xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_inception_resnet_v1.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 const float batch_norm_epsilon = 0.0010000000474974513f;
35 
36 /** Example demonstrating how to implement Inception ResNet V1 network using the Compute Library's graph API */
37 class InceptionResNetV1Example final : public Example
38 {
39 public:
InceptionResNetV1Example()40     InceptionResNetV1Example()
41         : cmd_parser(), common_opts(cmd_parser), common_params(), model_input_width(nullptr), model_input_height(nullptr), graph(0, "InceptionResNetV1")
42     {
43         model_input_width  = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 512);
44         model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 512);
45 
46         // Add model id option
47         model_input_width->set_help("Input image width.");
48         model_input_height->set_help("Input image height.");
49     }
50     InceptionResNetV1Example(const InceptionResNetV1Example &) = delete;
51     InceptionResNetV1Example &operator=(const InceptionResNetV1Example &) = delete;
52     ~InceptionResNetV1Example() override                                  = default;
do_setup(int argc,char ** argv)53     bool do_setup(int argc, char **argv) override
54     {
55         // Parse arguments
56         cmd_parser.parse(argc, argv);
57         cmd_parser.validate();
58 
59         // Consume common parameters
60         common_params = consume_common_graph_parameters(common_opts);
61 
62         // Return when help menu is requested
63         if(common_params.help)
64         {
65             cmd_parser.print_help(argv[0]);
66             return false;
67         }
68         // Get input image width and height
69         const unsigned int image_width  = model_input_width->value();
70         const unsigned int image_height = model_input_height->value();
71 
72         // Set default layout if needed
73         if(!common_opts.data_layout->is_set() && common_params.target == Target::NEON)
74         {
75             common_params.data_layout = DataLayout::NCHW;
76         }
77 
78         // Checks
79         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
80 
81         // Print parameter values
82         std::cout << common_params << std::endl;
83         std::cout << "Image width: " << image_width << std::endl;
84         std::cout << "Image height: " << image_height << std::endl;
85 
86         // Create model path
87         std::string data_path  = common_params.data_path;
88         std::string model_path = "/cnn_data/inception_resnet_v1_model/";
89         if(!data_path.empty())
90         {
91             data_path += model_path;
92         }
93 
94         // Create a preprocessor object
95         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>(0.f, 1.f);
96 
97         // Create input descriptor
98         const auto        operation_layout = common_params.data_layout;
99         const TensorShape tensor_shape     = permute_shape(TensorShape(image_width, image_height, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
100         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
101 
102         // Set weights trained layout
103         const DataLayout weights_layout = DataLayout::NCHW;
104 
105         graph << common_params.target
106               << common_params.fast_math_hint
107               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
108               // Conv2d_1a_3x3
109               << ConvolutionLayer(3U, 3U, 32U,
110                                   get_weights_accessor(data_path, "Conv2d_1a_3x3_weights.npy", weights_layout),
111                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
112                                   PadStrideInfo(2, 2, 0, 0))
113               .set_name("Conv2d_1a_3x3/convolution")
114               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
115                                          get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
116                                          get_random_accessor(1.f, 1.f),
117                                          get_weights_accessor(data_path, "Conv2d_1a_3x3_BatchNorm_beta.npy"),
118                                          batch_norm_epsilon)
119               .set_name("Conv2d_1a_3x3/BatchNorm")
120               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_1a_3x3/Relu")
121               // Conv2d_2a_3x3
122               << ConvolutionLayer(3U, 3U, 32U,
123                                   get_weights_accessor(data_path, "Conv2d_2a_3x3_weights.npy", weights_layout),
124                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
125                                   PadStrideInfo(1, 1, 0, 0))
126               .set_name("Conv2d_2a_3x3/convolution")
127               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_mean.npy"),
128                                          get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_moving_variance.npy"),
129                                          get_random_accessor(1.f, 1.f),
130                                          get_weights_accessor(data_path, "Conv2d_2a_3x3_BatchNorm_beta.npy"),
131                                          batch_norm_epsilon)
132               .set_name("Conv2d_2a_3x3/BatchNorm")
133               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2a_3x3/Relu")
134               // Conv2d_2b_3x3
135               << ConvolutionLayer(3U, 3U, 64U,
136                                   get_weights_accessor(data_path, "Conv2d_2b_3x3_weights.npy", weights_layout),
137                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
138                                   PadStrideInfo(1, 1, 1, 1))
139               .set_name("Conv2d_2b_3x3/convolution")
140               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_mean.npy"),
141                                          get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_moving_variance.npy"),
142                                          get_random_accessor(1.f, 1.f),
143                                          get_weights_accessor(data_path, "Conv2d_2b_3x3_BatchNorm_beta.npy"),
144                                          batch_norm_epsilon)
145               .set_name("Conv2d_2b_3x3/BatchNorm")
146               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_2b_3x3/Relu")
147               // MaxPool_3a_3x3
148               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true)).set_name("MaxPool_3a_3x3/MaxPool")
149               // Conv2d_3b_1x1
150               << ConvolutionLayer(1U, 1U, 80U,
151                                   get_weights_accessor(data_path, "Conv2d_3b_1x1_weights.npy", weights_layout),
152                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
153                                   PadStrideInfo(1, 1, 0, 0))
154               .set_name("Conv2d_3b_1x1/convolution")
155               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_mean.npy"),
156                                          get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_moving_variance.npy"),
157                                          get_random_accessor(1.f, 1.f),
158                                          get_weights_accessor(data_path, "Conv2d_3b_1x1_BatchNorm_beta.npy"),
159                                          batch_norm_epsilon)
160               .set_name("Conv2d_3b_1x1/BatchNorm")
161               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_3b_1x1/Relu")
162               // Conv2d_4a_3x3
163               << ConvolutionLayer(3U, 3U, 192U,
164                                   get_weights_accessor(data_path, "Conv2d_4a_3x3_weights.npy", weights_layout),
165                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
166                                   PadStrideInfo(1, 1, 0, 0))
167               .set_name("Conv2d_4a_3x3/convolution")
168               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_mean.npy"),
169                                          get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_moving_variance.npy"),
170                                          get_random_accessor(1.f, 1.f),
171                                          get_weights_accessor(data_path, "Conv2d_4a_3x3_BatchNorm_beta.npy"),
172                                          batch_norm_epsilon)
173               .set_name("Conv2d_4a_3x3/BatchNorm")
174               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4a_3x3/Relu")
175               // Conv2d_4b_3x3
176               << ConvolutionLayer(3U, 3U, 256U,
177                                   get_weights_accessor(data_path, "Conv2d_4b_3x3_weights.npy", weights_layout),
178                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
179                                   PadStrideInfo(2, 2, 0, 0))
180               .set_name("Conv2d_4a_3x3/convolution")
181               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_moving_mean.npy"),
182                                          get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_moving_variance.npy"),
183                                          get_random_accessor(1.f, 1.f),
184                                          get_weights_accessor(data_path, "Conv2d_4b_3x3_BatchNorm_beta.npy"),
185                                          batch_norm_epsilon)
186               .set_name("Conv2d_4b_3x3/BatchNorm")
187               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv2d_4b_3x3/Relu");
188 
189         // 5 x Inception-resnet-A
190         block35_repeat(data_path, weights_layout, 5);
191         // Reduction-A
192         reduction_a(data_path, weights_layout);
193         // 10 x Inception-Resnet-B
194         block17_repeat(data_path, weights_layout, 10);
195         // Reduction-B
196         reduction_b(data_path, weights_layout);
197         // 5 x Inception-resnet-C
198         block8_repeat(data_path, weights_layout, 5, 0.2f, true);
199 
200         block8_repeat(data_path, weights_layout, 1, 1.f, false);
201 
202         // Logits tail
203         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("Logits/AvgPool_1a_8x8")
204               << FlattenLayer().set_name("Logits/Flatten")
205               << FullyConnectedLayer(
206                   128U,
207                   get_weights_accessor(data_path, "Logits_Logits_weights.npy", weights_layout),
208                   get_weights_accessor(data_path, "Logits_Logits_biases.npy"))
209               .set_name("Logits/Logits")
210               << OutputLayer(std::make_unique<DummyAccessor>(0));
211 
212         // Finalize graph
213         GraphConfig config;
214         config.num_threads = common_params.threads;
215         config.use_tuner   = common_params.enable_tuner;
216         config.tuner_mode  = common_params.tuner_mode;
217         config.tuner_file  = common_params.tuner_file;
218         config.mlgo_file   = common_params.mlgo_file;
219 
220         graph.finalize(common_params.target, config);
221 
222         return true;
223     }
224 
do_run()225     void do_run() override
226     {
227         graph.run();
228     }
229 
230 private:
231     CommandLineParser           cmd_parser;
232     CommonGraphOptions          common_opts;
233     CommonGraphParams           common_params;
234     SimpleOption<unsigned int> *model_input_width{ nullptr };
235     SimpleOption<unsigned int> *model_input_height{ nullptr };
236     Stream                      graph;
237 
238 private:
block35_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks)239     void block35_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
240     {
241         for(unsigned int i = 0; i < num_blocks; ++i)
242         {
243             std::stringstream unit_path_ss;
244             unit_path_ss << "Repeat_block35_" << (i + 1) << "_";
245             std::stringstream unit_name_ss;
246             unit_name_ss << "Repeat/block35_" << (i + 1) << "/";
247 
248             std::string unit_path = unit_path_ss.str();
249             std::string unit_name = unit_name_ss.str();
250 
251             // Create left and write substreams
252             SubStream i_l(graph);
253             SubStream i_r(graph);
254 
255             // Branch 0
256             SubStream i_la(i_l);
257             i_la << ConvolutionLayer(1U, 1U, 32U,
258                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
259                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
260                                      PadStrideInfo(1, 1, 0, 0))
261                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
262                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
263                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
264                                             get_random_accessor(1.f, 1.f),
265                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
266                                             batch_norm_epsilon)
267                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
268                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
269 
270             // Branch 1
271             SubStream i_lb(i_l);
272             i_lb << ConvolutionLayer(1U, 1U, 32U,
273                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
274                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
275                                      PadStrideInfo(1, 1, 0, 0))
276                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
277                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
278                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
279                                             get_random_accessor(1.f, 1.f),
280                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
281                                             batch_norm_epsilon)
282                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
283                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
284                  << ConvolutionLayer(3U, 3U, 32U,
285                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
286                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
287                                      PadStrideInfo(1, 1, 1, 1))
288                  .set_name(unit_name + "Branch_1/Conv2d_0b_3x3/convolution")
289                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
290                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
291                                             get_random_accessor(1.f, 1.f),
292                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
293                                             batch_norm_epsilon)
294                  .set_name(unit_name + "Branch_1/Conv2d_0b_3x3/BatchNorm")
295                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_3x3/Relu");
296 
297             // Branch 2
298             SubStream i_lc(i_l);
299             i_lc << ConvolutionLayer(1U, 1U, 32U,
300                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
301                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
302                                      PadStrideInfo(1, 1, 0, 0))
303                  .set_name(unit_name + "Branch_2/Conv2d_0a_1x1/convolution")
304                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
305                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
306                                             get_random_accessor(1.f, 1.f),
307                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
308                                             batch_norm_epsilon)
309                  .set_name(unit_name + "Branch_2/Conv2d_0a_1x1/BatchNorm")
310                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0a_1x1/Relu")
311                  << ConvolutionLayer(3U, 3U, 32U,
312                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
313                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
314                                      PadStrideInfo(1, 1, 1, 1))
315                  .set_name(unit_name + "Branch_2/Conv2d_0b_3x3/convolution")
316                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
317                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
318                                             get_random_accessor(1.f, 1.f),
319                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
320                                             batch_norm_epsilon)
321                  .set_name(unit_name + "Branch_2/Conv2d_0b_3x3/BatchNorm")
322                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0b_3x3/Relu")
323                  << ConvolutionLayer(3U, 3U, 32U,
324                                      get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_weights.npy", weights_layout),
325                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
326                                      PadStrideInfo(1, 1, 1, 1))
327                  .set_name(unit_name + "Branch_2/Conv2d_0c_3x3/convolution")
328                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
329                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
330                                             get_random_accessor(1.f, 1.f),
331                                             get_weights_accessor(data_path, unit_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
332                                             batch_norm_epsilon)
333                  .set_name(unit_name + "Branch_2/Conv2d_0c_3x3/BatchNorm")
334                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_2/Conv2d_0c_3x3/Relu");
335 
336             // Concatenate
337             i_l << ConcatLayer(std::move(i_la), std::move(i_lb), std::move(i_lc)).set_name(unit_name + "concat")
338                 << ConvolutionLayer(1U, 1U, 256U,
339                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
340                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
341                                     PadStrideInfo(1, 1, 0, 0))
342                 .set_name(unit_name + "Conv2d_1x1/convolution")
343                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.17f, 0.f)).set_name(unit_name + "mul");
344 
345             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
346                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
347         }
348     }
349 
block17_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks)350     void block17_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks)
351     {
352         for(unsigned int i = 0; i < num_blocks; ++i)
353         {
354             std::stringstream unit_path_ss;
355             unit_path_ss << "Repeat_1_block17_" << (i + 1) << "_";
356             std::stringstream unit_name_ss;
357             unit_name_ss << "Repeat_1/block17_" << (i + 1) << "/";
358 
359             std::string unit_path = unit_path_ss.str();
360             std::string unit_name = unit_name_ss.str();
361 
362             // Create left and write substreams
363             SubStream i_l(graph);
364             SubStream i_r(graph);
365 
366             // Branch 0
367             SubStream i_la(i_l);
368             i_la << ConvolutionLayer(1U, 1U, 128U,
369                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
370                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
371                                      PadStrideInfo(1, 1, 0, 0))
372                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
373                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
374                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
375                                             get_random_accessor(1.f, 1.f),
376                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
377                                             batch_norm_epsilon)
378                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
379                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
380 
381             // Branch 1
382             SubStream i_lb(i_l);
383             i_lb << ConvolutionLayer(1U, 1U, 128U,
384                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
385                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
386                                      PadStrideInfo(1, 1, 0, 0))
387                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
388                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
389                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
390                                             get_random_accessor(1.f, 1.f),
391                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
392                                             batch_norm_epsilon)
393                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
394                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
395                  << ConvolutionLayer(7U, 1U, 128U,
396                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_weights.npy", weights_layout),
397                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
398                                      PadStrideInfo(1, 1, 3, 0))
399                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x7/convolution")
400                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
401                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
402                                             get_random_accessor(1.f, 1.f),
403                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
404                                             batch_norm_epsilon)
405                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x7/BatchNorm")
406                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x7/Relu")
407                  << ConvolutionLayer(1U, 7U, 128U,
408                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_weights.npy", weights_layout),
409                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
410                                      PadStrideInfo(1, 1, 0, 3))
411                  .set_name(unit_name + "Branch_1/Conv2d_0c_7x1/convolution")
412                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
413                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
414                                             get_random_accessor(1.f, 1.f),
415                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
416                                             batch_norm_epsilon)
417                  .set_name(unit_name + "Branch_1/Conv2d_0c_7x1/BatchNorm")
418                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_7x1/Relu");
419 
420             // Concatenate
421             i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
422                 << ConvolutionLayer(1U, 1U, 896U,
423                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
424                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
425                                     PadStrideInfo(1, 1, 0, 0))
426                 .set_name(unit_name + "Conv2d_1x1/convolution")
427                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.10f, 0.f)).set_name(unit_name + "mul");
428 
429             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add")
430                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
431         }
432     }
433 
block8_repeat(const std::string & data_path,DataLayout weights_layout,unsigned int num_blocks,float scale,bool has_activation)434     void block8_repeat(const std::string &data_path, DataLayout weights_layout, unsigned int num_blocks, float scale, bool has_activation)
435     {
436         for(unsigned int i = 0; i < num_blocks; ++i)
437         {
438             std::stringstream unit_path_ss;
439             std::stringstream unit_name_ss;
440             if(num_blocks != 1)
441             {
442                 unit_path_ss << "Repeat_2_block8_" << (i + 1) << "_";
443                 unit_name_ss << "Repeat_2/block8_" << (i + 1) << "/";
444             }
445             else
446             {
447                 unit_path_ss << "Block8_";
448                 unit_name_ss << "Block8/";
449             }
450 
451             std::string unit_path = unit_path_ss.str();
452             std::string unit_name = unit_name_ss.str();
453 
454             // Create left and write substreams
455             SubStream i_l(graph);
456             SubStream i_r(graph);
457 
458             // Branch 0
459             SubStream i_la(i_l);
460             i_la << ConvolutionLayer(1U, 1U, 192U,
461                                      get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_weights.npy", weights_layout),
462                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
463                                      PadStrideInfo(1, 1, 0, 0))
464                  .set_name(unit_name + "Branch_0/Conv2d_1x1/convolution")
465                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_mean.npy"),
466                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_moving_variance.npy"),
467                                             get_random_accessor(1.f, 1.f),
468                                             get_weights_accessor(data_path, unit_path + "Branch_0_Conv2d_1x1_BatchNorm_beta.npy"),
469                                             batch_norm_epsilon)
470                  .set_name(unit_name + "Branch_0/Conv2d_1x1/BatchNorm")
471                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_0/Conv2d_1x1/Relu");
472 
473             // Branch 1
474             SubStream i_lb(i_l);
475             i_lb << ConvolutionLayer(1U, 1U, 192U,
476                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
477                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
478                                      PadStrideInfo(1, 1, 0, 0))
479                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/convolution")
480                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
481                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
482                                             get_random_accessor(1.f, 1.f),
483                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
484                                             batch_norm_epsilon)
485                  .set_name(unit_name + "Branch_1/Conv2d_0a_1x1/BatchNorm")
486                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0a_1x1/Relu")
487                  << ConvolutionLayer(3U, 1U, 192U,
488                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_weights.npy", weights_layout),
489                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
490                                      PadStrideInfo(1, 1, 1, 0))
491                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x3/convolution")
492                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"),
493                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"),
494                                             get_random_accessor(1.f, 1.f),
495                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"),
496                                             batch_norm_epsilon)
497                  .set_name(unit_name + "Branch_1/Conv2d_0b_1x3/BatchNorm")
498                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0b_1x3/Relu")
499                  << ConvolutionLayer(1U, 3U, 192U,
500                                      get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_weights.npy", weights_layout),
501                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
502                                      PadStrideInfo(1, 1, 0, 1))
503                  .set_name(unit_name + "Branch_1/Conv2d_0c_3x1/convolution")
504                  << BatchNormalizationLayer(get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_mean.npy"),
505                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_variance.npy"),
506                                             get_random_accessor(1.f, 1.f),
507                                             get_weights_accessor(data_path, unit_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_beta.npy"),
508                                             batch_norm_epsilon)
509                  .set_name(unit_name + "Branch_1/Conv2d_0c_3x1/BatchNorm")
510                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Branch_1/Conv2d_0c_3x1/Relu");
511 
512             // Concatenate
513             i_l << ConcatLayer(std::move(i_la), std::move(i_lb)).set_name(unit_name + "concat")
514                 << ConvolutionLayer(1U, 1U, 1792U,
515                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_weights.npy", weights_layout),
516                                     get_weights_accessor(data_path, unit_path + "Conv2d_1x1_biases.npy", weights_layout),
517                                     PadStrideInfo(1, 1, 0, 0))
518                 .set_name(unit_name + "Conv2d_1x1/convolution");
519 
520             // Scale result
521             if(scale != 1.f)
522             {
523                 i_l << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, scale, 0.f)).set_name(unit_name + "mul");
524             }
525 
526             // Residual add
527             graph << EltwiseLayer(std::move(i_l), std::move(i_r), EltwiseOperation::Add).set_name(unit_name + "add");
528 
529             // Apply activation if needed
530             if(has_activation)
531             {
532                 graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
533             }
534         }
535     }
536 
reduction_a(const std::string & data_path,DataLayout weights_layout)537     void reduction_a(const std::string &data_path, DataLayout weights_layout)
538     {
539         // Branch 0
540         SubStream i_a(graph);
541         i_a << ConvolutionLayer(3U, 3U, 384U,
542                                 get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
543                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
544                                 PadStrideInfo(2, 2, 0, 0))
545             .set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/convolution")
546             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
547                                        get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
548                                        get_random_accessor(1.f, 1.f),
549                                        get_weights_accessor(data_path, "Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
550                                        batch_norm_epsilon)
551             .set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/BatchNorm")
552             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_0/Conv2d_1a_3x3/Relu");
553 
554         // Branch 1
555         SubStream i_b(graph);
556         i_b << ConvolutionLayer(1U, 1U, 192U,
557                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
558                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
559                                 PadStrideInfo(1, 1, 0, 0))
560             .set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/convolution")
561             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
562                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
563                                        get_random_accessor(1.f, 1.f),
564                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
565                                        batch_norm_epsilon)
566             .set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/BatchNorm")
567             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0a_1x1/Relu")
568             << ConvolutionLayer(3U, 3U, 192U,
569                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_weights.npy", weights_layout),
570                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
571                                 PadStrideInfo(1, 1, 1, 1))
572             .set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/convolution")
573             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
574                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
575                                        get_random_accessor(1.f, 1.f),
576                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
577                                        batch_norm_epsilon)
578             .set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/BatchNorm")
579             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_0b_3x3/Relu")
580             << ConvolutionLayer(3U, 3U, 256U,
581                                 get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
582                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
583                                 PadStrideInfo(2, 2, 0, 0))
584             .set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/convolution")
585             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
586                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
587                                        get_random_accessor(1.f, 1.f),
588                                        get_weights_accessor(data_path, "Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
589                                        batch_norm_epsilon)
590             .set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/BatchNorm")
591             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_6a/Branch_1/Conv2d_1a_3x3/Relu");
592 
593         // Branch 2
594         SubStream i_c(graph);
595         i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("Mixed_6a/Branch_2/MaxPool_1a_3x3");
596 
597         // Concatenate
598         graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c)).set_name("Mixed_6a/concat");
599     }
600 
reduction_b(const std::string & data_path,DataLayout weights_layout)601     void reduction_b(const std::string &data_path, DataLayout weights_layout)
602     {
603         // Branch 0
604         SubStream i_a(graph);
605         i_a << ConvolutionLayer(1U, 1U, 256U,
606                                 get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_weights.npy", weights_layout),
607                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
608                                 PadStrideInfo(1, 1, 0, 0))
609             .set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/convolution")
610             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
611                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
612                                        get_random_accessor(1.f, 1.f),
613                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
614                                        batch_norm_epsilon)
615             .set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/BatchNorm")
616             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_0a_1x1/Relu")
617             << ConvolutionLayer(3U, 3U, 384U,
618                                 get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_weights.npy", weights_layout),
619                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
620                                 PadStrideInfo(2, 2, 0, 0))
621             .set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/convolution")
622             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
623                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
624                                        get_random_accessor(1.f, 1.f),
625                                        get_weights_accessor(data_path, "Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
626                                        batch_norm_epsilon)
627             .set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/BatchNorm")
628             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_0/Conv2d_1a_3x3/Relu");
629 
630         // Branch 1
631         SubStream i_b(graph);
632         i_b << ConvolutionLayer(1U, 1U, 256U,
633                                 get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_weights.npy", weights_layout),
634                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
635                                 PadStrideInfo(1, 1, 0, 0))
636             .set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/convolution")
637             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
638                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
639                                        get_random_accessor(1.f, 1.f),
640                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
641                                        batch_norm_epsilon)
642             .set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/BatchNorm")
643             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_0a_1x1/Relu")
644             << ConvolutionLayer(3U, 3U, 256U,
645                                 get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_weights.npy", weights_layout),
646                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
647                                 PadStrideInfo(2, 2, 0, 0))
648             .set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/convolution")
649             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
650                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
651                                        get_random_accessor(1.f, 1.f),
652                                        get_weights_accessor(data_path, "Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
653                                        batch_norm_epsilon)
654             .set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/BatchNorm")
655             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_1/Conv2d_1a_3x3/Relu");
656 
657         // Branch 2
658         SubStream i_c(graph);
659         i_c << ConvolutionLayer(1U, 1U, 256U,
660                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_weights.npy", weights_layout),
661                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
662                                 PadStrideInfo(1, 1, 0, 0))
663             .set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/convolution")
664             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
665                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
666                                        get_random_accessor(1.f, 1.f),
667                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
668                                        batch_norm_epsilon)
669             .set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/BatchNorm")
670             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0a_1x1/Relu")
671             << ConvolutionLayer(3U, 3U, 256U,
672                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_weights.npy", weights_layout),
673                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
674                                 PadStrideInfo(1, 1, 1, 1))
675             .set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/convolution")
676             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
677                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
678                                        get_random_accessor(1.f, 1.f),
679                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
680                                        batch_norm_epsilon)
681             .set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/BatchNorm")
682             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_0b_3x3/Relu")
683             << ConvolutionLayer(3U, 3U, 256U,
684                                 get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_weights.npy", weights_layout),
685                                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
686                                 PadStrideInfo(2, 2, 0, 0))
687             .set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/convolution")
688             << BatchNormalizationLayer(get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
689                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
690                                        get_random_accessor(1.f, 1.f),
691                                        get_weights_accessor(data_path, "Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm_beta.npy"),
692                                        batch_norm_epsilon)
693             .set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/BatchNorm")
694             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Mixed_7a/Branch_2/Conv2d_1a_3x3/Relu");
695 
696         // Branch 3
697         SubStream i_d(graph);
698         i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(2, 2, 0, 0), true)).set_name("Mixed_7a/Branch_3/MaxPool_1a_3x3");
699 
700         // Concatenate
701         graph << ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d)).set_name("Mixed_7a/concat");
702     }
703 };
704 
705 /** Main program for Inception ResNet V1
706  *
707  * Model is based on:
708  *      https://arxiv.org/abs/1602.07261
709  *      "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
710  *      Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
711  *
712  * @note To list all the possible arguments execute the binary appended with the --help option
713  *
714  * @param[in] argc Number of arguments
715  * @param[in] argv Arguments
716  */
main(int argc,char ** argv)717 int main(int argc, char **argv)
718 {
719     return arm_compute::utils::run_example<InceptionResNetV1Example>(argc, argv);
720 }
721