space = (workspace == nullptr) ? nullptr : workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
160
161 const auto src_shape = src->info()->tensor_shape();
162 const auto dst_shape = dst->info()->tensor_shape();
163 const auto src_padding = src->info()->padding();
164 const auto dst_padding = dst->info()->padding();
165
166 const size_t ld_src_col = src_shape[0] + src_padding.left + src_padding.right;
167 const size_t ld_src_row = ld_src_col * (src_shape[1] + src_padding.top + src_padding.bottom);
168 const size_t ld_src_batch = ld_src_row * src_shape[2];
169 const size_t ld_dst_col = dst_shape[0] + dst_padding.left + dst_padding.right;
170 const size_t ld_dst_row = ld_dst_col * (dst_shape[1] + dst_padding.top + dst_padding.bottom);
171 const size_t ld_dst_batch = ld_dst_row * dst_shape[2];
172
173 _kernel_asm->execute(in_ptr, ld_src_col, ld_src_row, ld_src_batch,
174 out_ptr, ld_dst_col, ld_dst_row, ld_dst_batch,
175 working_space, info.thread_id, info.num_threads);
176 }
177
get_working_size(unsigned int num_threads) const178 size_t CpuPool2dAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
179 {
180 return _kernel_asm->get_working_size(num_threads);
181 }
182
is_configured() const183 bool CpuPool2dAssemblyWrapperKernel::is_configured() const
184 {
185 return _kernel_asm != nullptr;
186 }
187
188 template <typename Typesrc, typename Typedst>
create_arm_pooling(const ITensorInfo * src,ITensorInfo * dst,const PoolingLayerInfo & info,const CPUInfo & cpu_info)189 void CpuPool2dAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
190 {
191 const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
192
193 arm_conv::pooling::PoolingWindow window{};
194 window.cols = static_cast<unsigned int>(info.pool_size.x());
195 window.rows = static_cast<unsigned int>(info.pool_size.y());
196
197 arm_conv::pooling::PoolingStride stride{};
198 std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
199
200 const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
201
202 constexpr unsigned int idx_width = 1;
203 constexpr unsigned int idx_height = 2;
204 constexpr unsigned int idx_channels = 0;
205 constexpr unsigned int idx_batches = 3;
206
207 const unsigned int n_batches = src->dimension(idx_batches);
208 const unsigned int src_rows = src->dimension(idx_height);
209 const unsigned int src_cols = src->dimension(idx_width);
210 const unsigned int n_channels = src->dimension(idx_channels);
211 const unsigned int dst_rows = dst->dimension(idx_height);
212 const unsigned int dst_cols = dst->dimension(idx_width);
213
214 arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
215
216 // Configure assembly pooling kernel
217 auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst>(args);
218 if(pooling_kernel_asm == nullptr)
219 {
220 // Configuration not supported: Leave function unconfigured:
221 return;
222 }
223
224 _kernel_asm = std::move(pooling_kernel_asm);
225 }
226
227 template <typename Typesrc, typename Typedst>
create_arm_pooling_requant(const ITensorInfo * src,ITensorInfo * dst,const PoolingLayerInfo & info,const CPUInfo & cpu_info)228 void CpuPool2dAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
229 {
230 const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
231
232 arm_conv::pooling::PoolingWindow window{};
233 window.cols = static_cast<unsigned int>(info.pool_size.x());
234 window.rows = static_cast<unsigned int>(info.pool_size.y());
235
236 arm_conv::pooling::PoolingStride stride{};
237 std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
238
239 const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
240
241 constexpr unsigned int idx_width = 1;
242 constexpr unsigned int idx_height = 2;
243 constexpr unsigned int idx_channels = 0;
244 constexpr unsigned int idx_batches = 3;
245
246 const unsigned int n_batches = src->dimension(idx_batches);
247 const unsigned int src_rows = src->dimension(idx_height);
248 const unsigned int src_cols = src->dimension(idx_width);
249 const unsigned int n_channels = src->dimension(idx_channels);
250 const unsigned int dst_rows = dst->dimension(idx_height);
251 const unsigned int dst_cols = dst->dimension(idx_width);
252
253 arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
254
255 const auto src_qinfo = src->quantization_info().uniform();
256 const auto dst_qinfo = dst->quantization_info().uniform();
257
258 const float multiplier = src_qinfo.scale / dst_qinfo.scale;
259 int32_t dst_multiplier{};
260 int32_t dst_shift{};
261 quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift);
262
263 const arm_conv::pooling::Requantize32 requant_args(src_qinfo.offset,
264 dst_qinfo.offset,
265 dst_shift, // left shift
266 0, // right shift
267 dst_multiplier);
268
269 // Configure assembly pooling kernel with requantization
270 auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst, arm_conv::pooling::Requantize32>(args, requant_args);
271 if(pooling_kernel_asm == nullptr)
272 {
273 // Configuration not supported: Leave function unconfigured:
274 return;
275 }
276
277 _kernel_asm = std::move(pooling_kernel_asm);
278 }
279
get_mws(const CPUInfo & platform,size_t thread_count) const280 size_t CpuPool2dAssemblyWrapperKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
281 {
282 ARM_COMPUTE_UNUSED(thread_count);
283 ARM_COMPUTE_UNUSED(platform);
284
285 return ICPPKernel::default_mws;
286 }
287 } // namespace kernels
288 } // namespace cpu
289 } // namespace arm_compute
290