xref: /aosp_15_r20/external/ComputeLibrary/examples/neon_cnn.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2016-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/NEFunctions.h"
25 
26 #include "arm_compute/core/Types.h"
27 #include "arm_compute/runtime/Allocator.h"
28 #include "arm_compute/runtime/BlobLifetimeManager.h"
29 #include "arm_compute/runtime/MemoryManagerOnDemand.h"
30 #include "arm_compute/runtime/PoolManager.h"
31 #include "utils/Utils.h"
32 
33 using namespace arm_compute;
34 using namespace utils;
35 
36 class NEONCNNExample : public Example
37 {
38 public:
do_setup(int argc,char ** argv)39     bool do_setup(int argc, char **argv) override
40     {
41         ARM_COMPUTE_UNUSED(argc);
42         ARM_COMPUTE_UNUSED(argv);
43 
44         // Create memory manager components
45         // We need 2 memory managers: 1 for handling the tensors within the functions (mm_layers) and 1 for handling the input and output tensors of the functions (mm_transitions))
46         auto lifetime_mgr0  = std::make_shared<BlobLifetimeManager>();                           // Create lifetime manager
47         auto lifetime_mgr1  = std::make_shared<BlobLifetimeManager>();                           // Create lifetime manager
48         auto pool_mgr0      = std::make_shared<PoolManager>();                                   // Create pool manager
49         auto pool_mgr1      = std::make_shared<PoolManager>();                                   // Create pool manager
50         auto mm_layers      = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr0, pool_mgr0); // Create the memory manager
51         auto mm_transitions = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr1, pool_mgr1); // Create the memory manager
52 
53         // The weights and biases tensors should be initialized with the values inferred with the training
54 
55         // Set memory manager where allowed to manage internal memory requirements
56         conv0   = std::make_unique<NEConvolutionLayer>(mm_layers);
57         conv1   = std::make_unique<NEConvolutionLayer>(mm_layers);
58         fc0     = std::make_unique<NEFullyConnectedLayer>(mm_layers);
59         softmax = std::make_unique<NESoftmaxLayer>(mm_layers);
60 
61         /* [Initialize tensors] */
62 
63         // Initialize src tensor
64         constexpr unsigned int width_src_image  = 32;
65         constexpr unsigned int height_src_image = 32;
66         constexpr unsigned int ifm_src_img      = 1;
67 
68         const TensorShape src_shape(width_src_image, height_src_image, ifm_src_img);
69         src.allocator()->init(TensorInfo(src_shape, 1, DataType::F32));
70 
71         // Initialize tensors of conv0
72         constexpr unsigned int kernel_x_conv0 = 5;
73         constexpr unsigned int kernel_y_conv0 = 5;
74         constexpr unsigned int ofm_conv0      = 8;
75 
76         const TensorShape weights_shape_conv0(kernel_x_conv0, kernel_y_conv0, src_shape.z(), ofm_conv0);
77         const TensorShape biases_shape_conv0(weights_shape_conv0[3]);
78         const TensorShape out_shape_conv0(src_shape.x(), src_shape.y(), weights_shape_conv0[3]);
79 
80         weights0.allocator()->init(TensorInfo(weights_shape_conv0, 1, DataType::F32));
81         biases0.allocator()->init(TensorInfo(biases_shape_conv0, 1, DataType::F32));
82         out_conv0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
83 
84         // Initialize tensor of act0
85         out_act0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
86 
87         // Initialize tensor of pool0
88         TensorShape out_shape_pool0 = out_shape_conv0;
89         out_shape_pool0.set(0, out_shape_pool0.x() / 2);
90         out_shape_pool0.set(1, out_shape_pool0.y() / 2);
91         out_pool0.allocator()->init(TensorInfo(out_shape_pool0, 1, DataType::F32));
92 
93         // Initialize tensors of conv1
94         constexpr unsigned int kernel_x_conv1 = 3;
95         constexpr unsigned int kernel_y_conv1 = 3;
96         constexpr unsigned int ofm_conv1      = 16;
97 
98         const TensorShape weights_shape_conv1(kernel_x_conv1, kernel_y_conv1, out_shape_pool0.z(), ofm_conv1);
99 
100         const TensorShape biases_shape_conv1(weights_shape_conv1[3]);
101         const TensorShape out_shape_conv1(out_shape_pool0.x(), out_shape_pool0.y(), weights_shape_conv1[3]);
102 
103         weights1.allocator()->init(TensorInfo(weights_shape_conv1, 1, DataType::F32));
104         biases1.allocator()->init(TensorInfo(biases_shape_conv1, 1, DataType::F32));
105         out_conv1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
106 
107         // Initialize tensor of act1
108         out_act1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
109 
110         // Initialize tensor of pool1
111         TensorShape out_shape_pool1 = out_shape_conv1;
112         out_shape_pool1.set(0, out_shape_pool1.x() / 2);
113         out_shape_pool1.set(1, out_shape_pool1.y() / 2);
114         out_pool1.allocator()->init(TensorInfo(out_shape_pool1, 1, DataType::F32));
115 
116         // Initialize tensor of fc0
117         constexpr unsigned int num_labels = 128;
118 
119         const TensorShape weights_shape_fc0(out_shape_pool1.x() * out_shape_pool1.y() * out_shape_pool1.z(), num_labels);
120         const TensorShape biases_shape_fc0(num_labels);
121         const TensorShape out_shape_fc0(num_labels);
122 
123         weights2.allocator()->init(TensorInfo(weights_shape_fc0, 1, DataType::F32));
124         biases2.allocator()->init(TensorInfo(biases_shape_fc0, 1, DataType::F32));
125         out_fc0.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
126 
127         // Initialize tensor of act2
128         out_act2.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
129 
130         // Initialize tensor of softmax
131         const TensorShape out_shape_softmax(out_shape_fc0.x());
132         out_softmax.allocator()->init(TensorInfo(out_shape_softmax, 1, DataType::F32));
133 
134         constexpr auto data_layout = DataLayout::NCHW;
135 
136         /* -----------------------End: [Initialize tensors] */
137 
138         /* [Configure functions] */
139 
140         // in:32x32x1: 5x5 convolution, 8 output features maps (OFM)
141         conv0->configure(&src, &weights0, &biases0, &out_conv0, PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 2 /* pad_x */, 2 /* pad_y */));
142 
143         // in:32x32x8, out:32x32x8, Activation function: relu
144         act0.configure(&out_conv0, &out_act0, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
145 
146         // in:32x32x8, out:16x16x8 (2x2 pooling), Pool type function: Max
147         pool0.configure(&out_act0, &out_pool0, PoolingLayerInfo(PoolingType::MAX, 2, data_layout, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
148 
149         // in:16x16x8: 3x3 convolution, 16 output features maps (OFM)
150         conv1->configure(&out_pool0, &weights1, &biases1, &out_conv1, PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 1 /* pad_x */, 1 /* pad_y */));
151 
152         // in:16x16x16, out:16x16x16, Activation function: relu
153         act1.configure(&out_conv1, &out_act1, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
154 
155         // in:16x16x16, out:8x8x16 (2x2 pooling), Pool type function: Average
156         pool1.configure(&out_act1, &out_pool1, PoolingLayerInfo(PoolingType::AVG, 2, data_layout, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
157 
158         // in:8x8x16, out:128
159         fc0->configure(&out_pool1, &weights2, &biases2, &out_fc0);
160 
161         // in:128, out:128, Activation function: relu
162         act2.configure(&out_fc0, &out_act2, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
163 
164         // in:128, out:128
165         softmax->configure(&out_act2, &out_softmax);
166 
167         /* -----------------------End: [Configure functions] */
168 
169         /*[ Add tensors to memory manager ]*/
170 
171         // We need 2 memory groups for handling the input and output
172         // We call explicitly allocate after manage() in order to avoid overlapping lifetimes
173         memory_group0 = std::make_unique<MemoryGroup>(mm_transitions);
174         memory_group1 = std::make_unique<MemoryGroup>(mm_transitions);
175 
176         memory_group0->manage(&out_conv0);
177         out_conv0.allocator()->allocate();
178         memory_group1->manage(&out_act0);
179         out_act0.allocator()->allocate();
180         memory_group0->manage(&out_pool0);
181         out_pool0.allocator()->allocate();
182         memory_group1->manage(&out_conv1);
183         out_conv1.allocator()->allocate();
184         memory_group0->manage(&out_act1);
185         out_act1.allocator()->allocate();
186         memory_group1->manage(&out_pool1);
187         out_pool1.allocator()->allocate();
188         memory_group0->manage(&out_fc0);
189         out_fc0.allocator()->allocate();
190         memory_group1->manage(&out_act2);
191         out_act2.allocator()->allocate();
192         memory_group0->manage(&out_softmax);
193         out_softmax.allocator()->allocate();
194 
195         /* -----------------------End: [ Add tensors to memory manager ] */
196 
197         /* [Allocate tensors] */
198 
199         // Now that the padding requirements are known we can allocate all tensors
200         src.allocator()->allocate();
201         weights0.allocator()->allocate();
202         weights1.allocator()->allocate();
203         weights2.allocator()->allocate();
204         biases0.allocator()->allocate();
205         biases1.allocator()->allocate();
206         biases2.allocator()->allocate();
207 
208         /* -----------------------End: [Allocate tensors] */
209 
210         // Populate the layers manager. (Validity checks, memory allocations etc)
211         mm_layers->populate(allocator, 1 /* num_pools */);
212 
213         // Populate the transitions manager. (Validity checks, memory allocations etc)
214         mm_transitions->populate(allocator, 2 /* num_pools */);
215 
216         return true;
217     }
do_run()218     void do_run() override
219     {
220         // Acquire memory for the memory groups
221         memory_group0->acquire();
222         memory_group1->acquire();
223 
224         conv0->run();
225         act0.run();
226         pool0.run();
227         conv1->run();
228         act1.run();
229         pool1.run();
230         fc0->run();
231         act2.run();
232         softmax->run();
233 
234         // Release memory
235         memory_group0->release();
236         memory_group1->release();
237     }
238 
239 private:
240     // The src tensor should contain the input image
241     Tensor src{};
242 
243     // Intermediate tensors used
244     Tensor weights0{};
245     Tensor weights1{};
246     Tensor weights2{};
247     Tensor biases0{};
248     Tensor biases1{};
249     Tensor biases2{};
250     Tensor out_conv0{};
251     Tensor out_conv1{};
252     Tensor out_act0{};
253     Tensor out_act1{};
254     Tensor out_act2{};
255     Tensor out_pool0{};
256     Tensor out_pool1{};
257     Tensor out_fc0{};
258     Tensor out_softmax{};
259 
260     // Allocator
261     Allocator allocator{};
262 
263     // Memory groups
264     std::unique_ptr<MemoryGroup> memory_group0{};
265     std::unique_ptr<MemoryGroup> memory_group1{};
266 
267     // Layers
268     std::unique_ptr<NEConvolutionLayer>    conv0{};
269     std::unique_ptr<NEConvolutionLayer>    conv1{};
270     std::unique_ptr<NEFullyConnectedLayer> fc0{};
271     std::unique_ptr<NESoftmaxLayer>        softmax{};
272     NEPoolingLayer                         pool0{};
273     NEPoolingLayer                         pool1{};
274     NEActivationLayer                      act0{};
275     NEActivationLayer                      act1{};
276     NEActivationLayer                      act2{};
277 };
278 
279 /** Main program for cnn test
280  *
281  * The example implements the following CNN architecture:
282  *
283  * Input -> conv0:5x5 -> act0:relu -> pool:2x2 -> conv1:3x3 -> act1:relu -> pool:2x2 -> fc0 -> act2:relu -> softmax
284  *
285  * @param[in] argc Number of arguments
286  * @param[in] argv Arguments
287  */
main(int argc,char ** argv)288 int main(int argc, char **argv)
289 {
290     return utils::run_example<NEONCNNExample>(argc, argv);
291 }
292