xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_resnet_v2_50.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement ResNetV2_50 network using the Compute Library's graph API */
35 class GraphResNetV2_50Example : public Example
36 {
37 public:
GraphResNetV2_50Example()38     GraphResNetV2_50Example()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNetV2_50")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Print parameter values
59         std::cout << common_params << std::endl;
60 
61         // Get trainable parameters data path
62         std::string data_path  = common_params.data_path;
63         std::string model_path = "/cnn_data/resnet_v2_50_model/";
64         if(!data_path.empty())
65         {
66             data_path += model_path;
67         }
68 
69         // Create a preprocessor object
70         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
71 
72         // Create input descriptor
73         const auto        operation_layout = common_params.data_layout;
74         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
75         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
76 
77         // Set weights trained layout
78         const DataLayout weights_layout = DataLayout::NCHW;
79 
80         graph << common_params.target
81               << common_params.fast_math_hint
82               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
83               << ConvolutionLayer(
84                   7U, 7U, 64U,
85                   get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
86                   get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
87                   PadStrideInfo(2, 2, 3, 3))
88               .set_name("conv1/convolution")
89               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool1/MaxPool");
90 
91         add_residual_block(data_path, "block1", weights_layout, 64, 3, 2);
92         add_residual_block(data_path, "block2", weights_layout, 128, 4, 2);
93         add_residual_block(data_path, "block3", weights_layout, 256, 6, 2);
94         add_residual_block(data_path, "block4", weights_layout, 512, 3, 1);
95 
96         graph << BatchNormalizationLayer(
97                   get_weights_accessor(data_path, "postnorm_moving_mean.npy"),
98                   get_weights_accessor(data_path, "postnorm_moving_variance.npy"),
99                   get_weights_accessor(data_path, "postnorm_gamma.npy"),
100                   get_weights_accessor(data_path, "postnorm_beta.npy"),
101                   0.000009999999747378752f)
102               .set_name("postnorm/BatchNorm")
103               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("postnorm/Relu")
104               << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool5")
105               << ConvolutionLayer(
106                   1U, 1U, 1001U,
107                   get_weights_accessor(data_path, "logits_weights.npy", weights_layout),
108                   get_weights_accessor(data_path, "logits_biases.npy"),
109                   PadStrideInfo(1, 1, 0, 0))
110               .set_name("logits/convolution")
111               << FlattenLayer().set_name("predictions/Reshape")
112               << SoftmaxLayer().set_name("predictions/Softmax")
113               << OutputLayer(get_output_accessor(common_params, 5));
114 
115         // Finalize graph
116         GraphConfig config;
117         config.num_threads        = common_params.threads;
118         config.use_tuner          = common_params.enable_tuner;
119         config.tuner_mode         = common_params.tuner_mode;
120         config.tuner_file         = common_params.tuner_file;
121         config.mlgo_file          = common_params.mlgo_file;
122         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
123         config.synthetic_type     = common_params.data_type;
124 
125         graph.finalize(common_params.target, config);
126 
127         return true;
128     }
129 
do_run()130     void do_run() override
131     {
132         // Run graph
133         graph.run();
134     }
135 
136 private:
137     CommandLineParser  cmd_parser;
138     CommonGraphOptions common_opts;
139     CommonGraphParams  common_params;
140     Stream             graph;
141 
add_residual_block(const std::string & data_path,const std::string & name,DataLayout weights_layout,unsigned int base_depth,unsigned int num_units,unsigned int stride)142     void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout,
143                             unsigned int base_depth, unsigned int num_units, unsigned int stride)
144     {
145         for(unsigned int i = 0; i < num_units; ++i)
146         {
147             // Generate unit names
148             std::stringstream unit_path_ss;
149             unit_path_ss << name << "_unit_" << (i + 1) << "_bottleneck_v2_";
150             std::stringstream unit_name_ss;
151             unit_name_ss << name << "/unit" << (i + 1) << "/bottleneck_v2/";
152 
153             std::string unit_path = unit_path_ss.str();
154             std::string unit_name = unit_name_ss.str();
155 
156             const TensorShape last_shape = graph.graph().node(graph.tail_node())->output(0)->desc().shape;
157             unsigned int      depth_in   = last_shape[arm_compute::get_data_layout_dimension_index(common_params.data_layout, DataLayoutDimension::CHANNEL)];
158             unsigned int      depth_out  = base_depth * 4;
159 
160             // All units have stride 1 apart from last one
161             unsigned int middle_stride = (i == (num_units - 1)) ? stride : 1;
162 
163             // Preact
164             SubStream preact(graph);
165             preact << BatchNormalizationLayer(
166                        get_weights_accessor(data_path, unit_path + "preact_moving_mean.npy"),
167                        get_weights_accessor(data_path, unit_path + "preact_moving_variance.npy"),
168                        get_weights_accessor(data_path, unit_path + "preact_gamma.npy"),
169                        get_weights_accessor(data_path, unit_path + "preact_beta.npy"),
170                        0.000009999999747378752f)
171                    .set_name(unit_name + "preact/BatchNorm")
172                    << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "preact/Relu");
173 
174             // Create bottleneck path
175             SubStream shortcut(graph);
176             if(depth_in == depth_out)
177             {
178                 if(middle_stride != 1)
179                 {
180                     shortcut << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, common_params.data_layout, PadStrideInfo(middle_stride, middle_stride, 0, 0), true)).set_name(unit_name + "shortcut/MaxPool");
181                 }
182             }
183             else
184             {
185                 shortcut.forward_tail(preact.tail_node());
186                 shortcut << ConvolutionLayer(
187                              1U, 1U, depth_out,
188                              get_weights_accessor(data_path, unit_path + "shortcut_weights.npy", weights_layout),
189                              get_weights_accessor(data_path, unit_path + "shortcut_biases.npy", weights_layout),
190                              PadStrideInfo(1, 1, 0, 0))
191                          .set_name(unit_name + "shortcut/convolution");
192             }
193 
194             // Create residual path
195             SubStream residual(preact);
196             residual << ConvolutionLayer(
197                          1U, 1U, base_depth,
198                          get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
199                          std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
200                          PadStrideInfo(1, 1, 0, 0))
201                      .set_name(unit_name + "conv1/convolution")
202                      << BatchNormalizationLayer(
203                          get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
204                          get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
205                          get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
206                          get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
207                          0.000009999999747378752f)
208                      .set_name(unit_name + "conv1/BatchNorm")
209                      << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
210                      << ConvolutionLayer(
211                          3U, 3U, base_depth,
212                          get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
213                          std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
214                          PadStrideInfo(middle_stride, middle_stride, 1, 1))
215                      .set_name(unit_name + "conv2/convolution")
216                      << BatchNormalizationLayer(
217                          get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
218                          get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
219                          get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
220                          get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
221                          0.000009999999747378752f)
222                      .set_name(unit_name + "conv2/BatchNorm")
223                      << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
224                      << ConvolutionLayer(
225                          1U, 1U, depth_out,
226                          get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
227                          get_weights_accessor(data_path, unit_path + "conv3_biases.npy", weights_layout),
228                          PadStrideInfo(1, 1, 0, 0))
229                      .set_name(unit_name + "conv3/convolution");
230 
231             graph << EltwiseLayer(std::move(shortcut), std::move(residual), EltwiseOperation::Add).set_name(unit_name + "add");
232         }
233     }
234 };
235 
236 /** Main program for ResNetV2_50
237  *
238  * Model is based on:
239  *      https://arxiv.org/abs/1603.05027
240  *      "Identity Mappings in Deep Residual Networks"
241  *      Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
242  *
243  * Provenance: download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
244  *
245  * @note To list all the possible arguments execute the binary appended with the --help option
246  *
247  * @param[in] argc Number of arguments
248  * @param[in] argv Arguments
249  */
main(int argc,char ** argv)250 int main(int argc, char **argv)
251 {
252     return arm_compute::utils::run_example<GraphResNetV2_50Example>(argc, argv);
253 }
254