1 /*
2 * Copyright (c) 2018-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/cpu/kernels/CpuElementwiseKernel.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "src/core/CPP/Validate.h"
28 #include "src/core/common/Registrars.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 #include "src/core/helpers/WindowHelpers.h"
31 #include "src/cpu/kernels/elementwise_binary/list.h"
32
33 #include <arm_neon.h>
34
35 #if defined(ENABLE_FP32_KERNELS)
36 namespace
37 {
38 static constexpr size_t default_min_max_mws_N1_fp32_neon = 25308;
39 static constexpr size_t default_min_max_mws_V1_fp32_neon = 34772;
40 static constexpr size_t default_div_mws_N1_fp32_neon = 19043;
41 static constexpr size_t default_div_mws_V1_fp32_neon = 25511;
42 }
43 #endif /* ENABLE_FP32_KERNELS */
44
45 namespace arm_compute
46 {
47 namespace cpu
48 {
49 namespace kernels
50 {
51 namespace
52 {
53 template <ArithmeticOperation op>
54 const std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> available_kernels_arithmetic =
55 {
56 {
57 "sve2_qu8_arithmetic",
58 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50302() 59 {
60 return data.dt == DataType::QASYMM8 && data.isa.sve2 && static_cast<ArithmeticOperation>(data.op) == op;
61 },
62 REGISTER_QASYMM8_SVE2(sve2_qasymm8_elementwise_binary<op>)
63 },
64 {
65 "sve2_qs8_arithmetic",
66 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50402() 67 {
68 return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2 && static_cast<ArithmeticOperation>(data.op) == op;
69 },
70 REGISTER_QASYMM8_SIGNED_SVE2(sve2_qasymm8_signed_elementwise_binary<op>)
71 },
72 {
73 "sve_fp32_arithmetic",
74 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50502() 75 {
76 return data.dt == DataType::F32 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op;
77 },
78 REGISTER_FP32_SVE(sve_fp32_elementwise_binary<op>)
79 },
80 {
81 "sve_s32_arithmetic",
82 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50602() 83 {
84 return data.dt == DataType::S32 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op;
85 },
86 REGISTER_INTEGER_SVE(sve_s32_elementwise_binary<op>)
87 },
88 {
89 "sve_s16_arithmetic",
90 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50702() 91 {
92 return data.dt == DataType::S16 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op;
93 },
94 REGISTER_INTEGER_SVE(sve_s16_elementwise_binary<op>)
95 },
96 {
97 "sve_fp16_arithmetic",
98 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50802() 99 {
100 return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 && static_cast<ArithmeticOperation>(data.op) == op;
101 },
102 REGISTER_FP16_SVE(sve_fp16_elementwise_binary<op>)
103 },
104 {
105 "neon_fp32_arithmetic",
106
107 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50902() 108 {
109 return data.dt == DataType::F32 && static_cast<ArithmeticOperation>(data.op) == op;
110 },
111 REGISTER_FP32_NEON(neon_fp32_elementwise_binary<op>)
112 },
113 {
114 "neon_s32_arithmetic",
115 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50a02() 116 {
117 return data.dt == DataType::S32 && static_cast<ArithmeticOperation>(data.op) == op;
118 },
119 REGISTER_INTEGER_NEON(neon_s32_elementwise_binary<op>)
120 },
121 {
122 "neon_fp16_arithmetic",
123 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50b02() 124 {
125 return data.dt == DataType::F16 && data.isa.fp16 && static_cast<ArithmeticOperation>(data.op) == op;
126 },
127 REGISTER_FP16_NEON(neon_fp16_elementwise_binary<op>)
128 },
129 {
130 "neon_s16_arithmetic",
131 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50c02() 132 {
133 return data.dt == DataType::S16 && static_cast<ArithmeticOperation>(data.op) == op;
134 },
135 REGISTER_INTEGER_NEON(neon_s16_elementwise_binary<op>)
136 },
137 {
138 "neon_qu8_arithmetic",
139 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50d02() 140 {
141 return data.dt == DataType::QASYMM8 && static_cast<ArithmeticOperation>(data.op) == op;
142 },
143 REGISTER_QASYMM8_NEON(neon_qasymm8_elementwise_binary<op>)
144 },
145 {
146 "neon_qs8_arithmetic",
147 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50e02() 148 {
149 return data.dt == DataType::QASYMM8_SIGNED && static_cast<ArithmeticOperation>(data.op) == op;
150 },
151 REGISTER_QASYMM8_SIGNED_NEON(neon_qasymm8_signed_elementwise_binary<op>)
152 },
153 };
154 template <ComparisonOperation op>
155 const std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> available_kernels_comperison =
156 {
157 {
158 "sve2_qu8_comparison",
159 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b50f02() 160 {
161 return data.dt == DataType::QASYMM8 && data.isa.sve2 && static_cast<ComparisonOperation>(data.op) == op;
162 },
163 REGISTER_QASYMM8_SVE2(sve2_qasymm8_comparison_elementwise_binary<op>)
164 },
165 {
166 "sve2_qs8_comparison",
167 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51002() 168 {
169 return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2 && static_cast<ComparisonOperation>(data.op) == op;
170 },
171 REGISTER_QASYMM8_SIGNED_SVE2(sve2_qasymm8_signed_comparison_elementwise_binary<op>)
172 },
173 {
174 "sve_u8_comparison",
175 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51102() 176 {
177 return data.dt == DataType::U8 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op;
178 },
179 REGISTER_INTEGER_SVE(sve_u8_comparison_elementwise_binary<op>)
180 },
181 {
182 "sve_fp32_comparison",
183 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51202() 184 {
185 return data.dt == DataType::F32 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op;
186 },
187 REGISTER_FP32_SVE(sve_fp32_comparison_elementwise_binary<op>)
188 },
189 {
190 "sve_s16_comparison",
191 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51302() 192 {
193 return data.dt == DataType::S16 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op;
194 },
195 REGISTER_INTEGER_SVE(sve_s16_comparison_elementwise_binary<op>)
196 },
197 {
198 "sve_s32_comparison",
199 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51402() 200 {
201 return data.dt == DataType::S32 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op;
202 },
203 REGISTER_INTEGER_SVE(sve_s32_comparison_elementwise_binary<op>)
204 },
205 {
206 "sve_fp16_comparison",
207 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51502() 208 {
209 return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 && static_cast<ComparisonOperation>(data.op) == op;
210 },
211 REGISTER_FP16_SVE(sve_fp16_comparison_elementwise_binary<op>)
212 },
213 {
214 "neon_u8_comparison",
215 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51602() 216 {
217 return data.dt == DataType::U8 && static_cast<ComparisonOperation>(data.op) == op;
218 },
219 REGISTER_INTEGER_NEON(neon_u8_comparison_elementwise_binary<op>)
220 },
221 {
222 "neon_fp32_comparison",
223 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51702() 224 {
225 return data.dt == DataType::F32 && static_cast<ComparisonOperation>(data.op) == op;
226 },
227 REGISTER_FP32_NEON(neon_fp32_comparison_elementwise_binary<op>)
228 },
229 {
230 "neon_s16_comparison",
231 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51802() 232 {
233 return data.dt == DataType::S16 && static_cast<ComparisonOperation>(data.op) == op;
234 },
235 REGISTER_INTEGER_NEON(neon_s16_comparison_elementwise_binary<op>)
236 },
237 {
238 "neon_s32_comparison",
239 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51902() 240 {
241 return data.dt == DataType::S32 && static_cast<ComparisonOperation>(data.op) == op;
242 },
243 REGISTER_INTEGER_NEON(neon_s32_comparison_elementwise_binary<op>)
244 },
245 {
246 "neon_qu8_comparison",
247 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51a02() 248 {
249 return data.dt == DataType::QASYMM8 && static_cast<ComparisonOperation>(data.op) == op;
250 },
251 REGISTER_QASYMM8_NEON(neon_qasymm8_comparison_elementwise_binary<op>)
252 },
253 {
254 "neon_qs8_comparison",
255 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51b02() 256 {
257 return data.dt == DataType::QASYMM8_SIGNED && static_cast<ComparisonOperation>(data.op) == op;
258 },
259 REGISTER_QASYMM8_SIGNED_NEON(neon_qasymm8_signed_comparison_elementwise_binary<op>)
260 },
261 {
262 "neon_fp16_comparison",
263 [](const ElementwiseDataTypeISASelectorData & data)
__anonf1c139b51c02() 264 {
265 return data.dt == DataType::F16 && data.isa.fp16 && static_cast<ComparisonOperation>(data.op) == op;
266 },
267 REGISTER_FP16_NEON(neon_fp16_comparison_elementwise_binary<op>)
268 },
269 };
270 } // namespace
271
get_available_kernels()272 const std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> &CpuArithmeticKernel::get_available_kernels()
273 {
274 static std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> available_kernels;
275 std::move(available_kernels_arithmetic<ArithmeticOperation::ADD>.begin(), available_kernels_arithmetic<ArithmeticOperation::ADD>.end(), std::back_inserter(available_kernels));
276 std::move(available_kernels_arithmetic<ArithmeticOperation::SUB>.begin(), available_kernels_arithmetic<ArithmeticOperation::SUB>.end(), std::back_inserter(available_kernels));
277 std::move(available_kernels_arithmetic<ArithmeticOperation::DIV>.begin(), available_kernels_arithmetic<ArithmeticOperation::DIV>.end(), std::back_inserter(available_kernels));
278 std::move(available_kernels_arithmetic<ArithmeticOperation::MIN>.begin(), available_kernels_arithmetic<ArithmeticOperation::MIN>.end(), std::back_inserter(available_kernels));
279 std::move(available_kernels_arithmetic<ArithmeticOperation::MAX>.begin(), available_kernels_arithmetic<ArithmeticOperation::MAX>.end(), std::back_inserter(available_kernels));
280 std::move(available_kernels_arithmetic<ArithmeticOperation::SQUARED_DIFF>.begin(), available_kernels_arithmetic<ArithmeticOperation::SQUARED_DIFF>.end(), std::back_inserter(available_kernels));
281 std::move(available_kernels_arithmetic<ArithmeticOperation::POWER>.begin(), available_kernels_arithmetic<ArithmeticOperation::POWER>.end(), std::back_inserter(available_kernels));
282 std::move(available_kernels_arithmetic<ArithmeticOperation::PRELU>.begin(), available_kernels_arithmetic<ArithmeticOperation::PRELU>.end(), std::back_inserter(available_kernels));
283
284 return available_kernels;
285 }
286
get_available_kernels()287 const std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> &CpuComparisonKernel::get_available_kernels()
288 {
289 static std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> available_kernels;
290 std::move(available_kernels_comperison<ComparisonOperation::Equal>.begin(), available_kernels_comperison<ComparisonOperation::Equal>.end(), std::back_inserter(available_kernels));
291 std::move(available_kernels_comperison<ComparisonOperation::NotEqual>.begin(), available_kernels_comperison<ComparisonOperation::NotEqual>.end(), std::back_inserter(available_kernels));
292 std::move(available_kernels_comperison<ComparisonOperation::Greater>.begin(), available_kernels_comperison<ComparisonOperation::Greater>.end(), std::back_inserter(available_kernels));
293 std::move(available_kernels_comperison<ComparisonOperation::GreaterEqual>.begin(), available_kernels_comperison<ComparisonOperation::GreaterEqual>.end(), std::back_inserter(available_kernels));
294 std::move(available_kernels_comperison<ComparisonOperation::Less>.begin(), available_kernels_comperison<ComparisonOperation::Less>.end(), std::back_inserter(available_kernels));
295 std::move(available_kernels_comperison<ComparisonOperation::LessEqual>.begin(), available_kernels_comperison<ComparisonOperation::LessEqual>.end(), std::back_inserter(available_kernels));
296
297 return available_kernels;
298 }
299
300 template <class Derived>
validate_arguments_common(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst)301 Status CpuElementwiseKernel<Derived>::validate_arguments_common(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
302 {
303 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
304 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);
305
306 const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());
307
308 ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
309
310 // Validate in case of configured dst
311 if(dst.total_size() > 0)
312 {
313 ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
314 "Wrong shape for output");
315 }
316
317 return Status{};
318 }
319
configure_common(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)320 void CpuArithmeticKernel::configure_common(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
321 {
322 ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
323
324 const auto *uk = CpuArithmeticKernel::get_implementation(ElementwiseDataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa(), static_cast<int>(_op) });
325
326 ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
327
328 _run_method = uk->ukernel;
329 _name = std::string("CpuArithmeticKernel").append("/").append(uk->name);
330
331 // If any of shapes is dynamic, expect a configured window and dst at run-time.
332 if(src0->is_dynamic() || src1->is_dynamic())
333 {
334 return;
335 }
336
337 auto shape_and_window = compute_output_shape_and_window(src0->tensor_shape(), src1->tensor_shape());
338 auto_init_if_empty(*dst, shape_and_window.first, 1, src0->data_type());
339 ICpuKernel::configure(shape_and_window.second);
340 }
341
configure_common(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)342 void CpuComparisonKernel::configure_common(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
343 {
344 ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
345
346 const auto *uk = CpuComparisonKernel::get_implementation(ElementwiseDataTypeISASelectorData{ src0->data_type(), CPUInfo::get().get_isa(), static_cast<int>(_op) });
347
348 ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
349
350 _run_method = uk->ukernel;
351 _name = std::string("CpuComparisonKernel").append("/").append(uk->name);
352
353 // If any of shapes is dynamic, expect a configured window and dst at run-time.
354 if(src0->is_dynamic() || src1->is_dynamic())
355 {
356 return;
357 }
358
359 auto shape_and_window = compute_output_shape_and_window(src0->tensor_shape(), src1->tensor_shape());
360 auto_init_if_empty(*dst, shape_and_window.first, 1, src0->data_type());
361 ICpuKernel::configure(shape_and_window.second);
362 }
363
364 template <class Derived>
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)365 void CpuElementwiseKernel<Derived>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
366 {
367 ARM_COMPUTE_UNUSED(info);
368 ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
369
370 auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
371 auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
372 auto dst = tensors.get_tensor(TensorType::ACL_DST);
373
374 _run_method(src0, src1, dst, window);
375 }
376 template void CpuElementwiseKernel<CpuArithmeticKernel>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info);
377 template void CpuElementwiseKernel<CpuComparisonKernel>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info);
378
379 template <class Derived>
name() const380 const char *CpuElementwiseKernel<Derived>::name() const
381 {
382 return _name.c_str();
383 }
384 template const char *CpuElementwiseKernel<CpuArithmeticKernel>::name() const;
385 template const char *CpuElementwiseKernel<CpuComparisonKernel>::name() const;
386
387 /** Arithmetic operators (min, max, squared_diff) */
configure(ArithmeticOperation op,const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)388 void CpuArithmeticKernel::configure(ArithmeticOperation op, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
389 {
390 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
391 _op = op;
392 CpuArithmeticKernel::configure_common(src0, src1, dst);
393 }
394
validate_arguments(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst)395 Status CpuArithmeticKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
396 {
397 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
398 // Validate in case of configured dst
399 if(dst.total_size() > 0)
400 {
401 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
402 }
403 return validate_arguments_common(src0, src1, dst);
404 }
405
validate(ArithmeticOperation op,const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst)406 Status CpuArithmeticKernel::validate(ArithmeticOperation op, const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
407 {
408 ARM_COMPUTE_UNUSED(op);
409 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
410 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
411 return Status{};
412 }
413
get_mws(const CPUInfo & platform,size_t thread_count) const414 size_t CpuArithmeticKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
415 {
416 ARM_COMPUTE_UNUSED(thread_count);
417
418 #if defined(ENABLE_FP32_KERNELS)
419 if(this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::MIN>
420 || this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::MAX>)
421 {
422 size_t mws = ICPPKernel::default_mws;
423 if(platform.get_cpu_model() == CPUModel::N1)
424 {
425 mws = default_min_max_mws_N1_fp32_neon;
426 }
427 else if(platform.get_cpu_model() == CPUModel::V1)
428 {
429 mws = default_min_max_mws_V1_fp32_neon;
430 }
431 else
432 {
433 return ICPPKernel::default_mws;
434 }
435
436 // tensor is 1D or was re-interpreted as 1D
437 if(this->window().shape().num_dimensions() == 1)
438 {
439 return mws;
440 }
441 else
442 {
443 // scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
444 // that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
445 // but the other sizes are large, which boosts performance.
446 mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
447 return std::max(static_cast<size_t>(1), mws);
448 }
449 }
450 #else /* ENABLE_FP32_KERNELS */
451 ARM_COMPUTE_UNUSED(platform);
452 #endif /* ENABLE_FP32_KERNELS */
453 return ICPPKernel::default_mws;
454 }
455
456 /** The division operator */
457
configure(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)458 void CpuDivisionKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
459 {
460 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
461 _op = ArithmeticOperation::DIV;
462 CpuArithmeticKernel::configure_common(src0, src1, dst);
463 }
464
get_mws(const CPUInfo & platform,size_t thread_count) const465 size_t CpuDivisionKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
466 {
467 ARM_COMPUTE_UNUSED(thread_count);
468
469 #if defined(ENABLE_FP32_KERNELS)
470 if(this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::DIV>)
471 {
472 size_t mws = ICPPKernel::default_mws;
473 if(platform.get_cpu_model() == CPUModel::N1)
474 {
475 mws = default_div_mws_N1_fp32_neon;
476 }
477 else if(platform.get_cpu_model() == CPUModel::V1)
478 {
479 mws = default_div_mws_V1_fp32_neon;
480 }
481 else
482 {
483 return ICPPKernel::default_mws;
484 }
485
486 // tensor is 1D or was re-interpreted as 1D
487 if(this->window().shape().num_dimensions() == 1)
488 {
489 return mws;
490 }
491 else
492 {
493 // scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
494 // that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
495 // but the other sizes are large, which boosts performance.
496 mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
497 return std::max(static_cast<size_t>(1), mws);
498 }
499 }
500 #else /* ENABLE_FP32_KERNELS */
501 ARM_COMPUTE_UNUSED(platform);
502 #endif /* ENABLE_FP32_KERNELS */
503 return ICPPKernel::default_mws;
504 }
505
validate_arguments(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst)506 Status CpuDivisionKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
507 {
508 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::S32, DataType::F16, DataType::F32);
509 return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
510 }
511
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst)512 Status CpuDivisionKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
513 {
514 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
515 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
516 return Status{};
517 }
518
519 /** The power operator */
configure(const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)520 void CpuPowerKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
521 {
522 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
523 _op = ArithmeticOperation::POWER;
524 CpuArithmeticKernel::configure_common(src0, src1, dst);
525 }
526
validate_arguments(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst)527 Status CpuPowerKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
528 {
529 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::F16, DataType::F32);
530 return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
531 }
532
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst)533 Status CpuPowerKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
534 {
535 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
536 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
537 return Status{};
538 }
539
540 /** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
configure(ComparisonOperation op,const ITensorInfo * src0,const ITensorInfo * src1,ITensorInfo * dst)541 void CpuComparisonKernel::configure(ComparisonOperation op, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
542 {
543 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
544 _op = op;
545 CpuComparisonKernel::configure_common(src0, src1, dst);
546 }
547
validate_arguments(const ITensorInfo & src0,const ITensorInfo & src1,const ITensorInfo & dst)548 Status CpuComparisonKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
549 {
550 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
551 // Validate in case of configured dst
552 if(dst.total_size() > 0)
553 {
554 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::U8);
555 }
556 return validate_arguments_common(src0, src1, dst);
557 }
558
validate(ComparisonOperation op,const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst)559 Status CpuComparisonKernel::validate(ComparisonOperation op, const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
560 {
561 ARM_COMPUTE_UNUSED(op);
562 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
563 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
564 return Status{};
565 }
566 } // namespace kernels
567 } // namespace cpu
568 } // namespace arm_compute
569