xref: /aosp_15_r20/external/ComputeLibrary/arm_compute/runtime/NEON/functions/NERNNLayer.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NERNNLAYER_H
25 #define ARM_COMPUTE_NERNNLAYER_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
29 #include "arm_compute/runtime/NEON/functions/NEArithmeticAddition.h"
30 #include "arm_compute/runtime/NEON/functions/NECopy.h"
31 #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
32 #include "arm_compute/runtime/NEON/functions/NEGEMM.h"
33 
34 namespace arm_compute
35 {
36 // Forward declarations
37 class ITensor;
38 
39 /** Basic function to run @ref NERNNLayer */
40 class NERNNLayer : public IFunction
41 {
42 public:
43     /** Default constructor */
44     NERNNLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
45     /** Prevent instances of this class from being copied (As this class contains pointers) */
46     NERNNLayer(const NERNNLayer &) = delete;
47     /** Prevent instances of this class from being moved (As this class contains pointers) */
48     NERNNLayer(NERNNLayer &&) = delete;
49     /** Prevent instances of this class from being copied (As this class contains pointers) */
50     NERNNLayer &operator=(const NERNNLayer &) = delete;
51     /** Prevent instances of this class from being moved (As this class contains pointers) */
52     NERNNLayer &operator=(NERNNLayer &&) = delete;
53     /** Default destructor */
54     ~NERNNLayer();
55     /** Initialize the function
56      *
57      * Valid data layouts:
58      * - NHWC
59      * - NCHW
60      *
61      * Valid data type configurations:
62      * |src0   |src1   |src2   |src3   |dst0   |dst1   |
63      * |:------|:------|:------|:------|:------|:------|
64      * |F16    |F16    |F16    |F16    |F16    |F16    |
65      * |F32    |F32    |F32    |F32    |F32    |F32    |
66      *
67      * @param[in]     input             Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
68      * @param[in]     weights           Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
69      * @param[in]     recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
70      * @param[in]     bias              Bias vector of shape [num_units]. Data types supported: Same as @p input
71      * @param[out]    output            Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
72      * @param[in,out] hidden_state      Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
73      * @param[in]     info              Activation layer parameter.
74      */
75     void configure(const ITensor *input, const ITensor *weights, const ITensor *recurrent_weights, const ITensor *bias, ITensor *hidden_state, ITensor *output, ActivationLayerInfo &info);
76     /** Initialize the function
77      *
78      * @param[in] input             Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
79      * @param[in] weights           Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
80      * @param[in] recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
81      * @param[in] bias              Bias vector of shape [num_units]. Data types supported: Same as @p input
82      * @param[in] output            Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
83      * @param[in] hidden_state      Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
84      * @param[in] info              Activation layer parameter.
85      *
86      * @return a status
87      */
88     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *recurrent_weights, const ITensorInfo *bias, const ITensorInfo *hidden_state, const ITensorInfo *output,
89                            const ActivationLayerInfo &info);
90 
91     // Inherited methods overridden:
92     void run() override;
93     void prepare() override;
94 
95 private:
96     MemoryGroup           _memory_group;
97     NEGEMM                _gemm_state_f;
98     NEArithmeticAddition  _add_f;
99     NEActivationLayer     _activation;
100     NEFullyConnectedLayer _fully_connected;
101     NECopy                _copy_f;
102     Tensor                _fully_connected_out;
103     Tensor                _gemm_output;
104     Tensor                _add_output;
105     bool                  _is_prepared;
106 };
107 } // namespace arm_compute
108 #endif /* ARM_COMPUTE_NERNNLAYER_H */
109