xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_ssd_mobilenet.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute;
31 using namespace arm_compute::utils;
32 using namespace arm_compute::graph::frontend;
33 using namespace arm_compute::graph_utils;
34 
35 /** Example demonstrating how to implement MobileNetSSD's network using the Compute Library's graph API */
36 class GraphSSDMobilenetExample : public Example
37 {
38 public:
GraphSSDMobilenetExample()39     GraphSSDMobilenetExample()
40         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "MobileNetSSD")
41     {
42         // Add topk option
43         keep_topk_opt = cmd_parser.add_option<SimpleOption<int>>("topk", 100);
44         keep_topk_opt->set_help("Top k detections results per image. Used for data type F32.");
45         // Add output option
46         detection_boxes_opt = cmd_parser.add_option<SimpleOption<std::string>>("detection_boxes_opt", "");
47         detection_boxes_opt->set_help("Filename containing the reference values for the graph output detection_boxes. Used for data type QASYMM8.");
48         detection_classes_opt = cmd_parser.add_option<SimpleOption<std::string>>("detection_classes_opt", "");
49         detection_classes_opt->set_help("Filename containing the reference values for the output detection_classes. Used for data type QASYMM8.");
50         detection_scores_opt = cmd_parser.add_option<SimpleOption<std::string>>("detection_scores_opt", "");
51         detection_scores_opt->set_help("Filename containing the reference values for the output detection_scores. Used for data type QASYMM8.");
52         num_detections_opt = cmd_parser.add_option<SimpleOption<std::string>>("num_detections_opt", "");
53         num_detections_opt->set_help("Filename containing the reference values for the output num_detections. Used with datatype QASYMM8.");
54     }
55     GraphSSDMobilenetExample(const GraphSSDMobilenetExample &) = delete;
56     GraphSSDMobilenetExample &operator=(const GraphSSDMobilenetExample &) = delete;
57     ~GraphSSDMobilenetExample() override                                  = default;
do_setup(int argc,char ** argv)58     bool do_setup(int argc, char **argv) override
59     {
60         // Parse arguments
61         cmd_parser.parse(argc, argv);
62         cmd_parser.validate();
63 
64         // Consume common parameters
65         common_params = consume_common_graph_parameters(common_opts);
66 
67         // Return when help menu is requested
68         if(common_params.help)
69         {
70             cmd_parser.print_help(argv[0]);
71             return false;
72         }
73 
74         // Print parameter values
75         std::cout << common_params << std::endl;
76 
77         // Create input descriptor
78         const TensorShape tensor_shape     = permute_shape(TensorShape(300, 300, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
79         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
80 
81         // Set graph hints
82         graph << common_params.target
83               << common_params.fast_math_hint;
84 
85         // Create core graph
86         if(arm_compute::is_data_type_float(common_params.data_type))
87         {
88             create_graph_float(input_descriptor);
89         }
90         else
91         {
92             create_graph_qasymm(input_descriptor);
93         }
94 
95         // Finalize graph
96         GraphConfig config;
97         config.num_threads = common_params.threads;
98         config.use_tuner   = common_params.enable_tuner;
99         config.tuner_file  = common_params.tuner_file;
100         config.mlgo_file   = common_params.mlgo_file;
101 
102         graph.finalize(common_params.target, config);
103 
104         return true;
105     }
do_run()106     void do_run() override
107     {
108         // Run graph
109         graph.run();
110     }
111 
112 private:
113     CommandLineParser  cmd_parser;
114     CommonGraphOptions common_opts;
115     SimpleOption<int> *keep_topk_opt{ nullptr };
116     CommonGraphParams  common_params;
117     Stream             graph;
118 
119     SimpleOption<std::string> *detection_boxes_opt{ nullptr };
120     SimpleOption<std::string> *detection_classes_opt{ nullptr };
121     SimpleOption<std::string> *detection_scores_opt{ nullptr };
122     SimpleOption<std::string> *num_detections_opt{ nullptr };
123 
get_node_A_float(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo dwc_pad_stride_info,PadStrideInfo conv_pad_stride_info)124     ConcatLayer get_node_A_float(IStream &main_graph, const std::string &data_path, std::string &&param_path,
125                                  unsigned int  conv_filt,
126                                  PadStrideInfo dwc_pad_stride_info, PadStrideInfo conv_pad_stride_info)
127     {
128         const std::string total_path = param_path + "_";
129         SubStream         sg(main_graph);
130 
131         sg << DepthwiseConvolutionLayer(
132                3U, 3U,
133                get_weights_accessor(data_path, total_path + "dw_w.npy"),
134                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
135                dwc_pad_stride_info)
136            .set_name(param_path + "/dw")
137            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "dw_bn_mean.npy"),
138                                       get_weights_accessor(data_path, total_path + "dw_bn_var.npy"),
139                                       get_weights_accessor(data_path, total_path + "dw_scale_w.npy"),
140                                       get_weights_accessor(data_path, total_path + "dw_scale_b.npy"), 0.00001f)
141            .set_name(param_path + "/dw/bn")
142            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "dw/relu")
143 
144            << ConvolutionLayer(
145                1U, 1U, conv_filt,
146                get_weights_accessor(data_path, total_path + "w.npy"),
147                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
148                conv_pad_stride_info)
149            .set_name(param_path + "/pw")
150            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "bn_mean.npy"),
151                                       get_weights_accessor(data_path, total_path + "bn_var.npy"),
152                                       get_weights_accessor(data_path, total_path + "scale_w.npy"),
153                                       get_weights_accessor(data_path, total_path + "scale_b.npy"), 0.00001f)
154            .set_name(param_path + "/pw/bn")
155            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "pw/relu");
156 
157         return ConcatLayer(std::move(sg));
158     }
159 
get_node_B_float(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo conv_pad_stride_info_1,PadStrideInfo conv_pad_stride_info_2)160     ConcatLayer get_node_B_float(IStream &main_graph, const std::string &data_path, std::string &&param_path,
161                                  unsigned int  conv_filt,
162                                  PadStrideInfo conv_pad_stride_info_1, PadStrideInfo conv_pad_stride_info_2)
163     {
164         const std::string total_path = param_path + "_";
165         SubStream         sg(main_graph);
166 
167         sg << ConvolutionLayer(
168                1, 1, conv_filt / 2,
169                get_weights_accessor(data_path, total_path + "1_w.npy"),
170                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
171                conv_pad_stride_info_1)
172            .set_name(total_path + "1/conv")
173            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "1_bn_mean.npy"),
174                                       get_weights_accessor(data_path, total_path + "1_bn_var.npy"),
175                                       get_weights_accessor(data_path, total_path + "1_scale_w.npy"),
176                                       get_weights_accessor(data_path, total_path + "1_scale_b.npy"), 0.00001f)
177            .set_name(total_path + "1/bn")
178            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(total_path + "1/relu");
179 
180         sg << ConvolutionLayer(
181                3, 3, conv_filt,
182                get_weights_accessor(data_path, total_path + "2_w.npy"),
183                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
184                conv_pad_stride_info_2)
185            .set_name(total_path + "2/conv")
186            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "2_bn_mean.npy"),
187                                       get_weights_accessor(data_path, total_path + "2_bn_var.npy"),
188                                       get_weights_accessor(data_path, total_path + "2_scale_w.npy"),
189                                       get_weights_accessor(data_path, total_path + "2_scale_b.npy"), 0.00001f)
190            .set_name(total_path + "2/bn")
191            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(total_path + "2/relu");
192 
193         return ConcatLayer(std::move(sg));
194     }
195 
get_node_C_float(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo conv_pad_stride_info)196     ConcatLayer get_node_C_float(IStream &main_graph, const std::string &data_path, std::string &&param_path,
197                                  unsigned int conv_filt, PadStrideInfo conv_pad_stride_info)
198     {
199         const std::string total_path = param_path + "_";
200         SubStream         sg(main_graph);
201         sg << ConvolutionLayer(
202                1U, 1U, conv_filt,
203                get_weights_accessor(data_path, total_path + "w.npy"),
204                get_weights_accessor(data_path, total_path + "b.npy"),
205                conv_pad_stride_info)
206            .set_name(param_path + "/conv");
207         if(common_params.data_layout == DataLayout::NCHW)
208         {
209             sg << PermuteLayer(PermutationVector(2U, 0U, 1U), DataLayout::NHWC).set_name(param_path + "/perm");
210         }
211         sg << FlattenLayer().set_name(param_path + "/flat");
212 
213         return ConcatLayer(std::move(sg));
214     }
215 
create_graph_float(TensorDescriptor & input_descriptor)216     void create_graph_float(TensorDescriptor &input_descriptor)
217     {
218         // Create a preprocessor object
219         const std::array<float, 3> mean_rgb{ { 127.5f, 127.5f, 127.5f } };
220         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb, true, 0.007843f);
221 
222         // Get trainable parameters data path
223         std::string data_path = common_params.data_path;
224 
225         // Add model path to data path
226         if(!data_path.empty())
227         {
228             data_path += "/cnn_data/ssd_mobilenet_model/";
229         }
230 
231         graph << InputLayer(input_descriptor,
232                             get_input_accessor(common_params, std::move(preprocessor)));
233 
234         SubStream conv_11(graph);
235         conv_11 << ConvolutionLayer(
236                     3U, 3U, 32U,
237                     get_weights_accessor(data_path, "conv0_w.npy"),
238                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
239                     PadStrideInfo(2, 2, 1, 1))
240                 .set_name("conv0");
241         conv_11 << BatchNormalizationLayer(get_weights_accessor(data_path, "conv0_bn_mean.npy"),
242                                            get_weights_accessor(data_path, "conv0_bn_var.npy"),
243                                            get_weights_accessor(data_path, "conv0_scale_w.npy"),
244                                            get_weights_accessor(data_path, "conv0_scale_b.npy"), 0.00001f)
245                 .set_name("conv0/bn")
246                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv0/relu");
247 
248         conv_11 << get_node_A_float(conv_11, data_path, "conv1", 64, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
249         conv_11 << get_node_A_float(conv_11, data_path, "conv2", 128, PadStrideInfo(2, 2, 1, 1), PadStrideInfo(1, 1, 0, 0));
250         conv_11 << get_node_A_float(conv_11, data_path, "conv3", 128, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
251         conv_11 << get_node_A_float(conv_11, data_path, "conv4", 256, PadStrideInfo(2, 2, 1, 1), PadStrideInfo(1, 1, 0, 0));
252         conv_11 << get_node_A_float(conv_11, data_path, "conv5", 256, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
253         conv_11 << get_node_A_float(conv_11, data_path, "conv6", 512, PadStrideInfo(2, 2, 1, 1), PadStrideInfo(1, 1, 0, 0));
254         conv_11 << get_node_A_float(conv_11, data_path, "conv7", 512, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
255         conv_11 << get_node_A_float(conv_11, data_path, "conv8", 512, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
256         conv_11 << get_node_A_float(conv_11, data_path, "conv9", 512, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
257         conv_11 << get_node_A_float(conv_11, data_path, "conv10", 512, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
258         conv_11 << get_node_A_float(conv_11, data_path, "conv11", 512, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
259 
260         SubStream conv_13(conv_11);
261         conv_13 << get_node_A_float(conv_11, data_path, "conv12", 1024, PadStrideInfo(2, 2, 1, 1), PadStrideInfo(1, 1, 0, 0));
262         conv_13 << get_node_A_float(conv_13, data_path, "conv13", 1024, PadStrideInfo(1, 1, 1, 1), PadStrideInfo(1, 1, 0, 0));
263 
264         SubStream conv_14(conv_13);
265         conv_14 << get_node_B_float(conv_13, data_path, "conv14", 512, PadStrideInfo(1, 1, 0, 0), PadStrideInfo(2, 2, 1, 1));
266 
267         SubStream conv_15(conv_14);
268         conv_15 << get_node_B_float(conv_14, data_path, "conv15", 256, PadStrideInfo(1, 1, 0, 0), PadStrideInfo(2, 2, 1, 1));
269 
270         SubStream conv_16(conv_15);
271         conv_16 << get_node_B_float(conv_15, data_path, "conv16", 256, PadStrideInfo(1, 1, 0, 0), PadStrideInfo(2, 2, 1, 1));
272 
273         SubStream conv_17(conv_16);
274         conv_17 << get_node_B_float(conv_16, data_path, "conv17", 128, PadStrideInfo(1, 1, 0, 0), PadStrideInfo(2, 2, 1, 1));
275 
276         //mbox_loc
277         SubStream conv_11_mbox_loc(conv_11);
278         conv_11_mbox_loc << get_node_C_float(conv_11, data_path, "conv11_mbox_loc", 12, PadStrideInfo(1, 1, 0, 0));
279 
280         SubStream conv_13_mbox_loc(conv_13);
281         conv_13_mbox_loc << get_node_C_float(conv_13, data_path, "conv13_mbox_loc", 24, PadStrideInfo(1, 1, 0, 0));
282 
283         SubStream conv_14_2_mbox_loc(conv_14);
284         conv_14_2_mbox_loc << get_node_C_float(conv_14, data_path, "conv14_2_mbox_loc", 24, PadStrideInfo(1, 1, 0, 0));
285 
286         SubStream conv_15_2_mbox_loc(conv_15);
287         conv_15_2_mbox_loc << get_node_C_float(conv_15, data_path, "conv15_2_mbox_loc", 24, PadStrideInfo(1, 1, 0, 0));
288 
289         SubStream conv_16_2_mbox_loc(conv_16);
290         conv_16_2_mbox_loc << get_node_C_float(conv_16, data_path, "conv16_2_mbox_loc", 24, PadStrideInfo(1, 1, 0, 0));
291 
292         SubStream conv_17_2_mbox_loc(conv_17);
293         conv_17_2_mbox_loc << get_node_C_float(conv_17, data_path, "conv17_2_mbox_loc", 24, PadStrideInfo(1, 1, 0, 0));
294 
295         SubStream mbox_loc(graph);
296         mbox_loc << ConcatLayer(std::move(conv_11_mbox_loc), std::move(conv_13_mbox_loc), conv_14_2_mbox_loc, std::move(conv_15_2_mbox_loc),
297                                 std::move(conv_16_2_mbox_loc), std::move(conv_17_2_mbox_loc));
298 
299         //mbox_conf
300         SubStream conv_11_mbox_conf(conv_11);
301         conv_11_mbox_conf << get_node_C_float(conv_11, data_path, "conv11_mbox_conf", 63, PadStrideInfo(1, 1, 0, 0));
302 
303         SubStream conv_13_mbox_conf(conv_13);
304         conv_13_mbox_conf << get_node_C_float(conv_13, data_path, "conv13_mbox_conf", 126, PadStrideInfo(1, 1, 0, 0));
305 
306         SubStream conv_14_2_mbox_conf(conv_14);
307         conv_14_2_mbox_conf << get_node_C_float(conv_14, data_path, "conv14_2_mbox_conf", 126, PadStrideInfo(1, 1, 0, 0));
308 
309         SubStream conv_15_2_mbox_conf(conv_15);
310         conv_15_2_mbox_conf << get_node_C_float(conv_15, data_path, "conv15_2_mbox_conf", 126, PadStrideInfo(1, 1, 0, 0));
311 
312         SubStream conv_16_2_mbox_conf(conv_16);
313         conv_16_2_mbox_conf << get_node_C_float(conv_16, data_path, "conv16_2_mbox_conf", 126, PadStrideInfo(1, 1, 0, 0));
314 
315         SubStream conv_17_2_mbox_conf(conv_17);
316         conv_17_2_mbox_conf << get_node_C_float(conv_17, data_path, "conv17_2_mbox_conf", 126, PadStrideInfo(1, 1, 0, 0));
317 
318         SubStream mbox_conf(graph);
319         mbox_conf << ConcatLayer(std::move(conv_11_mbox_conf), std::move(conv_13_mbox_conf), std::move(conv_14_2_mbox_conf),
320                                  std::move(conv_15_2_mbox_conf), std::move(conv_16_2_mbox_conf), std::move(conv_17_2_mbox_conf));
321         mbox_conf << ReshapeLayer(TensorShape(21U, 1917U)).set_name("mbox_conf/reshape");
322         mbox_conf << SoftmaxLayer().set_name("mbox_conf/softmax");
323         mbox_conf << FlattenLayer().set_name("mbox_conf/flat");
324 
325         const std::vector<float> priorbox_variances     = { 0.1f, 0.1f, 0.2f, 0.2f };
326         const float              priorbox_offset        = 0.5f;
327         const std::vector<float> priorbox_aspect_ratios = { 2.f, 3.f };
328 
329         //mbox_priorbox branch
330         SubStream conv_11_mbox_priorbox(conv_11);
331 
332         conv_11_mbox_priorbox << PriorBoxLayer(SubStream(graph),
333                                                PriorBoxLayerInfo({ 60.f }, priorbox_variances, priorbox_offset, true, false, {}, { 2.f }))
334                               .set_name("conv11/priorbox");
335 
336         SubStream conv_13_mbox_priorbox(conv_13);
337         conv_13_mbox_priorbox << PriorBoxLayer(SubStream(graph),
338                                                PriorBoxLayerInfo({ 105.f }, priorbox_variances, priorbox_offset, true, false, { 150.f }, priorbox_aspect_ratios))
339                               .set_name("conv13/priorbox");
340 
341         SubStream conv_14_2_mbox_priorbox(conv_14);
342         conv_14_2_mbox_priorbox << PriorBoxLayer(SubStream(graph),
343                                                  PriorBoxLayerInfo({ 150.f }, priorbox_variances, priorbox_offset, true, false, { 195.f }, priorbox_aspect_ratios))
344                                 .set_name("conv14/priorbox");
345 
346         SubStream conv_15_2_mbox_priorbox(conv_15);
347         conv_15_2_mbox_priorbox << PriorBoxLayer(SubStream(graph),
348                                                  PriorBoxLayerInfo({ 195.f }, priorbox_variances, priorbox_offset, true, false, { 240.f }, priorbox_aspect_ratios))
349                                 .set_name("conv15/priorbox");
350 
351         SubStream conv_16_2_mbox_priorbox(conv_16);
352         conv_16_2_mbox_priorbox << PriorBoxLayer(SubStream(graph),
353                                                  PriorBoxLayerInfo({ 240.f }, priorbox_variances, priorbox_offset, true, false, { 285.f }, priorbox_aspect_ratios))
354                                 .set_name("conv16/priorbox");
355 
356         SubStream conv_17_2_mbox_priorbox(conv_17);
357         conv_17_2_mbox_priorbox << PriorBoxLayer(SubStream(graph),
358                                                  PriorBoxLayerInfo({ 285.f }, priorbox_variances, priorbox_offset, true, false, { 300.f }, priorbox_aspect_ratios))
359                                 .set_name("conv17/priorbox");
360 
361         SubStream mbox_priorbox(graph);
362 
363         mbox_priorbox << ConcatLayer(
364                           (common_params.data_layout == DataLayout::NCHW) ? arm_compute::graph::descriptors::ConcatLayerDescriptor(DataLayoutDimension::WIDTH) : arm_compute::graph::descriptors::ConcatLayerDescriptor(
365                               DataLayoutDimension::CHANNEL),
366                           std::move(conv_11_mbox_priorbox), std::move(conv_13_mbox_priorbox), std::move(conv_14_2_mbox_priorbox),
367                           std::move(conv_15_2_mbox_priorbox), std::move(conv_16_2_mbox_priorbox), std::move(conv_17_2_mbox_priorbox));
368 
369         const int                          num_classes         = 21;
370         const bool                         share_location      = true;
371         const DetectionOutputLayerCodeType detection_type      = DetectionOutputLayerCodeType::CENTER_SIZE;
372         const int                          keep_top_k          = keep_topk_opt->value();
373         const float                        nms_threshold       = 0.45f;
374         const int                          label_id_background = 0;
375         const float                        conf_thrs           = 0.25f;
376         const int                          top_k               = 100;
377 
378         SubStream detection_ouput(mbox_loc);
379         detection_ouput << DetectionOutputLayer(std::move(mbox_conf), std::move(mbox_priorbox),
380                                                 DetectionOutputLayerInfo(num_classes, share_location, detection_type, keep_top_k, nms_threshold, top_k, label_id_background, conf_thrs));
381         detection_ouput << OutputLayer(get_detection_output_accessor(common_params, { input_descriptor.shape }));
382     }
383 
get_node_A_qasymm(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo dwc_pad_stride_info,PadStrideInfo conv_pad_stride_info,std::pair<QuantizationInfo,QuantizationInfo> depth_quant_info,std::pair<QuantizationInfo,QuantizationInfo> point_quant_info)384     ConcatLayer get_node_A_qasymm(IStream &main_graph, const std::string &data_path, std::string &&param_path,
385                                   unsigned int  conv_filt,
386                                   PadStrideInfo dwc_pad_stride_info, PadStrideInfo conv_pad_stride_info,
387                                   std::pair<QuantizationInfo, QuantizationInfo> depth_quant_info, std::pair<QuantizationInfo, QuantizationInfo> point_quant_info)
388     {
389         const std::string total_path = param_path + "_";
390         SubStream         sg(main_graph);
391 
392         sg << DepthwiseConvolutionLayer(
393                3U, 3U,
394                get_weights_accessor(data_path, total_path + "dw_w.npy"),
395                get_weights_accessor(data_path, total_path + "dw_b.npy"),
396                dwc_pad_stride_info, 1, depth_quant_info.first, depth_quant_info.second)
397            .set_name(param_path + "/dw")
398            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)).set_name(param_path + "/dw/relu6");
399 
400         sg << ConvolutionLayer(
401                1U, 1U, conv_filt,
402                get_weights_accessor(data_path, total_path + "w.npy"),
403                get_weights_accessor(data_path, total_path + "b.npy"),
404                conv_pad_stride_info, 1, point_quant_info.first, point_quant_info.second)
405            .set_name(param_path + "/pw")
406            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)).set_name(param_path + "/pw/relu6");
407 
408         return ConcatLayer(std::move(sg));
409     }
410 
get_node_B_qasymm(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo conv_pad_stride_info_1x1,PadStrideInfo conv_pad_stride_info_3x3,const std::pair<QuantizationInfo,QuantizationInfo> quant_info_1x1,const std::pair<QuantizationInfo,QuantizationInfo> quant_info_3x3)411     ConcatLayer get_node_B_qasymm(IStream &main_graph, const std::string &data_path, std::string &&param_path,
412                                   unsigned int  conv_filt,
413                                   PadStrideInfo conv_pad_stride_info_1x1, PadStrideInfo conv_pad_stride_info_3x3,
414                                   const std::pair<QuantizationInfo, QuantizationInfo> quant_info_1x1, const std::pair<QuantizationInfo, QuantizationInfo> quant_info_3x3)
415     {
416         const std::string total_path = param_path + "_";
417         SubStream         sg(main_graph);
418 
419         sg << ConvolutionLayer(
420                1, 1, conv_filt / 2,
421                get_weights_accessor(data_path, total_path + "1x1_w.npy"),
422                get_weights_accessor(data_path, total_path + "1x1_b.npy"),
423                conv_pad_stride_info_1x1, 1, quant_info_1x1.first, quant_info_1x1.second)
424            .set_name(total_path + "1x1/conv")
425            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)).set_name(total_path + "1x1/conv/relu6");
426 
427         sg << ConvolutionLayer(
428                3, 3, conv_filt,
429                get_weights_accessor(data_path, total_path + "3x3_w.npy"),
430                get_weights_accessor(data_path, total_path + "3x3_b.npy"),
431                conv_pad_stride_info_3x3, 1, quant_info_3x3.first, quant_info_3x3.second)
432            .set_name(total_path + "3x3/conv")
433            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)).set_name(total_path + "3x3/conv/relu6");
434 
435         return ConcatLayer(std::move(sg));
436     }
437 
get_node_C_qasymm(IStream & main_graph,const std::string & data_path,std::string && param_path,unsigned int conv_filt,PadStrideInfo conv_pad_stride_info,const std::pair<QuantizationInfo,QuantizationInfo> quant_info,TensorShape reshape_shape)438     ConcatLayer get_node_C_qasymm(IStream &main_graph, const std::string &data_path, std::string &&param_path,
439                                   unsigned int conv_filt, PadStrideInfo               conv_pad_stride_info,
440                                   const std::pair<QuantizationInfo, QuantizationInfo> quant_info, TensorShape reshape_shape)
441     {
442         const std::string total_path = param_path + "_";
443         SubStream         sg(main_graph);
444         sg << ConvolutionLayer(
445                1U, 1U, conv_filt,
446                get_weights_accessor(data_path, total_path + "w.npy"),
447                get_weights_accessor(data_path, total_path + "b.npy"),
448                conv_pad_stride_info, 1, quant_info.first, quant_info.second)
449            .set_name(param_path + "/conv");
450         if(common_params.data_layout == DataLayout::NCHW)
451         {
452             sg << PermuteLayer(PermutationVector(2U, 0U, 1U), DataLayout::NHWC);
453         }
454         sg << ReshapeLayer(reshape_shape).set_name(param_path + "/reshape");
455 
456         return ConcatLayer(std::move(sg));
457     }
458 
create_graph_qasymm(TensorDescriptor & input_descriptor)459     void create_graph_qasymm(TensorDescriptor &input_descriptor)
460     {
461         // Get trainable parameters data path
462         std::string data_path = common_params.data_path;
463 
464         // Add model path to data path
465         if(!data_path.empty())
466         {
467             data_path += "/cnn_data/ssd_mobilenet_qasymm8_model/";
468         }
469 
470         // Quantization info are saved as pair for each (pointwise/depthwise) convolution layer: <weight_quant_info, output_quant_info>
471         const std::vector<std::pair<QuantizationInfo, QuantizationInfo>> conv_quant_info =
472         {
473             { QuantizationInfo(0.03624850884079933f, 163), QuantizationInfo(0.22219789028167725f, 113) },   // conv0
474             { QuantizationInfo(0.0028752065263688564f, 113), QuantizationInfo(0.05433657020330429f, 128) }, // conv13_2_1_1
475             { QuantizationInfo(0.0014862528769299388f, 125), QuantizationInfo(0.05037643015384674f, 131) }, // conv13_2_3_3
476             { QuantizationInfo(0.00233650766313076f, 113), QuantizationInfo(0.04468846693634987f, 126) },   // conv13_3_1_1
477             { QuantizationInfo(0.002501056529581547f, 120), QuantizationInfo(0.06026708707213402f, 111) },  // conv13_3_3_3
478             { QuantizationInfo(0.002896666992455721f, 121), QuantizationInfo(0.037775348871946335f, 117) }, // conv13_4_1_1
479             { QuantizationInfo(0.0023875406477600336f, 122), QuantizationInfo(0.03881589323282242f, 108) }, // conv13_4_3_3
480             { QuantizationInfo(0.0022081052884459496f, 77), QuantizationInfo(0.025450613349676132f, 125) }, // conv13_5_1_1
481             { QuantizationInfo(0.00604657270014286f, 121), QuantizationInfo(0.033533502370119095f, 109) }   // conv13_5_3_3
482         };
483 
484         const std::vector<std::pair<QuantizationInfo, QuantizationInfo>> depth_quant_info =
485         {
486             { QuantizationInfo(0.03408717364072f, 131), QuantizationInfo(0.29286590218544006f, 108) },     // dwsc1
487             { QuantizationInfo(0.027518004179000854f, 107), QuantizationInfo(0.20796941220760345, 117) },  // dwsc2
488             { QuantizationInfo(0.052489638328552246f, 85), QuantizationInfo(0.4303881824016571f, 142) },   // dwsc3
489             { QuantizationInfo(0.016570359468460083f, 79), QuantizationInfo(0.10512150079011917f, 116) },  // dwsc4
490             { QuantizationInfo(0.060739465057849884f, 65), QuantizationInfo(0.15331414341926575f, 94) },   // dwsc5
491             { QuantizationInfo(0.01324534136801958f, 124), QuantizationInfo(0.13010895252227783f, 153) },  // dwsc6
492             { QuantizationInfo(0.032326459884643555f, 124), QuantizationInfo(0.11565316468477249, 156) },  // dwsc7
493             { QuantizationInfo(0.029948478564620018f, 155), QuantizationInfo(0.11413891613483429f, 146) }, // dwsc8
494             { QuantizationInfo(0.028054025024175644f, 129), QuantizationInfo(0.1142905130982399f, 140) },  // dwsc9
495             { QuantizationInfo(0.025204822421073914f, 129), QuantizationInfo(0.14668069779872894f, 149) }, // dwsc10
496             { QuantizationInfo(0.019332280382514f, 110), QuantizationInfo(0.1480235457420349f, 91) },      // dwsc11
497             { QuantizationInfo(0.0319712869822979f, 88), QuantizationInfo(0.10424695909023285f, 117) },    // dwsc12
498             { QuantizationInfo(0.04378943517804146f, 164), QuantizationInfo(0.23176774382591248f, 138) }   // dwsc13
499         };
500 
501         const std::vector<std::pair<QuantizationInfo, QuantizationInfo>> point_quant_info =
502         {
503             { QuantizationInfo(0.028777318075299263f, 144), QuantizationInfo(0.2663874328136444f, 121) },  // pw1
504             { QuantizationInfo(0.015796702355146408f, 127), QuantizationInfo(0.1739964485168457f, 111) },  // pw2
505             { QuantizationInfo(0.009349990636110306f, 127), QuantizationInfo(0.1805974692106247f, 104) },  // pw3
506             { QuantizationInfo(0.012920888140797615f, 106), QuantizationInfo(0.1205204650759697f, 100) },  // pw4
507             { QuantizationInfo(0.008119508624076843f, 145), QuantizationInfo(0.12272439152002335f, 97) },  // pw5
508             { QuantizationInfo(0.0070041813887655735f, 115), QuantizationInfo(0.0947074219584465f, 101) }, // pw6
509             { QuantizationInfo(0.004827278666198254f, 115), QuantizationInfo(0.0842885747551918f, 110) },  // pw7
510             { QuantizationInfo(0.004755120258778334f, 128), QuantizationInfo(0.08283159881830215f, 116) }, // pw8
511             { QuantizationInfo(0.007527193054556847f, 142), QuantizationInfo(0.12555131316184998f, 137) }, // pw9
512             { QuantizationInfo(0.006050156895071268f, 109), QuantizationInfo(0.10871313512325287f, 124) }, // pw10
513             { QuantizationInfo(0.00490700313821435f, 127), QuantizationInfo(0.10364262014627457f, 140) },  // pw11
514             { QuantizationInfo(0.006063731852918863, 124), QuantizationInfo(0.11241862177848816f, 125) },  // pw12
515             { QuantizationInfo(0.007901716977357864f, 139), QuantizationInfo(0.49889302253723145f, 141) }  // pw13
516         };
517 
518         // Quantization info taken from the TfLite SSD MobileNet example
519         const QuantizationInfo in_quant_info = QuantizationInfo(0.0078125f, 128);
520         // Create core graph
521         graph << InputLayer(input_descriptor.set_quantization_info(in_quant_info),
522                             get_weights_accessor(data_path, common_params.image, DataLayout::NHWC));
523         graph << ConvolutionLayer(
524                   3U, 3U, 32U,
525                   get_weights_accessor(data_path, "conv0_w.npy"),
526                   get_weights_accessor(data_path, "conv0_b.npy"),
527                   PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::CEIL), 1, conv_quant_info.at(0).first, conv_quant_info.at(0).second)
528               .set_name("conv0");
529         graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f)).set_name("conv0/relu");
530         graph << get_node_A_qasymm(graph, data_path, "conv1", 64U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(0),
531                                    point_quant_info.at(0));
532         graph << get_node_A_qasymm(graph, data_path, "conv2", 128U, PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(1),
533                                    point_quant_info.at(1));
534         graph << get_node_A_qasymm(graph, data_path, "conv3", 128U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(2),
535                                    point_quant_info.at(2));
536         graph << get_node_A_qasymm(graph, data_path, "conv4", 256U, PadStrideInfo(2U, 2U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(3),
537                                    point_quant_info.at(3));
538         graph << get_node_A_qasymm(graph, data_path, "conv5", 256U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(4),
539                                    point_quant_info.at(4));
540         graph << get_node_A_qasymm(graph, data_path, "conv6", 512U, PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(5),
541                                    point_quant_info.at(5));
542         graph << get_node_A_qasymm(graph, data_path, "conv7", 512U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(6),
543                                    point_quant_info.at(6));
544         graph << get_node_A_qasymm(graph, data_path, "conv8", 512U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(7),
545                                    point_quant_info.at(7));
546         graph << get_node_A_qasymm(graph, data_path, "conv9", 512U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(8),
547                                    point_quant_info.at(8));
548         graph << get_node_A_qasymm(graph, data_path, "conv10", 512U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(9),
549                                    point_quant_info.at(9));
550         graph << get_node_A_qasymm(graph, data_path, "conv11", 512U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(10),
551                                    point_quant_info.at(10));
552 
553         SubStream conv_13(graph);
554         conv_13 << get_node_A_qasymm(graph, data_path, "conv12", 1024U, PadStrideInfo(2U, 2U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(11),
555                                      point_quant_info.at(11));
556         conv_13 << get_node_A_qasymm(conv_13, data_path, "conv13", 1024U, PadStrideInfo(1U, 1U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), PadStrideInfo(1U, 1U, 0U, 0U), depth_quant_info.at(12),
557                                      point_quant_info.at(12));
558         SubStream conv_14(conv_13);
559         conv_14 << get_node_B_qasymm(conv_13, data_path, "conv13_2", 512U, PadStrideInfo(1U, 1U, 0U, 0U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::CEIL), conv_quant_info.at(1),
560                                      conv_quant_info.at(2));
561         SubStream conv_15(conv_14);
562         conv_15 << get_node_B_qasymm(conv_14, data_path, "conv13_3", 256U, PadStrideInfo(1U, 1U, 0U, 0U), PadStrideInfo(2U, 2U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), conv_quant_info.at(3),
563                                      conv_quant_info.at(4));
564         SubStream conv_16(conv_15);
565         conv_16 << get_node_B_qasymm(conv_15, data_path, "conv13_4", 256U, PadStrideInfo(1U, 1U, 0U, 0U), PadStrideInfo(2U, 2U, 1U, 1U, 1U, 1U, DimensionRoundingType::CEIL), conv_quant_info.at(5),
566                                      conv_quant_info.at(6));
567         SubStream conv_17(conv_16);
568         conv_17 << get_node_B_qasymm(conv_16, data_path, "conv13_5", 128U, PadStrideInfo(1U, 1U, 0U, 0U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::CEIL), conv_quant_info.at(7),
569                                      conv_quant_info.at(8));
570 
571         // box_predictor
572         const std::vector<std::pair<QuantizationInfo, QuantizationInfo>> box_enc_pred_quant_info =
573         {
574             { QuantizationInfo(0.005202020984143019f, 136), QuantizationInfo(0.08655580133199692f, 183) },   // boxpredictor0_bep
575             { QuantizationInfo(0.003121797926723957f, 132), QuantizationInfo(0.03218776360154152f, 140) },   // boxpredictor1_bep
576             { QuantizationInfo(0.002995674265548587f, 130), QuantizationInfo(0.029072262346744537f, 125) },  // boxpredictor2_bep
577             { QuantizationInfo(0.0023131705820560455f, 130), QuantizationInfo(0.026488754898309708f, 127) }, // boxpredictor3_bep
578             { QuantizationInfo(0.0013905081432312727f, 132), QuantizationInfo(0.0199890099465847f, 137) },   // boxpredictor4_bep
579             { QuantizationInfo(0.00216794665902853f, 121), QuantizationInfo(0.019798893481492996f, 151) }    // boxpredictor5_bep
580         };
581 
582         const std::vector<TensorShape> box_reshape = // NHWC
583         {
584             TensorShape(4U, 1U, 1083U), // boxpredictor0_bep_reshape
585             TensorShape(4U, 1U, 600U),  // boxpredictor1_bep_reshape
586             TensorShape(4U, 1U, 150U),  // boxpredictor2_bep_reshape
587             TensorShape(4U, 1U, 54U),   // boxpredictor3_bep_reshape
588             TensorShape(4U, 1U, 24U),   // boxpredictor4_bep_reshape
589             TensorShape(4U, 1U, 6U)     // boxpredictor5_bep_reshape
590         };
591 
592         SubStream conv_11_box_enc_pre(graph);
593         conv_11_box_enc_pre << get_node_C_qasymm(graph, data_path, "BoxPredictor_0_BEP", 12U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(0), box_reshape.at(0));
594 
595         SubStream conv_13_box_enc_pre(conv_13);
596         conv_13_box_enc_pre << get_node_C_qasymm(conv_13, data_path, "BoxPredictor_1_BEP", 24U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(1), box_reshape.at(1));
597 
598         SubStream conv_14_2_box_enc_pre(conv_14);
599         conv_14_2_box_enc_pre << get_node_C_qasymm(conv_14, data_path, "BoxPredictor_2_BEP", 24U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(2), box_reshape.at(2));
600 
601         SubStream conv_15_2_box_enc_pre(conv_15);
602         conv_15_2_box_enc_pre << get_node_C_qasymm(conv_15, data_path, "BoxPredictor_3_BEP", 24U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(3), box_reshape.at(3));
603 
604         SubStream conv_16_2_box_enc_pre(conv_16);
605         conv_16_2_box_enc_pre << get_node_C_qasymm(conv_16, data_path, "BoxPredictor_4_BEP", 24U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(4), box_reshape.at(4));
606 
607         SubStream conv_17_2_box_enc_pre(conv_17);
608         conv_17_2_box_enc_pre << get_node_C_qasymm(conv_17, data_path, "BoxPredictor_5_BEP", 24U, PadStrideInfo(1U, 1U, 0U, 0U), box_enc_pred_quant_info.at(5), box_reshape.at(5));
609 
610         SubStream              box_enc_pre(graph);
611         const QuantizationInfo bep_concate_qinfo = QuantizationInfo(0.08655580133199692f, 183);
612         box_enc_pre << ConcatLayer(arm_compute::graph::descriptors::ConcatLayerDescriptor(DataLayoutDimension::HEIGHT, bep_concate_qinfo),
613                                    std::move(conv_11_box_enc_pre), std::move(conv_13_box_enc_pre), conv_14_2_box_enc_pre, std::move(conv_15_2_box_enc_pre),
614                                    std::move(conv_16_2_box_enc_pre), std::move(conv_17_2_box_enc_pre))
615                     .set_name("BoxPredictor/concat");
616         box_enc_pre << ReshapeLayer(TensorShape(4U, 1917U)).set_name("BoxPredictor/reshape");
617 
618         // class_predictor
619         const std::vector<std::pair<QuantizationInfo, QuantizationInfo>> class_pred_quant_info =
620         {
621             { QuantizationInfo(0.002744135679677129f, 125), QuantizationInfo(0.05746262148022652f, 234) },   // boxpredictor0_cp
622             { QuantizationInfo(0.0024326108396053314f, 80), QuantizationInfo(0.03764628246426582f, 217) },   // boxpredictor1_cp
623             { QuantizationInfo(0.0013898586621508002f, 141), QuantizationInfo(0.034081317484378815f, 214) }, // boxpredictor2_cp
624             { QuantizationInfo(0.0014176908880472183f, 133), QuantizationInfo(0.033889178186655045f, 215) }, // boxpredictor3_cp
625             { QuantizationInfo(0.001090311910957098f, 125), QuantizationInfo(0.02646234817802906f, 230) },   // boxpredictor4_cp
626             { QuantizationInfo(0.001134163816459477f, 115), QuantizationInfo(0.026926767081022263f, 218) }   // boxpredictor5_cp
627         };
628 
629         const std::vector<TensorShape> class_reshape =
630         {
631             TensorShape(91U, 1083U), // boxpredictor0_cp_reshape
632             TensorShape(91U, 600U),  // boxpredictor1_cp_reshape
633             TensorShape(91U, 150U),  // boxpredictor2_cp_reshape
634             TensorShape(91U, 54U),   // boxpredictor3_cp_reshape
635             TensorShape(91U, 24U),   // boxpredictor4_cp_reshape
636             TensorShape(91U, 6U)     // boxpredictor5_cp_reshape
637         };
638 
639         SubStream conv_11_class_pre(graph);
640         conv_11_class_pre << get_node_C_qasymm(graph, data_path, "BoxPredictor_0_CP", 273U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(0), class_reshape.at(0));
641 
642         SubStream conv_13_class_pre(conv_13);
643         conv_13_class_pre << get_node_C_qasymm(conv_13, data_path, "BoxPredictor_1_CP", 546U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(1), class_reshape.at(1));
644 
645         SubStream conv_14_2_class_pre(conv_14);
646         conv_14_2_class_pre << get_node_C_qasymm(conv_14, data_path, "BoxPredictor_2_CP", 546U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(2), class_reshape.at(2));
647 
648         SubStream conv_15_2_class_pre(conv_15);
649         conv_15_2_class_pre << get_node_C_qasymm(conv_15, data_path, "BoxPredictor_3_CP", 546U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(3), class_reshape.at(3));
650 
651         SubStream conv_16_2_class_pre(conv_16);
652         conv_16_2_class_pre << get_node_C_qasymm(conv_16, data_path, "BoxPredictor_4_CP", 546U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(4), class_reshape.at(4));
653 
654         SubStream conv_17_2_class_pre(conv_17);
655         conv_17_2_class_pre << get_node_C_qasymm(conv_17, data_path, "BoxPredictor_5_CP", 546U, PadStrideInfo(1U, 1U, 0U, 0U), class_pred_quant_info.at(5), class_reshape.at(5));
656 
657         const QuantizationInfo cp_concate_qinfo = QuantizationInfo(0.0584389753639698f, 230);
658         SubStream              class_pred(graph);
659         class_pred << ConcatLayer(
660                        arm_compute::graph::descriptors::ConcatLayerDescriptor(DataLayoutDimension::WIDTH, cp_concate_qinfo),
661                        std::move(conv_11_class_pre), std::move(conv_13_class_pre), std::move(conv_14_2_class_pre),
662                        std::move(conv_15_2_class_pre), std::move(conv_16_2_class_pre), std::move(conv_17_2_class_pre))
663                    .set_name("ClassPrediction/concat");
664 
665         const QuantizationInfo logistic_out_qinfo = QuantizationInfo(0.00390625f, 0);
666         class_pred << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), logistic_out_qinfo).set_name("ClassPrediction/logistic");
667 
668         const int   max_detections            = 10;
669         const int   max_classes_per_detection = 1;
670         const float nms_score_threshold       = 0.30000001192092896f;
671         const float nms_iou_threshold         = 0.6000000238418579f;
672         const int   num_classes               = 90;
673         const float x_scale                   = 10.f;
674         const float y_scale                   = 10.f;
675         const float h_scale                   = 5.f;
676         const float w_scale                   = 5.f;
677         std::array<float, 4> scales = { y_scale, x_scale, w_scale, h_scale };
678         const QuantizationInfo anchors_qinfo = QuantizationInfo(0.006453060545027256f, 0);
679 
680         SubStream detection_ouput(box_enc_pre);
681         detection_ouput << DetectionPostProcessLayer(std::move(class_pred),
682                                                      DetectionPostProcessLayerInfo(max_detections, max_classes_per_detection, nms_score_threshold, nms_iou_threshold, num_classes, scales),
683                                                      get_weights_accessor(data_path, "anchors.npy"), anchors_qinfo)
684                         .set_name("DetectionPostProcess");
685 
686         SubStream ouput_0(detection_ouput);
687         ouput_0 << OutputLayer(get_npy_output_accessor(detection_boxes_opt->value(), TensorShape(4U, 10U), DataType::F32), 0);
688 
689         SubStream ouput_1(detection_ouput);
690         ouput_1 << OutputLayer(get_npy_output_accessor(detection_classes_opt->value(), TensorShape(10U), DataType::F32), 1);
691 
692         SubStream ouput_2(detection_ouput);
693         ouput_2 << OutputLayer(get_npy_output_accessor(detection_scores_opt->value(), TensorShape(10U), DataType::F32), 2);
694 
695         SubStream ouput_3(detection_ouput);
696         ouput_3 << OutputLayer(get_npy_output_accessor(num_detections_opt->value(), TensorShape(1U), DataType::F32), 3);
697     }
698 };
699 
700 /** Main program for MobileNetSSD
701  *
702  * Model is based on:
703  *      http://arxiv.org/abs/1512.02325
704  *      SSD: Single Shot MultiBox Detector
705  *      Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg
706  *
707  * Provenance: https://github.com/chuanqi305/MobileNet-SSD
708  *
709  * @note To list all the possible arguments execute the binary appended with the --help option
710  *
711  * @param[in] argc Number of arguments
712  * @param[in] argv Arguments
713  */
main(int argc,char ** argv)714 int main(int argc, char **argv)
715 {
716     return arm_compute::utils::run_example<GraphSSDMobilenetExample>(argc, argv);
717 }
718