xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_squeezenet_v1_1.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement Squeezenet's v1.1 network using the Compute Library's graph API */
35 class GraphSqueezenet_v1_1Example : public Example
36 {
37 public:
GraphSqueezenet_v1_1Example()38     GraphSqueezenet_v1_1Example()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1.1")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Print parameter values
59         std::cout << common_params << std::endl;
60 
61         // Get trainable parameters data path
62         std::string data_path = common_params.data_path;
63 
64         // Create a preprocessor object
65         const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
66         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
67 
68         // Create input descriptor
69         const auto        operation_layout = common_params.data_layout;
70         const TensorShape tensor_shape     = permute_shape(TensorShape(227U, 227U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
71         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72 
73         // Set weights trained layout
74         const DataLayout weights_layout = DataLayout::NCHW;
75 
76         graph << common_params.target
77               << common_params.fast_math_hint
78               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
79               << ConvolutionLayer(
80                   3U, 3U, 64U,
81                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_w.npy", weights_layout),
82                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_b.npy"),
83                   PadStrideInfo(2, 2, 0, 0))
84               .set_name("conv1")
85               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv1")
86               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1")
87               << ConvolutionLayer(
88                   1U, 1U, 16U,
89                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_w.npy", weights_layout),
90                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_b.npy"),
91                   PadStrideInfo(1, 1, 0, 0))
92               .set_name("fire2/squeeze1x1")
93               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire2/relu_squeeze1x1");
94         graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U).set_name("fire2/concat");
95         graph << ConvolutionLayer(
96                   1U, 1U, 16U,
97                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_w.npy", weights_layout),
98                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_b.npy"),
99                   PadStrideInfo(1, 1, 0, 0))
100               .set_name("fire3/squeeze1x1")
101               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire3/relu_squeeze1x1");
102         graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U).set_name("fire3/concat");
103         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool3")
104               << ConvolutionLayer(
105                   1U, 1U, 32U,
106                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_w.npy", weights_layout),
107                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_b.npy"),
108                   PadStrideInfo(1, 1, 0, 0))
109               .set_name("fire4/squeeze1x1")
110               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire4/relu_squeeze1x1");
111         graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U).set_name("fire4/concat");
112         graph << ConvolutionLayer(
113                   1U, 1U, 32U,
114                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_w.npy", weights_layout),
115                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_b.npy"),
116                   PadStrideInfo(1, 1, 0, 0))
117               .set_name("fire5/squeeze1x1")
118               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire5/relu_squeeze1x1");
119         graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U).set_name("fire5/concat");
120         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool5")
121               << ConvolutionLayer(
122                   1U, 1U, 48U,
123                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_w.npy", weights_layout),
124                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_b.npy"),
125                   PadStrideInfo(1, 1, 0, 0))
126               .set_name("fire6/squeeze1x1")
127               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire6/relu_squeeze1x1");
128         graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U).set_name("fire6/concat");
129         graph << ConvolutionLayer(
130                   1U, 1U, 48U,
131                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_w.npy", weights_layout),
132                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_b.npy"),
133                   PadStrideInfo(1, 1, 0, 0))
134               .set_name("fire7/squeeze1x1")
135               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire7/relu_squeeze1x1");
136         graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U).set_name("fire7/concat");
137         graph << ConvolutionLayer(
138                   1U, 1U, 64U,
139                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_w.npy", weights_layout),
140                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_b.npy"),
141                   PadStrideInfo(1, 1, 0, 0))
142               .set_name("fire8/squeeze1x1")
143               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire8/relu_squeeze1x1");
144         graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U).set_name("fire8/concat");
145         graph << ConvolutionLayer(
146                   1U, 1U, 64U,
147                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_w.npy", weights_layout),
148                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_b.npy"),
149                   PadStrideInfo(1, 1, 0, 0))
150               .set_name("fire9/squeeze1x1")
151               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire9/relu_squeeze1x1");
152         graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U).set_name("fire9/concat");
153         graph << ConvolutionLayer(
154                   1U, 1U, 1000U,
155                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_w.npy", weights_layout),
156                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_b.npy"),
157                   PadStrideInfo(1, 1, 0, 0))
158               .set_name("conv10")
159               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv10")
160               << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool10")
161               << FlattenLayer().set_name("flatten")
162               << SoftmaxLayer().set_name("prob")
163               << OutputLayer(get_output_accessor(common_params, 5));
164 
165         // Finalize graph
166         GraphConfig config;
167         config.num_threads        = common_params.threads;
168         config.use_tuner          = common_params.enable_tuner;
169         config.tuner_mode         = common_params.tuner_mode;
170         config.tuner_file         = common_params.tuner_file;
171         config.mlgo_file          = common_params.mlgo_file;
172         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
173         config.synthetic_type     = common_params.data_type;
174 
175         graph.finalize(common_params.target, config);
176 
177         return true;
178     }
do_run()179     void do_run() override
180     {
181         // Run graph
182         graph.run();
183     }
184 
185 private:
186     CommandLineParser  cmd_parser;
187     CommonGraphOptions common_opts;
188     CommonGraphParams  common_params;
189     Stream             graph;
190 
get_expand_fire_node(const std::string & data_path,std::string && param_path,DataLayout weights_layout,unsigned int expand1_filt,unsigned int expand3_filt)191     ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
192                                      unsigned int expand1_filt, unsigned int expand3_filt)
193     {
194         std::string total_path = "/cnn_data/squeezenet_v1_1_model/" + param_path + "_";
195         SubStream   i_a(graph);
196         i_a << ConvolutionLayer(
197                 1U, 1U, expand1_filt,
198                 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
199                 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
200                 PadStrideInfo(1, 1, 0, 0))
201             .set_name(param_path + "/expand1x1")
202             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand1x1");
203 
204         SubStream i_b(graph);
205         i_b << ConvolutionLayer(
206                 3U, 3U, expand3_filt,
207                 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
208                 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
209                 PadStrideInfo(1, 1, 1, 1))
210             .set_name(param_path + "/expand3x3")
211             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand3x3");
212 
213         return ConcatLayer(std::move(i_a), std::move(i_b));
214     }
215 };
216 
217 /** Main program for Squeezenet v1.1
218  *
219  * Model is based on:
220  *      https://arxiv.org/abs/1602.07360
221  *      "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
222  *      Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
223  *
224  * Provenance: https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel
225  *
226  * @note To list all the possible arguments execute the binary appended with the --help option
227  *
228  * @param[in] argc Number of arguments
229  * @param[in] argv Arguments
230  */
main(int argc,char ** argv)231 int main(int argc, char **argv)
232 {
233     return arm_compute::utils::run_example<GraphSqueezenet_v1_1Example>(argc, argv);
234 }
235