1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust
34*c217d954SCole Faust /** Example demonstrating how to implement ResNetV2_50 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphResNetV2_50Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphResNetV2_50Example()38*c217d954SCole Faust GraphResNetV2_50Example()
39*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNetV2_50")
40*c217d954SCole Faust {
41*c217d954SCole Faust }
do_setup(int argc,char ** argv)42*c217d954SCole Faust bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust {
44*c217d954SCole Faust // Parse arguments
45*c217d954SCole Faust cmd_parser.parse(argc, argv);
46*c217d954SCole Faust cmd_parser.validate();
47*c217d954SCole Faust
48*c217d954SCole Faust // Consume common parameters
49*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust
51*c217d954SCole Faust // Return when help menu is requested
52*c217d954SCole Faust if(common_params.help)
53*c217d954SCole Faust {
54*c217d954SCole Faust cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust return false;
56*c217d954SCole Faust }
57*c217d954SCole Faust
58*c217d954SCole Faust // Print parameter values
59*c217d954SCole Faust std::cout << common_params << std::endl;
60*c217d954SCole Faust
61*c217d954SCole Faust // Get trainable parameters data path
62*c217d954SCole Faust std::string data_path = common_params.data_path;
63*c217d954SCole Faust std::string model_path = "/cnn_data/resnet_v2_50_model/";
64*c217d954SCole Faust if(!data_path.empty())
65*c217d954SCole Faust {
66*c217d954SCole Faust data_path += model_path;
67*c217d954SCole Faust }
68*c217d954SCole Faust
69*c217d954SCole Faust // Create a preprocessor object
70*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
71*c217d954SCole Faust
72*c217d954SCole Faust // Create input descriptor
73*c217d954SCole Faust const auto operation_layout = common_params.data_layout;
74*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
75*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
76*c217d954SCole Faust
77*c217d954SCole Faust // Set weights trained layout
78*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
79*c217d954SCole Faust
80*c217d954SCole Faust graph << common_params.target
81*c217d954SCole Faust << common_params.fast_math_hint
82*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
83*c217d954SCole Faust << ConvolutionLayer(
84*c217d954SCole Faust 7U, 7U, 64U,
85*c217d954SCole Faust get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
86*c217d954SCole Faust get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
87*c217d954SCole Faust PadStrideInfo(2, 2, 3, 3))
88*c217d954SCole Faust .set_name("conv1/convolution")
89*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool1/MaxPool");
90*c217d954SCole Faust
91*c217d954SCole Faust add_residual_block(data_path, "block1", weights_layout, 64, 3, 2);
92*c217d954SCole Faust add_residual_block(data_path, "block2", weights_layout, 128, 4, 2);
93*c217d954SCole Faust add_residual_block(data_path, "block3", weights_layout, 256, 6, 2);
94*c217d954SCole Faust add_residual_block(data_path, "block4", weights_layout, 512, 3, 1);
95*c217d954SCole Faust
96*c217d954SCole Faust graph << BatchNormalizationLayer(
97*c217d954SCole Faust get_weights_accessor(data_path, "postnorm_moving_mean.npy"),
98*c217d954SCole Faust get_weights_accessor(data_path, "postnorm_moving_variance.npy"),
99*c217d954SCole Faust get_weights_accessor(data_path, "postnorm_gamma.npy"),
100*c217d954SCole Faust get_weights_accessor(data_path, "postnorm_beta.npy"),
101*c217d954SCole Faust 0.000009999999747378752f)
102*c217d954SCole Faust .set_name("postnorm/BatchNorm")
103*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("postnorm/Relu")
104*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool5")
105*c217d954SCole Faust << ConvolutionLayer(
106*c217d954SCole Faust 1U, 1U, 1001U,
107*c217d954SCole Faust get_weights_accessor(data_path, "logits_weights.npy", weights_layout),
108*c217d954SCole Faust get_weights_accessor(data_path, "logits_biases.npy"),
109*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
110*c217d954SCole Faust .set_name("logits/convolution")
111*c217d954SCole Faust << FlattenLayer().set_name("predictions/Reshape")
112*c217d954SCole Faust << SoftmaxLayer().set_name("predictions/Softmax")
113*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
114*c217d954SCole Faust
115*c217d954SCole Faust // Finalize graph
116*c217d954SCole Faust GraphConfig config;
117*c217d954SCole Faust config.num_threads = common_params.threads;
118*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
119*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
120*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
121*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
122*c217d954SCole Faust config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
123*c217d954SCole Faust config.synthetic_type = common_params.data_type;
124*c217d954SCole Faust
125*c217d954SCole Faust graph.finalize(common_params.target, config);
126*c217d954SCole Faust
127*c217d954SCole Faust return true;
128*c217d954SCole Faust }
129*c217d954SCole Faust
do_run()130*c217d954SCole Faust void do_run() override
131*c217d954SCole Faust {
132*c217d954SCole Faust // Run graph
133*c217d954SCole Faust graph.run();
134*c217d954SCole Faust }
135*c217d954SCole Faust
136*c217d954SCole Faust private:
137*c217d954SCole Faust CommandLineParser cmd_parser;
138*c217d954SCole Faust CommonGraphOptions common_opts;
139*c217d954SCole Faust CommonGraphParams common_params;
140*c217d954SCole Faust Stream graph;
141*c217d954SCole Faust
add_residual_block(const std::string & data_path,const std::string & name,DataLayout weights_layout,unsigned int base_depth,unsigned int num_units,unsigned int stride)142*c217d954SCole Faust void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout,
143*c217d954SCole Faust unsigned int base_depth, unsigned int num_units, unsigned int stride)
144*c217d954SCole Faust {
145*c217d954SCole Faust for(unsigned int i = 0; i < num_units; ++i)
146*c217d954SCole Faust {
147*c217d954SCole Faust // Generate unit names
148*c217d954SCole Faust std::stringstream unit_path_ss;
149*c217d954SCole Faust unit_path_ss << name << "_unit_" << (i + 1) << "_bottleneck_v2_";
150*c217d954SCole Faust std::stringstream unit_name_ss;
151*c217d954SCole Faust unit_name_ss << name << "/unit" << (i + 1) << "/bottleneck_v2/";
152*c217d954SCole Faust
153*c217d954SCole Faust std::string unit_path = unit_path_ss.str();
154*c217d954SCole Faust std::string unit_name = unit_name_ss.str();
155*c217d954SCole Faust
156*c217d954SCole Faust const TensorShape last_shape = graph.graph().node(graph.tail_node())->output(0)->desc().shape;
157*c217d954SCole Faust unsigned int depth_in = last_shape[arm_compute::get_data_layout_dimension_index(common_params.data_layout, DataLayoutDimension::CHANNEL)];
158*c217d954SCole Faust unsigned int depth_out = base_depth * 4;
159*c217d954SCole Faust
160*c217d954SCole Faust // All units have stride 1 apart from last one
161*c217d954SCole Faust unsigned int middle_stride = (i == (num_units - 1)) ? stride : 1;
162*c217d954SCole Faust
163*c217d954SCole Faust // Preact
164*c217d954SCole Faust SubStream preact(graph);
165*c217d954SCole Faust preact << BatchNormalizationLayer(
166*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "preact_moving_mean.npy"),
167*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "preact_moving_variance.npy"),
168*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "preact_gamma.npy"),
169*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "preact_beta.npy"),
170*c217d954SCole Faust 0.000009999999747378752f)
171*c217d954SCole Faust .set_name(unit_name + "preact/BatchNorm")
172*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "preact/Relu");
173*c217d954SCole Faust
174*c217d954SCole Faust // Create bottleneck path
175*c217d954SCole Faust SubStream shortcut(graph);
176*c217d954SCole Faust if(depth_in == depth_out)
177*c217d954SCole Faust {
178*c217d954SCole Faust if(middle_stride != 1)
179*c217d954SCole Faust {
180*c217d954SCole Faust shortcut << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, common_params.data_layout, PadStrideInfo(middle_stride, middle_stride, 0, 0), true)).set_name(unit_name + "shortcut/MaxPool");
181*c217d954SCole Faust }
182*c217d954SCole Faust }
183*c217d954SCole Faust else
184*c217d954SCole Faust {
185*c217d954SCole Faust shortcut.forward_tail(preact.tail_node());
186*c217d954SCole Faust shortcut << ConvolutionLayer(
187*c217d954SCole Faust 1U, 1U, depth_out,
188*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "shortcut_weights.npy", weights_layout),
189*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "shortcut_biases.npy", weights_layout),
190*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
191*c217d954SCole Faust .set_name(unit_name + "shortcut/convolution");
192*c217d954SCole Faust }
193*c217d954SCole Faust
194*c217d954SCole Faust // Create residual path
195*c217d954SCole Faust SubStream residual(preact);
196*c217d954SCole Faust residual << ConvolutionLayer(
197*c217d954SCole Faust 1U, 1U, base_depth,
198*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
199*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
200*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
201*c217d954SCole Faust .set_name(unit_name + "conv1/convolution")
202*c217d954SCole Faust << BatchNormalizationLayer(
203*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
204*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
205*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
206*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
207*c217d954SCole Faust 0.000009999999747378752f)
208*c217d954SCole Faust .set_name(unit_name + "conv1/BatchNorm")
209*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
210*c217d954SCole Faust << ConvolutionLayer(
211*c217d954SCole Faust 3U, 3U, base_depth,
212*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
213*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
214*c217d954SCole Faust PadStrideInfo(middle_stride, middle_stride, 1, 1))
215*c217d954SCole Faust .set_name(unit_name + "conv2/convolution")
216*c217d954SCole Faust << BatchNormalizationLayer(
217*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
218*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
219*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
220*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
221*c217d954SCole Faust 0.000009999999747378752f)
222*c217d954SCole Faust .set_name(unit_name + "conv2/BatchNorm")
223*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
224*c217d954SCole Faust << ConvolutionLayer(
225*c217d954SCole Faust 1U, 1U, depth_out,
226*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
227*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv3_biases.npy", weights_layout),
228*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
229*c217d954SCole Faust .set_name(unit_name + "conv3/convolution");
230*c217d954SCole Faust
231*c217d954SCole Faust graph << EltwiseLayer(std::move(shortcut), std::move(residual), EltwiseOperation::Add).set_name(unit_name + "add");
232*c217d954SCole Faust }
233*c217d954SCole Faust }
234*c217d954SCole Faust };
235*c217d954SCole Faust
236*c217d954SCole Faust /** Main program for ResNetV2_50
237*c217d954SCole Faust *
238*c217d954SCole Faust * Model is based on:
239*c217d954SCole Faust * https://arxiv.org/abs/1603.05027
240*c217d954SCole Faust * "Identity Mappings in Deep Residual Networks"
241*c217d954SCole Faust * Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
242*c217d954SCole Faust *
243*c217d954SCole Faust * Provenance: download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
244*c217d954SCole Faust *
245*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
246*c217d954SCole Faust *
247*c217d954SCole Faust * @param[in] argc Number of arguments
248*c217d954SCole Faust * @param[in] argv Arguments
249*c217d954SCole Faust */
main(int argc,char ** argv)250*c217d954SCole Faust int main(int argc, char **argv)
251*c217d954SCole Faust {
252*c217d954SCole Faust return arm_compute::utils::run_example<GraphResNetV2_50Example>(argc, argv);
253*c217d954SCole Faust }
254