xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuPool2dKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuPool2dKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/Window.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "src/core/AccessWindowStatic.h"
32 #include "src/core/CPP/Validate.h"
33 #include "src/core/NEON/NEAsymm.h"
34 #include "src/core/NEON/NEFixedPoint.h"
35 #include "src/core/NEON/NEMath.h"
36 #include "src/core/common/Registrars.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 #include "src/cpu/kernels/pool2d/neon/list.h"
40 #include "support/ToolchainSupport.h"
41 
42 #include "src/core/NEON/wrapper/wrapper.h"
43 #include <arm_neon.h>
44 
45 namespace arm_compute
46 {
47 namespace cpu
48 {
49 namespace kernels
50 {
51 namespace
52 {
53 using namespace misc::shape_calculator;
54 
55 static const std::vector<CpuPool2dKernel::PoolingKernel> available_kernels =
56 {
57     {
58         "neon_qu8_nhwc_poolMxN",
__anonac3f3cc30202() 59         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::QASYMM8)); },
60         REGISTER_QASYMM8_NEON(arm_compute::cpu::poolingMxN_qasymm8_neon_nhwc)
61     },
62     {
63         "neon_qs8_nhwc_poolMxN",
__anonac3f3cc30302() 64         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::QASYMM8_SIGNED)); },
65         REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::poolingMxN_qasymm8_signed_neon_nhwc)
66     },
67     {
68         "neon_f16_nhwc_poolMxN",
__anonac3f3cc30402() 69         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::F16)) && data.isa.fp16; },
70         REGISTER_FP16_NEON(arm_compute::cpu::poolingMxN_fp16_neon_nhwc)
71     },
72     {
73         "neon_fp32_nhwc_poolMxN",
__anonac3f3cc30502() 74         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NHWC) && (data.dt == DataType::F32)); },
75         REGISTER_FP32_NEON(arm_compute::cpu::poolingMxN_fp32_neon_nhwc)
76     },
77 #if defined(ENABLE_NCHW_KERNELS)
78     {
79         "neon_qu8_nchw_pool2",
__anonac3f3cc30602() 80         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2) && (data.pool_stride_x < 3)); },
81         REGISTER_QASYMM8_NEON(arm_compute::cpu::pooling2_quantized_neon_nchw<uint8_t>)
82     },
83     {
84         "neon_qu8_nchw_pool3",
__anonac3f3cc30702() 85         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3) && (data.pool_stride_x < 3)); },
86         REGISTER_QASYMM8_NEON(arm_compute::cpu::pooling3_quantized_neon_nchw<uint8_t>)
87     },
88     {
89         "neon_qu8_nchw_poolMxN",
__anonac3f3cc30802() 90         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8)); },
91         REGISTER_QASYMM8_NEON(arm_compute::cpu::poolingMxN_quantized_neon_nchw<uint8_t>)
92     },
93     {
94         "neon_qs8_nchw_pool2",
__anonac3f3cc30902() 95         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2) && (data.pool_stride_x < 3)); },
96         REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::pooling2_quantized_neon_nchw<int8_t>)
97     },
98     {
99         "neon_qs8_nchw_pool3",
__anonac3f3cc30a02() 100         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3) && (data.pool_stride_x < 3)); },
101         REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::pooling3_quantized_neon_nchw<int8_t>)
102     },
103     {
104         "neon_qs8_nchw_poolMxN",
__anonac3f3cc30b02() 105         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::QASYMM8_SIGNED)); },
106         REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::poolingMxN_quantized_neon_nchw<int8_t>)
107     },
108     {
109         "neon_fp16_nchw_pool2",
__anonac3f3cc30c02() 110         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2)); },
111         REGISTER_FP16_NEON(arm_compute::cpu::pooling2_fp16_neon_nchw)
112     },
113     {
114         "neon_fp16_nchw_pool3",
__anonac3f3cc30d02() 115         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3)); },
116         REGISTER_FP16_NEON(arm_compute::cpu::pooling3_fp16_neon_nchw)
117     },
118     {
119         "neon_fp16_nchw_poolMxN",
__anonac3f3cc30e02() 120         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F16 && data.isa.fp16)); },
121         REGISTER_FP16_NEON(arm_compute::cpu::poolingMxN_fp16_neon_nchw)
122     },
123     {
124         "neon_fp32_nchw_pool2",
__anonac3f3cc30f02() 125         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 2)); },
126         REGISTER_FP32_NEON(arm_compute::cpu::pooling2_fp32_neon_nchw)
127     },
128     {
129         "neon_fp32_nchw_pool3",
__anonac3f3cc31002() 130         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 3)); },
131         REGISTER_FP32_NEON(arm_compute::cpu::pooling3_fp32_neon_nchw)
132     },
133     {
134         "neon_fp32_nchw_pool7",
__anonac3f3cc31102() 135         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32) && (data.pool_size.x() == data.pool_size.y()) && (data.pool_size.x() == 7)); },
136         REGISTER_FP32_NEON(arm_compute::cpu::pooling7_fp32_neon_nchw)
137     },
138     {
139         "neon_fp32_nchw_poolMxN",
__anonac3f3cc31202() 140         [](const PoolDataTypeISASelectorData & data) { return ((data.dl == DataLayout::NCHW) && (data.dt == DataType::F32)); },
141         REGISTER_FP32_NEON(arm_compute::cpu::poolingMxN_fp32_neon_nchw)
142     },
143 #endif /* defined(ENABLE_NCHW_KERNELS) */
144 };
145 
validate_arguments(const ITensorInfo * src,const ITensorInfo * dst,const PoolingLayerInfo & pool_info,const ITensorInfo * indices,Size2D pool_size)146 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info,
147                           const ITensorInfo *indices, Size2D pool_size)
148 {
149     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
150     ARM_COMPUTE_RETURN_ERROR_ON(pool_size.x() == 0);
151     ARM_COMPUTE_RETURN_ERROR_ON(pool_size.y() == 0);
152 
153     int                 pool_stride_x   = 0;
154     int                 pool_stride_y   = 0;
155     int                 output_width    = 0;
156     int                 output_height   = 0;
157     PoolingType         pool_type       = pool_info.pool_type;
158     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
159     const auto          data_layout     = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
160     const int           idx_width       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
161     const int           idx_height      = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
162 
163     ARM_COMPUTE_RETURN_ERROR_ON_MSG((!is_data_type_float(src->data_type()))
164                                     && (is_pool_region_entirely_outside_input(pool_info)),
165                                     "Pooling region that is entirely outside input tensor is unsupported for non-float types");
166 
167     std::tie(output_width, output_height) = scaled_dimensions_signed(src->tensor_shape()[idx_width], src->tensor_shape()[idx_height],
168                                                                      pool_size.x(), pool_size.y(), pool_info.pad_stride_info);
169     ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_width < 1 || output_height < 1), "Calculated output dimension size is invalid");
170 
171     TensorInfo out_info(TensorInfo(compute_pool_shape(*src, pool_info), 1, dst->data_type()));
172     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
173 
174     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
175     if(indices)
176     {
177         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32, DataType::F16);
178         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::U32);
179         ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_type != PoolingType::MAX, "Pooling indices only supported for MAX pooling method");
180     }
181     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
182     ARM_COMPUTE_RETURN_ERROR_ON(pool_type == PoolingType::L2 && is_data_type_quantized(src->data_type()));
183     ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(src->data_type()) && !pool_info.exclude_padding && (pool_info.pool_type == PoolingType::AVG) && pool_info.pad_stride_info.has_padding()
184                                     && (src->data_layout() == DataLayout::NHWC),
185                                     "exclude_padding equal false is not supported for AVG Pooling with padding on quantized types");
186 
187     if(dst->total_size() != 0)
188     {
189         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
190         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, dst);
191         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &out_info);
192         if(indices)
193         {
194             ARM_COMPUTE_RETURN_ERROR_ON_MSG((pool_size != Size2D(2, 2)), "Pooling indices only supported for pool size 2x2");
195             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(indices, &out_info);
196         }
197     }
198 
199     const auto *uk = CpuPool2dKernel::get_implementation(PoolDataTypeISASelectorData{ src->data_type(), src->data_layout(), pool_stride_x, pool_size, CPUInfo::get().get_isa() });
200     ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
201 
202     return Status{};
203 }
204 
validate_and_configure_window(ITensorInfo * src,ITensorInfo * dst,ITensorInfo * indices,const PoolingLayerInfo & pool_info,unsigned int & num_elems_processed_per_iteration,int pool_size_x,int pool_size_y)205 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, const PoolingLayerInfo &pool_info,
206                                                         unsigned int &num_elems_processed_per_iteration,
207                                                         int pool_size_x, int pool_size_y)
208 {
209     // dst auto inizialitation if not yet initialized
210     auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, pool_info)));
211     if(indices)
212     {
213         // Indices auto inizialitation if not yet initialized
214         auto_init_if_empty(*indices, (src->clone()->set_tensor_shape(compute_pool_shape(*src,
215                                                                                         pool_info)))
216                            .set_data_type(DataType::U32) /* we store the offset to the element */);
217     }
218     const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
219 
220     int                 pool_stride_x   = 0;
221     int                 pool_stride_y   = 0;
222     const int           idx_width       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
223     const int           idx_height      = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
224     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
225 
226     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
227     const bool         is_square = pool_size_x == pool_size_y;
228     const unsigned int pooled_w  = dst->dimension(idx_width);
229     const unsigned int pooled_h  = dst->dimension(idx_height);
230 
231     //If it's not squared and optimized will be executed the MxN
232     num_elems_processed_per_iteration = 1;
233 
234     if(is_square)
235     {
236         switch(src->data_type())
237         {
238             case DataType::QASYMM8:
239             case DataType::QASYMM8_SIGNED:
240                 switch(pool_size_x)
241                 {
242                     case 2:
243                         num_elems_processed_per_iteration = (pool_stride_x == 2) ? 8 : 15;
244                         break;
245                     case 3:
246                         num_elems_processed_per_iteration = (pool_stride_x == 2) ? 7 : 14;
247                         break;
248                     default:
249                         break;
250                 }
251                 break;
252 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
253             case DataType::F16:
254                 num_elems_processed_per_iteration = 1;
255                 break;
256 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
257             case DataType::F32:
258                 num_elems_processed_per_iteration = 1;
259                 break;
260             default:
261                 ARM_COMPUTE_ERROR("Element size not supported");
262                 break;
263         }
264     }
265 
266     bool   window_changed = false;
267     Window win{};
268     // Upper limit for the number of right/bottom border elements that are accessed
269     TensorShape dst_shape{ src->tensor_shape() };
270     dst_shape.set(0, pooled_w);
271     dst_shape.set(1, pooled_h);
272     TensorInfo dst_info(src->clone()->set_tensor_shape(dst_shape));
273     win = calculate_max_window(dst_info, Steps(num_elems_processed_per_iteration));
274 
275     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
276     return std::make_pair(err, win);
277 }
278 } // namespace
279 
configure(ITensorInfo * src,ITensorInfo * dst,const PoolingLayerInfo & pool_info,ITensorInfo * indices)280 void CpuPool2dKernel::configure(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
281 {
282     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
283     const PadStrideInfo pad_stride_info   = pool_info.pad_stride_info;
284     const bool          is_global_pooling = pool_info.is_global_pooling;
285 
286     // Get data layout
287     const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
288     const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
289     const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
290 
291     // Update pool size in case of global pooling
292     const Size2D pool_size(
293         is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width,
294         is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height);
295 
296     // Perform validation step
297     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices, pool_size));
298 
299     const auto *uk = CpuPool2dKernel::get_implementation(PoolDataTypeISASelectorData{ src->data_type(), src->data_layout(), (int)pad_stride_info.stride().first, pool_size, CPUInfo::get().get_isa() });
300     ARM_COMPUTE_ERROR_ON(uk == nullptr);
301 
302     // Set instance variables
303     _pool_info     = pool_info;
304     _data_layout   = src->data_layout();
305     _pool_size     = pool_size;
306     _pool_stride_x = pad_stride_info.stride().first;
307     _run_method    = uk->ukernel;
308     _name          = std::string("CpuPool2dKernel").append("/").append(uk->name);
309 
310     if(_data_layout == DataLayout::NHWC)
311     {
312         // Configure kernel window
313         Window win = calculate_max_window(*dst, Steps());
314         ICpuKernel::configure(win);
315     }
316     else
317     {
318         // Configure kernel window
319         auto win_config = validate_and_configure_window(src, dst, indices, pool_info, _num_elems_processed_per_iteration,
320                                                         pool_size.x(), pool_size.y());
321         ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
322         ICpuKernel::configure(win_config.second);
323     }
324 }
325 
validate(const ITensorInfo * src,const ITensorInfo * dst,const PoolingLayerInfo & pool_info,const ITensorInfo * indices)326 Status CpuPool2dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
327 {
328     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src);
329 
330     unsigned int num_elems_processed_per_iteration = 0;
331 
332     const bool is_global_pooling = pool_info.is_global_pooling;
333 
334     // Get data layout
335     const auto data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
336     const int  idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
337     const int  idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
338 
339     unsigned int pool_size_x = is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
340     unsigned int pool_size_y = is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
341 
342     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices, Size2D(pool_size_x, pool_size_y)));
343     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(), dst->clone().get(),
344                                                               (indices) ? indices->clone().get() : nullptr, pool_info, num_elems_processed_per_iteration,
345                                                               pool_size_x, pool_size_y)
346                                 .first);
347 
348     return Status{};
349 }
350 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)351 void CpuPool2dKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
352 {
353     ARM_COMPUTE_UNUSED(info);
354     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
355     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
356     ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
357 
358     const ITensor *src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
359     ITensor       *dst     = tensors.get_tensor(TensorType::ACL_DST_0);
360     ITensor       *indices = tensors.get_tensor(TensorType::ACL_DST_1);
361 
362     const unsigned int pool_stride_x = _pool_info.pad_stride_info.stride().first;
363     const unsigned int pool_stride_y = _pool_info.pad_stride_info.stride().second;
364     const unsigned int pool_size     = _pool_info.pool_size.width;
365 
366     Window window_src(window);
367     if(_data_layout == DataLayout::NCHW)
368     {
369         // Set step for src in x and y direction for the src
370         unsigned int window_x_inc = 0;
371         switch(src->info()->data_type())
372         {
373             case DataType::QASYMM8:
374             case DataType::QASYMM8_SIGNED:
375             {
376                 window_x_inc = pool_stride_x;
377                 if((pool_size == 2 || pool_size == 3) && pool_stride_x < 3)
378                 {
379                     window_x_inc = (pool_stride_x == 2) ? _num_elems_processed_per_iteration * 2 : _num_elems_processed_per_iteration;
380                 }
381                 break;
382             }
383 
384             case DataType::F16:
385             case DataType::F32:
386             {
387                 window_x_inc = pool_stride_x;
388                 break;
389             }
390             default:
391             {
392                 ARM_COMPUTE_ERROR("Not supported");
393             }
394         }
395         window_src.set(Window::DimX, Window::Dimension(window.x().start() * pool_stride_x, window.x().end() * pool_stride_x, window_x_inc));
396         window_src.set(Window::DimY, Window::Dimension(window.y().start() * pool_stride_y, window.y().end() * pool_stride_y, pool_stride_y));
397     }
398     else
399     {
400         window_src.set(Window::DimX, Window::Dimension(0, 1, 1));
401         window_src.set(Window::DimY, Window::Dimension(0, src->info()->dimension(1), pool_stride_x));
402         window_src.set(Window::DimZ, Window::Dimension(0, src->info()->dimension(2), pool_stride_y));
403     }
404     _run_method(src, dst, indices, _pool_info, window_src, window);
405 }
406 
name() const407 const char *CpuPool2dKernel::name() const
408 {
409     return _name.c_str();
410 }
411 
get_available_kernels()412 const std::vector<CpuPool2dKernel::PoolingKernel> &CpuPool2dKernel::get_available_kernels()
413 {
414     return available_kernels;
415 }
416 
417 } // namespace kernels
418 } // namespace cpu
419 } // namespace arm_compute
420