xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuQuantizeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuQuantizeKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Utils.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/Window.h"
31 #include "src/core/NEON/NEAsymm.h"
32 #include "src/core/NEON/NEMath.h"
33 #include "src/core/NEON/wrapper/wrapper.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/core/helpers/WindowHelpers.h"
36 
37 #include "src/core/CPP/Validate.h"
38 
39 #include <arm_neon.h>
40 #include <map>
41 
42 namespace arm_compute
43 {
44 namespace cpu
45 {
46 namespace kernels
47 {
48 namespace
49 {
50 constexpr auto window_step = 16;
51 
validate_arguments(const ITensorInfo * src,const ITensorInfo * dst)52 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst)
53 {
54     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
55     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
56     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
57     ARM_COMPUTE_RETURN_ERROR_ON(dst->tensor_shape().total_size() == 0);
58     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QSYMM8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QASYMM16);
59     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
60 
61     return Status{};
62 }
63 
64 template <typename T>
load_value(const T * input_ptr)65 inline float32x4x4_t load_value(const T *input_ptr)
66 {
67     using Tx16_t = typename wrapper::traits::neon_vector<T, 16>::type;
68     return arm_compute::convert_to_float32x4x4<Tx16_t>(wrapper::vloadq(input_ptr));
69 }
70 
71 template <>
load_value(const float * input_ptr)72 inline float32x4x4_t load_value(const float *input_ptr)
73 {
74     return { wrapper::vloadq(input_ptr),
75              wrapper::vloadq(input_ptr + 4),
76              wrapper::vloadq(input_ptr + 8),
77              wrapper::vloadq(input_ptr + 12) };
78 }
79 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
80 template <>
load_value(const float16_t * input_ptr)81 inline float32x4x4_t load_value(const float16_t *input_ptr)
82 {
83     return { vcvt_f32_f16(wrapper::vload(input_ptr)),
84              vcvt_f32_f16(wrapper::vload(input_ptr + 4)),
85              vcvt_f32_f16(wrapper::vload(input_ptr + 8)),
86              vcvt_f32_f16(wrapper::vload(input_ptr + 12)) };
87 }
88 
89 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
90 
91 template <typename element_type>
92 using vector_type = wrapper::traits::neon_vector_t<element_type, window_step>;
93 
94 template <typename quantized_type>
95 vector_type<quantized_type> vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi);
96 
97 template <>
vquantize_qasymm8(const float32x4x4_t & qv,const UniformQuantizationInfo & qi)98 vector_type<uint8_t> vquantize_qasymm8<uint8_t>(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
99 {
100     return vquantize(qv, qi);
101 }
102 
103 template <>
vquantize_qasymm8(const float32x4x4_t & qv,const UniformQuantizationInfo & qi)104 vector_type<int8_t> vquantize_qasymm8<int8_t>(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
105 {
106     return vquantize_signed(qv, qi);
107 }
108 
109 } // namespace
110 
configure(const ITensorInfo * src,ITensorInfo * dst)111 void CpuQuantizeKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
112 {
113     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
114     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst));
115 
116     static const std::map<std::string, QuantizeFunctionExecutorPtr> quant_map =
117     {
118         { "op_QASYMM8_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8<uint8_t, uint8_t> },
119         { "op_QASYMM8_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8<uint8_t, int8_t> },
120         { "op_QASYMM8_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16<uint8_t> },
121 
122         { "op_QASYMM8_SIGNED_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8<int8_t, uint8_t> },
123         { "op_QASYMM8_SIGNED_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8<int8_t, int8_t> },
124         { "op_QASYMM8_SIGNED_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16<int8_t> },
125 
126         { "op_F32_QSYMM8", &CpuQuantizeKernel::run_quantize_qsymm8<float, int8_t> },
127 
128         { "op_F32_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8<float, uint8_t> },
129         { "op_F32_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8<float, int8_t> },
130         { "op_F32_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16<float> },
131 
132 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
133         { "op_F16_QASYMM8", &CpuQuantizeKernel::run_quantize_qasymm8<float16_t, uint8_t> },
134         { "op_F16_QASYMM8_SIGNED", &CpuQuantizeKernel::run_quantize_qasymm8<float16_t, int8_t> },
135         { "op_F16_QASYMM16", &CpuQuantizeKernel::run_quantize_qasymm16<float16_t> },
136 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
137     };
138 
139     std::string function_to_call("op_");
140     function_to_call += string_from_data_type(src->data_type()) + "_";
141     function_to_call += string_from_data_type(dst->data_type());
142 
143     auto it = quant_map.find(function_to_call);
144 
145     if(it == quant_map.end())
146     {
147         ARM_COMPUTE_ERROR("Unsupported combination of input and output data types");
148     }
149     _func = it->second;
150 
151     // Configure kernel window
152     Window win_config = calculate_max_window(*src, Steps());
153     ICpuKernel::configure(win_config);
154 }
155 
validate(const ITensorInfo * src,const ITensorInfo * dst)156 Status CpuQuantizeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
157 {
158     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst));
159     return Status{};
160 }
161 
162 template <typename TIn, typename TOut>
run_quantize_qsymm8(const ITensor * src,ITensor * dst,const Window & window)163 void CpuQuantizeKernel::run_quantize_qsymm8(const ITensor *src, ITensor *dst, const Window &window)
164 {
165     const auto window_start_x = static_cast<int>(window.x().start());
166     const auto window_end_x   = static_cast<int>(window.x().end());
167 
168     const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform();
169     UniformQuantizationInfo       uqinfo    = dst->info()->quantization_info().uniform();
170     if(is_data_type_quantized_asymmetric(src->info()->data_type()))
171     {
172         uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo);
173     }
174     // Collapse window and reset first dimension to handle tail calculations manually
175     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
176     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
177 
178     Iterator input(src, win_collapsed);
179     Iterator output(dst, win_collapsed);
180     execute_window_loop(win_collapsed, [&](const Coordinates &)
181     {
182         auto input_ptr  = reinterpret_cast<const TIn *>(input.ptr());
183         auto output_ptr = reinterpret_cast<TOut *>(output.ptr());
184         int x = window_start_x;
185         for(; x <= (window_end_x - window_step); x += window_step)
186         {
187             wrapper::vstore(&output_ptr[x], vquantize_qasymm8<TOut>(load_value(&input_ptr[x]), uqinfo));
188         }
189         // Compute left-over elements
190         for(; x < window_end_x; ++x)
191         {
192             output_ptr[x] = quantize_qsymm8(input_ptr[x], dst->info()->quantization_info());
193         }
194     },
195     input, output);
196 }
197 
198 template <typename TIn, typename TOut>
run_quantize_qasymm8(const ITensor * src,ITensor * dst,const Window & window)199 void CpuQuantizeKernel::run_quantize_qasymm8(const ITensor *src, ITensor *dst, const Window &window)
200 {
201     const auto window_start_x = static_cast<int>(window.x().start());
202     const auto window_end_x   = static_cast<int>(window.x().end());
203 
204     const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform();
205     UniformQuantizationInfo       uqinfo    = dst->info()->quantization_info().uniform();
206     if(is_data_type_quantized_asymmetric(src->info()->data_type()))
207     {
208         uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo);
209     }
210 #ifdef __aarch64__
211     constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN;
212 #else  //__aarch64__
213     constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO;
214 #endif //__aarch64__
215 
216     // Collapse window and reset first dimension to handle tail calculations manually
217     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
218     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
219 
220     Iterator input(src, win_collapsed);
221     Iterator output(dst, win_collapsed);
222     execute_window_loop(win_collapsed, [&](const Coordinates &)
223     {
224         auto input_ptr  = reinterpret_cast<const TIn *>(input.ptr());
225         auto output_ptr = reinterpret_cast<TOut *>(output.ptr());
226 
227         int x = window_start_x;
228         for(; x <= (window_end_x - window_step); x += window_step)
229         {
230             wrapper::vstore(&output_ptr[x], vquantize_qasymm8<TOut>(load_value(&input_ptr[x]), uqinfo));
231         }
232         // Compute left-over elements
233         for(; x < window_end_x; ++x)
234         {
235             output_ptr[x] = Qasymm8QuantizationHelper<TOut>::quantize(input_ptr[x], uqinfo, rounding_policy);
236         }
237     },
238     input, output);
239 }
240 
241 template <typename T>
run_quantize_qasymm16(const ITensor * src,ITensor * dst,const Window & window)242 void CpuQuantizeKernel::run_quantize_qasymm16(const ITensor *src, ITensor *dst, const Window &window)
243 {
244     const auto window_start_x = static_cast<int>(window.x().start());
245     const auto window_end_x   = static_cast<int>(window.x().end());
246 
247     const UniformQuantizationInfo uqinfo_in = src->info()->quantization_info().uniform();
248     UniformQuantizationInfo       uqinfo    = dst->info()->quantization_info().uniform();
249     if(is_data_type_quantized_asymmetric(src->info()->data_type()))
250     {
251         uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo);
252     }
253 #ifdef __aarch64__
254     constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN;
255 #else  //__aarch64__
256     constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO;
257 #endif //__aarch64__
258 
259     // Collapse window and reset first dimension to handle tail calculations manually
260     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
261     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
262 
263     Iterator input(src, win_collapsed);
264     Iterator output(dst, win_collapsed);
265     execute_window_loop(win_collapsed, [&](const Coordinates &)
266     {
267         auto input_ptr  = reinterpret_cast<const T *>(input.ptr());
268         auto output_ptr = reinterpret_cast<uint16_t *>(output.ptr());
269 
270         int x = window_start_x;
271         for(; x <= (window_end_x - window_step); x += window_step)
272         {
273             uint16x8x2_t tmp = vquantize_qasymm16(load_value(&input_ptr[x]), uqinfo);
274             vst1q_u16(&output_ptr[x], tmp.val[0]);
275             vst1q_u16(&output_ptr[x + 8], tmp.val[1]);
276         }
277         // Compute left-over elements
278         for(; x < window_end_x; ++x)
279         {
280             output_ptr[x] = quantize_qasymm16(input_ptr[x], uqinfo, rounding_policy);
281         }
282     },
283     input, output);
284 }
285 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)286 void CpuQuantizeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
287 {
288     ARM_COMPUTE_UNUSED(info);
289     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
290     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
291     ARM_COMPUTE_ERROR_ON(_func == nullptr);
292 
293     const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
294     auto       dst = tensors.get_tensor(TensorType::ACL_DST);
295     (this->*_func)(src, dst, window);
296 }
297 
name() const298 const char *CpuQuantizeKernel::name() const
299 {
300     return "CpuQuantizeKernel";
301 }
302 } // namespace kernels
303 } // namespace cpu
304 } // namespace arm_compute
305