1 /*
2 * Copyright (c) 2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/CpuTransposeKernel.h"
25
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
33 #include "src/core/helpers/AutoConfiguration.h"
34 #include "src/core/helpers/WindowHelpers.h"
35
36 #include <arm_neon.h>
37
38 namespace arm_compute
39 {
40 namespace cpu
41 {
42 namespace kernels
43 {
44 namespace
45 {
num_elems_processed(size_t element_size)46 unsigned int num_elems_processed(size_t element_size)
47 {
48 switch(element_size)
49 {
50 case 1:
51 return 8;
52 case 2:
53 case 4:
54 return 4;
55 default:
56 break;
57 }
58
59 ARM_COMPUTE_ERROR("Element size not supported");
60 }
61
transpose_8bit_elements(const ITensor * in,ITensor * out,const Window & window)62 void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
63 {
64 const int window_step_x = 8;
65 const int window_step_y = 8;
66 const int window_start_x = window.x().start();
67 const int window_end_x = window.x().end();
68 const int window_start_y = window.y().start();
69 const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
70 const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
71 const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
72 const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
73
74 // Check if we need a left-over loop for the y dimension
75 bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
76
77 Window window_in(window);
78 window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
79 if(left_over_loop_y)
80 {
81 // Check if window_end_y_multiple_of is greater than window_start_y
82 if(window_end_y_multiple_of > window_start_y)
83 {
84 window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
85 }
86 else
87 {
88 window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
89 }
90 }
91
92 Window window_out(window);
93 window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
94 window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
95
96 Iterator output(out, window_out);
97
98 // Run the SIMD path if and only if the input is not a row-vector
99 if(in->info()->dimension(1) != 1)
100 {
101 Iterator input(in, window_in);
102 execute_window_loop(window_in, [&](const Coordinates & id)
103 {
104 // Compute 8x8 elements per iteration
105 int x = window_start_x;
106 for(; x <= (window_end_x - window_step_x); x += window_step_x)
107 {
108 const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
109 const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
110 const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
111 const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
112 const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
113 const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
114 const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
115 const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));
116
117 // Transpose 2x2
118 const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
119 const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
120 const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
121 const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);
122
123 // Transpose 4x4
124 const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
125 const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
126 const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
127 const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));
128
129 // Transpose 8x8
130 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
131 const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
132 const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
133 const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));
134
135 // Compute destination address
136 const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
137
138 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
139 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
140 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
141 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
142 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
143 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
144 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
145 vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
146 }
147
148 // Compute left-over elements along the x dimension (1x8)
149 for(; x < window_end_x; ++x)
150 {
151 const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
152 const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
153 const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
154 const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
155 const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
156 const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
157 const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
158 const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);
159
160 uint8x8_t result = vdup_n_u8(0);
161 result = vset_lane_u8(val0, result, 0);
162 result = vset_lane_u8(val1, result, 1);
163 result = vset_lane_u8(val2, result, 2);
164 result = vset_lane_u8(val3, result, 3);
165 result = vset_lane_u8(val4, result, 4);
166 result = vset_lane_u8(val5, result, 5);
167 result = vset_lane_u8(val6, result, 6);
168 result = vset_lane_u8(val7, result, 7);
169
170 // Compute destination address
171 const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
172
173 vst1_u8(output.ptr() + dst_offset_in_bytes, result);
174 }
175 },
176 input, output);
177 }
178
179 if(left_over_loop_y)
180 {
181 window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
182 window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
183
184 Iterator input(in, window_in);
185 Iterator output(out, window_out);
186
187 // Compute left-over elements along the y dimension (1x1)
188 execute_window_loop(window_in, [&](const Coordinates & id)
189 {
190 const uint8_t val0 = *input.ptr();
191
192 // Compute destination address
193 const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;
194
195 *(output.ptr() + dst_offset_in_bytes) = val0;
196 },
197 input, output);
198 }
199 }
200
transpose_16bit_elements(const ITensor * in,ITensor * out,const Window & window)201 void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
202 {
203 const int window_step_x = 4;
204 const int window_step_y = 4;
205 const int window_start_x = window.x().start();
206 const int window_end_x = window.x().end();
207 const int window_start_y = window.y().start();
208 const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
209 const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
210 const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
211 const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
212
213 // Check if we need a left-over loop for the y dimension
214 bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
215
216 Window window_in(window);
217 window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
218 if(left_over_loop_y)
219 {
220 // Check if window_end_y_multiple_of is greater than window_start_y
221 if(window_end_y_multiple_of > window_start_y)
222 {
223 window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
224 }
225 else
226 {
227 window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
228 }
229 }
230
231 Window window_out(window);
232 window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
233 window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
234
235 Iterator output(out, window_out);
236
237 // Run the SIMD path if and only if the input is not a row-vector
238 if(in->info()->dimension(1) != 1)
239 {
240 Iterator input(in, window_in);
241 execute_window_loop(window_in, [&](const Coordinates & id)
242 {
243 // Compute 4x4 elements per iteration
244 int x = window_start_x;
245 for(; x <= (window_end_x - window_step_x); x += window_step_x)
246 {
247 const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
248 const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
249 const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
250 const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
251
252 // Transpose 2x2
253 const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
254 const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);
255
256 // Transpose 4x4
257 const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
258 const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));
259
260 // Compute destination address
261 const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
262
263 vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
264 vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
265 vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
266 vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
267 }
268
269 // Compute left-over elements (1x4)
270 for(; x < window_end_x; ++x)
271 {
272 const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
273 const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
274 const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
275 const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
276
277 uint16x4_t result = vdup_n_u16(0);
278 result = vset_lane_u16(val0, result, 0);
279 result = vset_lane_u16(val1, result, 1);
280 result = vset_lane_u16(val2, result, 2);
281 result = vset_lane_u16(val3, result, 3);
282
283 // Compute destination address
284 const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
285
286 vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
287 }
288 },
289 input, output);
290 }
291
292 if(left_over_loop_y)
293 {
294 window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
295 window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
296
297 Iterator input(in, window_in);
298 Iterator output(out, window_out);
299
300 // Compute left-over elements along the y dimension (1x1)
301 execute_window_loop(window_in, [&](const Coordinates & id)
302 {
303 const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));
304
305 // Compute destination address
306 const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;
307
308 *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
309 },
310 input, output);
311 }
312 }
313
transpose_32bit_elements(const ITensor * in,ITensor * out,const Window & window)314 void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
315 {
316 const int window_step_x = 4;
317 const int window_step_y = 4;
318 const int window_start_x = window.x().start();
319 const int window_end_x = window.x().end();
320 const int window_start_y = window.y().start();
321 const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
322 const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
323 const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
324 const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
325
326 // Check if we need a left-over loop for the y dimension
327 bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
328
329 Window window_in(window);
330 window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
331 if(left_over_loop_y)
332 {
333 // Check if window_end_y_multiple_of is greater than window_start_y
334 if(window_end_y_multiple_of > window_start_y)
335 {
336 window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
337 }
338 else
339 {
340 window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
341 }
342 }
343
344 Window window_out(window);
345 window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
346 window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
347
348 Iterator output(out, window_out);
349
350 // Run the SIMD path if and only if the input is not a row-vector
351 if(in->info()->dimension(1) != 1)
352 {
353 Iterator input(in, window_in);
354 execute_window_loop(window_in, [&](const Coordinates & id)
355 {
356 // Compute 4x4 elements per iteration
357 int x = window_start_x;
358 for(; x <= (window_end_x - window_step_x); x += window_step_x)
359 {
360 const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
361 const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
362 const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
363 const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
364
365 // Transpose 2x2
366 const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
367 const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
368 const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
369 const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));
370
371 // Compute destination address
372 const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
373
374 // Swap block 01 with block 10 and store
375 vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
376 vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
377 vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
378 vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
379 }
380
381 // Compute left-over elements (1x4)
382 for(; x < window_end_x; ++x)
383 {
384 const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
385 const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
386 const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
387 const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
388
389 uint32x4_t result = vdupq_n_u32(0);
390 result = vsetq_lane_u32(val0, result, 0);
391 result = vsetq_lane_u32(val1, result, 1);
392 result = vsetq_lane_u32(val2, result, 2);
393 result = vsetq_lane_u32(val3, result, 3);
394
395 // Compute destination address
396 const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
397
398 vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
399 }
400 },
401 input, output);
402 }
403
404 if(left_over_loop_y)
405 {
406 window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
407 window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
408
409 Iterator input(in, window_in);
410 Iterator output(out, window_out);
411
412 // Compute left-over elements along the y dimension (1x1)
413 execute_window_loop(window_in, [&](const Coordinates & id)
414 {
415 const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));
416
417 // Compute destination address
418 const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;
419
420 *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
421 },
422 input, output);
423 }
424 }
425 } // namespace
426
configure(const ITensorInfo * src,ITensorInfo * dst)427 void CpuTransposeKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
428 {
429 ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
430
431 // Destination auto inizialitation if not yet initialized
432 const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);
433 auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape));
434
435 // Perform validation step
436 ARM_COMPUTE_ERROR_THROW_ON(validate(src, dst));
437
438 // Note: This kernel performs 16 elements per iteration.
439 // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
440 // For this reason num_elems_processed_per_iteration_x is set to 1
441 const unsigned int num_elems_processed_per_iteration_x = 1;
442 const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size());
443
444 // Configure kernel window
445 Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
446
447 // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped
448 Coordinates coord;
449 coord.set_num_dimensions(dst->num_dimensions());
450 dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
451
452 ICpuKernel::configure(win);
453 }
454
validate(const ITensorInfo * src,const ITensorInfo * dst)455 Status CpuTransposeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
456 {
457 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src);
458 //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
459 ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
460
461 // Error if input is not 8 bit, 16bit or 32bit
462 ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4,
463 "Element size not supported");
464
465 // Validate configured destination
466 if(dst->total_size() != 0)
467 {
468 const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);
469
470 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape);
471 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst);
472 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
473 }
474
475 return Status{};
476 }
477
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)478 void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
479 {
480 ARM_COMPUTE_UNUSED(info);
481 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
482 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
483
484 const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
485 auto dst = tensors.get_tensor(TensorType::ACL_DST);
486
487 switch(src->info()->element_size())
488 {
489 case 1:
490 transpose_8bit_elements(src, dst, window);
491 break;
492 case 2:
493 transpose_16bit_elements(src, dst, window);
494 break;
495 case 4:
496 transpose_32bit_elements(src, dst, window);
497 break;
498 default:
499 ARM_COMPUTE_ERROR("Element size not supported");
500 break;
501 }
502 }
503
name() const504 const char *CpuTransposeKernel::name() const
505 {
506 return "CpuTransposeKernel";
507 }
508 } // namespace kernels
509 } // namespace cpu
510 } // namespace arm_compute
511