xref: /aosp_15_r20/art/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "android-base/logging.h"
18 #include "arch/context.h"
19 #include "arch/instruction_set.h"
20 #include "art_method-inl.h"
21 #include "art_method.h"
22 #include "base/callee_save_type.h"
23 #include "base/globals.h"
24 #include "base/pointer_size.h"
25 #include "callee_save_frame.h"
26 #include "common_throws.h"
27 #include "class_root-inl.h"
28 #include "debug_print.h"
29 #include "debugger.h"
30 #include "dex/dex_file-inl.h"
31 #include "dex/dex_file_types.h"
32 #include "dex/dex_instruction-inl.h"
33 #include "dex/method_reference.h"
34 #include "entrypoints/entrypoint_utils-inl.h"
35 #include "entrypoints/quick/callee_save_frame.h"
36 #include "entrypoints/runtime_asm_entrypoints.h"
37 #include "gc/accounting/card_table-inl.h"
38 #include "imt_conflict_table.h"
39 #include "imtable-inl.h"
40 #include "instrumentation.h"
41 #include "interpreter/interpreter.h"
42 #include "interpreter/interpreter_common.h"
43 #include "interpreter/shadow_frame-inl.h"
44 #include "jit/jit.h"
45 #include "jit/jit_code_cache.h"
46 #include "linear_alloc.h"
47 #include "method_handles.h"
48 #include "mirror/class-inl.h"
49 #include "mirror/dex_cache-inl.h"
50 #include "mirror/method.h"
51 #include "mirror/method_handle_impl.h"
52 #include "mirror/object-inl.h"
53 #include "mirror/object_array-inl.h"
54 #include "mirror/var_handle.h"
55 #include "oat/oat.h"
56 #include "oat/oat_file.h"
57 #include "oat/oat_quick_method_header.h"
58 #include "quick_exception_handler.h"
59 #include "runtime.h"
60 #include "scoped_thread_state_change-inl.h"
61 #include "stack.h"
62 #include "thread-inl.h"
63 #include "var_handles.h"
64 #include "well_known_classes.h"
65 #include "runtime_entrypoints_list.h"
66 
67 namespace art HIDDEN {
68 
69 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
70 template <typename FrameInfo>
71 class QuickArgumentVisitorImpl {
72   // Number of bytes for each out register in the caller method's frame.
73   static constexpr size_t kBytesStackArgLocation = 4;
74   // Frame size in bytes of a callee-save frame for RefsAndArgs.
75   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
76       RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
77   // Offset of first GPR arg.
78   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
79       RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
80   // Offset of first FPR arg.
81   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
82       RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
83   // Offset of return address.
84   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
85       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
86 
GprIndexToGprOffset(uint32_t gpr_index)87   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
88     return FrameInfo::GprIndexToGprOffsetImpl(gpr_index);
89   }
90 
91   static constexpr bool kSplitPairAcrossRegisterAndStack =
92       FrameInfo::kSplitPairAcrossRegisterAndStack;
93   static constexpr bool kAlignPairRegister = FrameInfo::kAlignPairRegister;
94   static constexpr bool kQuickSoftFloatAbi = FrameInfo::kQuickSoftFloatAbi;
95   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled =
96       FrameInfo::kQuickDoubleRegAlignedFloatBackFilled;
97   static constexpr bool kQuickSkipOddFpRegisters = FrameInfo::kQuickSkipOddFpRegisters;
98   static constexpr size_t kNumQuickGprArgs = FrameInfo::kNumQuickGprArgs;
99   static constexpr size_t kNumQuickFprArgs = FrameInfo::kNumQuickFprArgs;
100   static constexpr bool kGprFprLockstep = FrameInfo::kGprFprLockstep;
101   static constexpr bool kNaNBoxing = FrameInfo::kNanBoxing;
102 
103  public:
NaNBoxing()104   static constexpr bool NaNBoxing() { return FrameInfo::kNaNBoxing; }
105 
GetThisObjectReference(ArtMethod ** sp)106   static StackReference<mirror::Object>* GetThisObjectReference(ArtMethod** sp)
107       REQUIRES_SHARED(Locks::mutator_lock_) {
108     CHECK_GT(kNumQuickGprArgs, 0u);
109     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
110     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
111         GprIndexToGprOffset(kThisGprIndex);
112     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
113     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
114   }
115 
GetCallingMethodAndDexPc(ArtMethod ** sp,uint32_t * dex_pc)116   static ArtMethod* GetCallingMethodAndDexPc(ArtMethod** sp, uint32_t* dex_pc)
117       REQUIRES_SHARED(Locks::mutator_lock_) {
118     DCHECK((*sp)->IsCalleeSaveMethod());
119     return GetCalleeSaveMethodCallerAndDexPc(sp, CalleeSaveType::kSaveRefsAndArgs, dex_pc);
120   }
121 
GetCallingMethod(ArtMethod ** sp)122   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
123     uint32_t dex_pc;
124     return GetCallingMethodAndDexPc(sp, &dex_pc);
125   }
126 
GetOuterMethod(ArtMethod ** sp)127   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
128     DCHECK((*sp)->IsCalleeSaveMethod());
129     uint8_t* previous_sp =
130         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
131     return *reinterpret_cast<ArtMethod**>(previous_sp);
132   }
133 
GetCallingPcAddr(ArtMethod ** sp)134   static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
135     DCHECK((*sp)->IsCalleeSaveMethod());
136     uint8_t* return_adress_spill =
137         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
138     return return_adress_spill;
139   }
140 
141   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)142   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
143     return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
144   }
145 
QuickArgumentVisitorImpl(ArtMethod ** sp,bool is_static,std::string_view shorty)146   QuickArgumentVisitorImpl(ArtMethod** sp, bool is_static, std::string_view shorty)
147       REQUIRES_SHARED(Locks::mutator_lock_)
148       : is_static_(is_static),
149         shorty_(shorty),
150         gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
151         fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
152         stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize +
153             sizeof(ArtMethod*)),  // Skip ArtMethod*.
154         gpr_index_(0),
155         fpr_index_(0),
156         fpr_double_index_(0),
157         stack_index_(0),
158         cur_type_(Primitive::kPrimVoid),
159         is_split_long_or_double_(false) {
160     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
161                   "Number of Quick FPR arguments unexpected");
162     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
163                   "Double alignment unexpected");
164     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
165     // next register is even.
166     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
167                   "Number of Quick FPR arguments not even");
168     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
169   }
170 
~QuickArgumentVisitorImpl()171   virtual ~QuickArgumentVisitorImpl() {}
172 
173   virtual void Visit() = 0;
174 
GetParamPrimitiveType() const175   Primitive::Type GetParamPrimitiveType() const {
176     return cur_type_;
177   }
178 
GetParamAddress() const179   uint8_t* GetParamAddress() const {
180     if (!kQuickSoftFloatAbi) {
181       Primitive::Type type = GetParamPrimitiveType();
182       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
183         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
184           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
185             return fpr_args_ +
186                    (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeQuickCodeISA));
187           }
188         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
189           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeQuickCodeISA));
190         }
191         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
192       }
193     }
194     if (gpr_index_ < kNumQuickGprArgs) {
195       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
196     }
197     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
198   }
199 
IsSplitLongOrDouble() const200   bool IsSplitLongOrDouble() const {
201     if ((GetBytesPerGprSpillLocation(kRuntimeQuickCodeISA) == 4) ||
202         (GetBytesPerFprSpillLocation(kRuntimeQuickCodeISA) == 4)) {
203       return is_split_long_or_double_;
204     } else {
205       return false;  // An optimization for when GPR and FPRs are 64bit.
206     }
207   }
208 
IsParamAReference() const209   bool IsParamAReference() const {
210     return GetParamPrimitiveType() == Primitive::kPrimNot;
211   }
212 
IsParamALongOrDouble() const213   bool IsParamALongOrDouble() const {
214     Primitive::Type type = GetParamPrimitiveType();
215     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
216   }
217 
ReadSplitLongParam() const218   uint64_t ReadSplitLongParam() const {
219     // The splitted long is always available through the stack.
220     return *reinterpret_cast<uint64_t*>(stack_args_
221         + stack_index_ * kBytesStackArgLocation);
222   }
223 
IncGprIndex()224   void IncGprIndex() {
225     gpr_index_++;
226     if (kGprFprLockstep) {
227       fpr_index_++;
228     }
229   }
230 
IncFprIndex()231   void IncFprIndex() {
232     fpr_index_++;
233     if (kGprFprLockstep) {
234       gpr_index_++;
235     }
236   }
237 
VisitArguments()238   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
239     // (a) 'stack_args_' should point to the first method's argument
240     // (b) whatever the argument type it is, the 'stack_index_' should
241     //     be moved forward along with every visiting.
242     gpr_index_ = 0;
243     fpr_index_ = 0;
244     if (kQuickDoubleRegAlignedFloatBackFilled) {
245       fpr_double_index_ = 0;
246     }
247     stack_index_ = 0;
248     if (!is_static_) {  // Handle this.
249       cur_type_ = Primitive::kPrimNot;
250       is_split_long_or_double_ = false;
251       Visit();
252       stack_index_++;
253       if (kNumQuickGprArgs > 0) {
254         IncGprIndex();
255       }
256     }
257     for (char c : shorty_.substr(1u)) {
258       cur_type_ = Primitive::GetType(c);
259       switch (cur_type_) {
260         case Primitive::kPrimNot:
261         case Primitive::kPrimBoolean:
262         case Primitive::kPrimByte:
263         case Primitive::kPrimChar:
264         case Primitive::kPrimShort:
265         case Primitive::kPrimInt:
266           is_split_long_or_double_ = false;
267           Visit();
268           stack_index_++;
269           if (gpr_index_ < kNumQuickGprArgs) {
270             IncGprIndex();
271           }
272           break;
273         case Primitive::kPrimFloat:
274           is_split_long_or_double_ = false;
275           Visit();
276           stack_index_++;
277           if (kQuickSoftFloatAbi) {
278             if (gpr_index_ < kNumQuickGprArgs) {
279               IncGprIndex();
280             }
281           } else {
282             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
283               IncFprIndex();
284               if (kQuickDoubleRegAlignedFloatBackFilled) {
285                 // Double should not overlap with float.
286                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
287                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
288                 // Float should not overlap with double.
289                 if (fpr_index_ % 2 == 0) {
290                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
291                 }
292               } else if (kQuickSkipOddFpRegisters) {
293                 IncFprIndex();
294               }
295             }
296           }
297           break;
298         case Primitive::kPrimDouble:
299         case Primitive::kPrimLong:
300           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
301             if (cur_type_ == Primitive::kPrimLong &&
302                 gpr_index_ == 0 &&
303                 kAlignPairRegister) {
304               // Currently, this is only for ARM, where we align long parameters with
305               // even-numbered registers by skipping R1 and using R2 instead.
306               IncGprIndex();
307             }
308             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeQuickCodeISA) == 4) &&
309                 ((gpr_index_ + 1) == kNumQuickGprArgs);
310             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
311               // We don't want to split this. Pass over this register.
312               gpr_index_++;
313               is_split_long_or_double_ = false;
314             }
315             Visit();
316             if (kBytesStackArgLocation == 4) {
317               stack_index_+= 2;
318             } else {
319               CHECK_EQ(kBytesStackArgLocation, 8U);
320               stack_index_++;
321             }
322             if (gpr_index_ < kNumQuickGprArgs) {
323               IncGprIndex();
324               if (GetBytesPerGprSpillLocation(kRuntimeQuickCodeISA) == 4) {
325                 if (gpr_index_ < kNumQuickGprArgs) {
326                   IncGprIndex();
327                 }
328               }
329             }
330           } else {
331             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeQuickCodeISA) == 4) &&
332                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
333             Visit();
334             if (kBytesStackArgLocation == 4) {
335               stack_index_+= 2;
336             } else {
337               CHECK_EQ(kBytesStackArgLocation, 8U);
338               stack_index_++;
339             }
340             if (kQuickDoubleRegAlignedFloatBackFilled) {
341               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
342                 fpr_double_index_ += 2;
343                 // Float should not overlap with double.
344                 if (fpr_index_ % 2 == 0) {
345                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
346                 }
347               }
348             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
349               IncFprIndex();
350               if (GetBytesPerFprSpillLocation(kRuntimeQuickCodeISA) == 4) {
351                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
352                   IncFprIndex();
353                 }
354               }
355             }
356           }
357           break;
358         default:
359           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
360       }
361     }
362   }
363 
364  protected:
365   const bool is_static_;
366   const std::string_view shorty_;
367 
368  private:
369   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
370   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
371   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
372   uint32_t gpr_index_;  // Index into spilled GPRs.
373   // Index into spilled FPRs.
374   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
375   // holds a higher register number.
376   uint32_t fpr_index_;
377   // Index into spilled FPRs for aligned double.
378   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
379   // terms of singles, may be behind fpr_index.
380   uint32_t fpr_double_index_;
381   uint32_t stack_index_;  // Index into arguments on the stack.
382   // The current type of argument during VisitArguments.
383   Primitive::Type cur_type_;
384   // Does a 64bit parameter straddle the register and stack arguments?
385   bool is_split_long_or_double_;
386 };
387 
388 class QuickArgumentFrameInfoARM {
389  public:
390   // The callee save frame is pointed to by SP.
391   // | argN       |  |
392   // | ...        |  |
393   // | arg4       |  |
394   // | arg3 spill |  |  Caller's frame
395   // | arg2 spill |  |
396   // | arg1 spill |  |
397   // | Method*    | ---
398   // | LR         |
399   // | ...        |    4x6 bytes callee saves
400   // | R3         |
401   // | R2         |
402   // | R1         |
403   // | S15        |
404   // | :          |
405   // | S0         |
406   // |            |    4x2 bytes padding
407   // | Method*    |  <- sp
408   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
409   static constexpr bool kAlignPairRegister = true;
410   static constexpr bool kQuickSoftFloatAbi = false;
411   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
412   static constexpr bool kQuickSkipOddFpRegisters = false;
413   static constexpr size_t kNumQuickGprArgs = 3;
414   static constexpr size_t kNumQuickFprArgs = 16;
415   static constexpr bool kGprFprLockstep = false;
416   static constexpr bool kNaNBoxing = false;
GprIndexToGprOffsetImpl(uint32_t gpr_index)417   static size_t GprIndexToGprOffsetImpl(uint32_t gpr_index) {
418     return gpr_index * GetBytesPerGprSpillLocation(InstructionSet::kArm);
419   }
420 };
421 
422 class QuickArgumentFrameInfoARM64 {
423  public:
424   // The callee save frame is pointed to by SP.
425   // | argN       |  |
426   // | ...        |  |
427   // | arg4       |  |
428   // | arg3 spill |  |  Caller's frame
429   // | arg2 spill |  |
430   // | arg1 spill |  |
431   // | Method*    | ---
432   // | LR         |
433   // | X29        |
434   // |  :         |
435   // | X20        |
436   // | X7         |
437   // | :          |
438   // | X1         |
439   // | D7         |
440   // |  :         |
441   // | D0         |
442   // |            |    padding
443   // | Method*    |  <- sp
444   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
445   static constexpr bool kAlignPairRegister = false;
446   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
447   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
448   static constexpr bool kQuickSkipOddFpRegisters = false;
449   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
450   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
451   static constexpr bool kGprFprLockstep = false;
452   static constexpr bool kNaNBoxing = false;
GprIndexToGprOffsetImpl(uint32_t gpr_index)453   static size_t GprIndexToGprOffsetImpl(uint32_t gpr_index) {
454     return gpr_index * GetBytesPerGprSpillLocation(InstructionSet::kArm64);
455   }
456 };
457 
458 class QuickArgumentFrameInfoRISCV64 {
459  public:
460   // The callee save frame is pointed to by SP.
461   // | argN            |  |
462   // | ...             |  |
463   // | reg. arg spills |  |  Caller's frame
464   // | Method*         | ---
465   // | RA              |
466   // | S11/X27         |  callee-saved 11
467   // | S10/X26         |  callee-saved 10
468   // | S9/X25          |  callee-saved 9
469   // | S9/X24          |  callee-saved 8
470   // | S7/X23          |  callee-saved 7
471   // | S6/X22          |  callee-saved 6
472   // | S5/X21          |  callee-saved 5
473   // | S4/X20          |  callee-saved 4
474   // | S3/X19          |  callee-saved 3
475   // | S2/X18          |  callee-saved 2
476   // | A7/X17          |  arg 7
477   // | A6/X16          |  arg 6
478   // | A5/X15          |  arg 5
479   // | A4/X14          |  arg 4
480   // | A3/X13          |  arg 3
481   // | A2/X12          |  arg 2
482   // | A1/X11          |  arg 1 (A0 is the method => skipped)
483   // | S0/X8/FP        |  callee-saved 0 (S1 is TR => skipped)
484   // | FA7             |  float arg 8
485   // | FA6             |  float arg 7
486   // | FA5             |  float arg 6
487   // | FA4             |  float arg 5
488   // | FA3             |  float arg 4
489   // | FA2             |  float arg 3
490   // | FA1             |  float arg 2
491   // | FA0             |  float arg 1
492   // | A0/Method*      | <- sp
493   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
494   static constexpr bool kAlignPairRegister = false;
495   static constexpr bool kQuickSoftFloatAbi = false;
496   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
497   static constexpr bool kQuickSkipOddFpRegisters = false;
498   static constexpr size_t kNumQuickGprArgs = 7;
499   static constexpr size_t kNumQuickFprArgs = 8;
500   static constexpr bool kGprFprLockstep = false;
501   static constexpr bool kNaNBoxing = true;
GprIndexToGprOffsetImpl(uint32_t gpr_index)502   static size_t GprIndexToGprOffsetImpl(uint32_t gpr_index) {
503     // skip S0/X8/FP
504     return (gpr_index + 1) * GetBytesPerGprSpillLocation(InstructionSet::kRiscv64);
505   }
506 };
507 
508 class QuickArgumentFrameInfoX86 {
509  public:
510   // The callee save frame is pointed to by SP.
511   // | argN        |  |
512   // | ...         |  |
513   // | arg4        |  |
514   // | arg3 spill  |  |  Caller's frame
515   // | arg2 spill  |  |
516   // | arg1 spill  |  |
517   // | Method*     | ---
518   // | Return      |
519   // | EBP,ESI,EDI |    callee saves
520   // | EBX         |    arg3
521   // | EDX         |    arg2
522   // | ECX         |    arg1
523   // | XMM3        |    float arg 4
524   // | XMM2        |    float arg 3
525   // | XMM1        |    float arg 2
526   // | XMM0        |    float arg 1
527   // | EAX/Method* |  <- sp
528   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
529   static constexpr bool kAlignPairRegister = false;
530   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
531   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
532   static constexpr bool kQuickSkipOddFpRegisters = false;
533   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
534   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
535   static constexpr bool kGprFprLockstep = false;
536   static constexpr bool kNaNBoxing = false;
GprIndexToGprOffsetImpl(uint32_t gpr_index)537   static size_t GprIndexToGprOffsetImpl(uint32_t gpr_index) {
538     return gpr_index * GetBytesPerGprSpillLocation(InstructionSet::kX86);
539   }
540 };
541 
542 class QuickArgumentFrameInfoX86_64 {
543  public:
544   // The callee save frame is pointed to by SP.
545   // | argN            |  |
546   // | ...             |  |
547   // | reg. arg spills |  |  Caller's frame
548   // | Method*         | ---
549   // | Return          |
550   // | R15             |    callee save
551   // | R14             |    callee save
552   // | R13             |    callee save
553   // | R12             |    callee save
554   // | R9              |    arg5
555   // | R8              |    arg4
556   // | RSI/R6          |    arg1
557   // | RBP/R5          |    callee save
558   // | RBX/R3          |    callee save
559   // | RDX/R2          |    arg2
560   // | RCX/R1          |    arg3
561   // | XMM15           |    callee save
562   // | XMM14           |    callee save
563   // | XMM13           |    callee save
564   // | XMM12           |    callee save
565   // | XMM7            |    float arg 8
566   // | XMM6            |    float arg 7
567   // | XMM5            |    float arg 6
568   // | XMM4            |    float arg 5
569   // | XMM3            |    float arg 4
570   // | XMM2            |    float arg 3
571   // | XMM1            |    float arg 2
572   // | XMM0            |    float arg 1
573   // | Padding         |
574   // | RDI/Method*     |  <- sp
575   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
576   static constexpr bool kAlignPairRegister = false;
577   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
578   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
579   static constexpr bool kQuickSkipOddFpRegisters = false;
580   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
581   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
582   static constexpr bool kGprFprLockstep = false;
583   static constexpr bool kNaNBoxing = false;
GprIndexToGprOffsetImpl(uint32_t gpr_index)584   static size_t GprIndexToGprOffsetImpl(uint32_t gpr_index) {
585     static constexpr size_t kBytesPerSpill = GetBytesPerGprSpillLocation(InstructionSet::kX86_64);
586     switch (gpr_index) {
587       case 0: return (4 * kBytesPerSpill);
588       case 1: return (1 * kBytesPerSpill);
589       case 2: return (0 * kBytesPerSpill);
590       case 3: return (5 * kBytesPerSpill);
591       case 4: return (6 * kBytesPerSpill);
592       default:
593       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
594       UNREACHABLE();
595     }
596   }
597 };
598 
599 namespace detail {
600 
601 template <InstructionSet>
602 struct QAFISelector;
603 
604 template <>
605 struct QAFISelector<InstructionSet::kArm> { using type = QuickArgumentFrameInfoARM; };
606 template <>
607 struct QAFISelector<InstructionSet::kArm64> { using type = QuickArgumentFrameInfoARM64; };
608 template <>
609 struct QAFISelector<InstructionSet::kRiscv64> { using type = QuickArgumentFrameInfoRISCV64; };
610 template <>
611 struct QAFISelector<InstructionSet::kX86> { using type = QuickArgumentFrameInfoX86; };
612 template <>
613 struct QAFISelector<InstructionSet::kX86_64> { using type = QuickArgumentFrameInfoX86_64; };
614 
615 }  // namespace detail
616 
617 using QuickArgumentVisitor =
618     QuickArgumentVisitorImpl<detail::QAFISelector<kRuntimeQuickCodeISA>::type>;
619 
620 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
621 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)622 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
623     REQUIRES_SHARED(Locks::mutator_lock_) {
624   DCHECK((*sp)->IsProxyMethod());
625   return QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr();
626 }
627 
628 // Visits arguments on the stack placing them into the shadow frame.
629 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
630  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ShadowFrame * sf,size_t first_arg_reg)631   BuildQuickShadowFrameVisitor(ArtMethod** sp,
632                                bool is_static,
633                                std::string_view shorty,
634                                ShadowFrame* sf,
635                                size_t first_arg_reg)
636       : QuickArgumentVisitor(sp, is_static, shorty), sf_(sf), cur_reg_(first_arg_reg) {}
637 
638   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
639   void SetReceiver(ObjPtr<mirror::Object> receiver) REQUIRES_SHARED(Locks::mutator_lock_);
640 
641  private:
642   ShadowFrame* const sf_;
643   uint32_t cur_reg_;
644 
645   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
646 };
647 
SetReceiver(ObjPtr<mirror::Object> receiver)648 void BuildQuickShadowFrameVisitor::SetReceiver(ObjPtr<mirror::Object> receiver) {
649   DCHECK_EQ(cur_reg_, 0u);
650   sf_->SetVRegReference(cur_reg_, receiver);
651   ++cur_reg_;
652 }
653 
Visit()654 void BuildQuickShadowFrameVisitor::Visit() {
655   Primitive::Type type = GetParamPrimitiveType();
656   switch (type) {
657     case Primitive::kPrimLong:  // Fall-through.
658     case Primitive::kPrimDouble:
659       if (IsSplitLongOrDouble()) {
660         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
661       } else {
662         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
663       }
664       ++cur_reg_;
665       break;
666     case Primitive::kPrimNot: {
667         StackReference<mirror::Object>* stack_ref =
668             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
669         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
670       }
671       break;
672     case Primitive::kPrimBoolean:  // Fall-through.
673     case Primitive::kPrimByte:     // Fall-through.
674     case Primitive::kPrimChar:     // Fall-through.
675     case Primitive::kPrimShort:    // Fall-through.
676     case Primitive::kPrimInt:      // Fall-through.
677     case Primitive::kPrimFloat:
678       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
679       break;
680     case Primitive::kPrimVoid:
681       LOG(FATAL) << "UNREACHABLE";
682       UNREACHABLE();
683   }
684   ++cur_reg_;
685 }
686 
687 // Don't inline. See b/65159206.
688 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)689 static void HandleDeoptimization(JValue* result,
690                                  ArtMethod* method,
691                                  ShadowFrame* deopt_frame,
692                                  ManagedStack* fragment)
693     REQUIRES_SHARED(Locks::mutator_lock_) {
694   // Coming from partial-fragment deopt.
695   Thread* self = Thread::Current();
696   if (kIsDebugBuild) {
697     // Consistency-check: are the methods as expected? We check that the last shadow frame
698     // (the bottom of the call-stack) corresponds to the called method.
699     ShadowFrame* linked = deopt_frame;
700     while (linked->GetLink() != nullptr) {
701       linked = linked->GetLink();
702     }
703     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
704         << ArtMethod::PrettyMethod(linked->GetMethod());
705   }
706 
707   if (VLOG_IS_ON(deopt)) {
708     // Print out the stack to verify that it was a partial-fragment deopt.
709     LOG(INFO) << "Continue-ing from deopt. Stack is:";
710     QuickExceptionHandler::DumpFramesWithType(self, true);
711   }
712 
713   ObjPtr<mirror::Throwable> pending_exception;
714   bool from_code = false;
715   DeoptimizationMethodType method_type;
716   self->PopDeoptimizationContext(/* out */ result,
717                                  /* out */ &pending_exception,
718                                  /* out */ &from_code,
719                                  /* out */ &method_type);
720 
721   // Push a transition back into managed code onto the linked list in thread.
722   self->PushManagedStackFragment(fragment);
723 
724   // Ensure that the stack is still in order.
725   if (kIsDebugBuild) {
726     class EntireStackVisitor : public StackVisitor {
727      public:
728       explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
729           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
730 
731       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
732         // Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
733         // logic. Just always say we want to continue.
734         return true;
735       }
736     };
737     EntireStackVisitor esv(self);
738     esv.WalkStack();
739   }
740 
741   // Restore the exception that was pending before deoptimization then interpret the
742   // deoptimized frames.
743   if (pending_exception != nullptr) {
744     self->SetException(pending_exception);
745   }
746   interpreter::EnterInterpreterFromDeoptimize(self,
747                                               deopt_frame,
748                                               result,
749                                               from_code,
750                                               method_type);
751 }
752 
NanBoxResultIfNeeded(int64_t result,char result_shorty)753 static int64_t NanBoxResultIfNeeded(int64_t result, char result_shorty) {
754   return (QuickArgumentVisitor::NaNBoxing() && result_shorty == 'F')
755       ? result | UINT64_C(0xffffffff00000000)
756       : result;
757 }
758 
759 NO_STACK_PROTECTOR
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)760 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
761     REQUIRES_SHARED(Locks::mutator_lock_) {
762   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
763   // frame.
764   ScopedQuickEntrypointChecks sqec(self);
765 
766   if (UNLIKELY(!method->IsInvokable())) {
767     method->ThrowInvocationTimeError(
768         method->IsStatic()
769             ? nullptr
770             : QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr());
771     return 0;
772   }
773 
774   DCHECK(!method->IsNative()) << method->PrettyMethod();
775 
776   JValue result;
777 
778   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
779   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
780   std::string_view shorty = non_proxy_method->GetShortyView();
781 
782   ManagedStack fragment;
783   ShadowFrame* deopt_frame = self->MaybePopDeoptimizedStackedShadowFrame();
784   if (UNLIKELY(deopt_frame != nullptr)) {
785     HandleDeoptimization(&result, method, deopt_frame, &fragment);
786   } else {
787     CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
788     const char* old_cause = self->StartAssertNoThreadSuspension(
789         "Building interpreter shadow frame");
790     uint16_t num_regs = accessor.RegistersSize();
791     // No last shadow coming from quick.
792     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
793         CREATE_SHADOW_FRAME(num_regs, method, /* dex_pc= */ 0);
794     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
795     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
796     BuildQuickShadowFrameVisitor shadow_frame_builder(
797         sp, method->IsStatic(), shorty, shadow_frame, first_arg_reg);
798     shadow_frame_builder.VisitArguments();
799     self->EndAssertNoThreadSuspension(old_cause);
800 
801     // Potentially run <clinit> before pushing the shadow frame. We do not want
802     // to have the called method on the stack if there is an exception.
803     if (!EnsureInitialized(self, shadow_frame)) {
804       DCHECK(self->IsExceptionPending());
805       return 0;
806     }
807 
808     // Push a transition back into managed code onto the linked list in thread.
809     self->PushManagedStackFragment(&fragment);
810     self->PushShadowFrame(shadow_frame);
811     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
812   }
813 
814   // Pop transition.
815   self->PopManagedStackFragment(fragment);
816 
817   // Check if caller needs to be deoptimized for instrumentation reasons.
818   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
819   if (UNLIKELY(instr->ShouldDeoptimizeCaller(self, sp))) {
820     ArtMethod* caller = QuickArgumentVisitor::GetOuterMethod(sp);
821     uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
822     DCHECK(Runtime::Current()->IsAsyncDeoptimizeable(caller, caller_pc));
823     DCHECK(caller != nullptr);
824     DCHECK(self->GetException() != Thread::GetDeoptimizationException());
825     // Push the context of the deoptimization stack so we can restore the return value and the
826     // exception before executing the deoptimized frames.
827     self->PushDeoptimizationContext(result,
828                                     shorty[0] == 'L' || shorty[0] == '[',  // class or array
829                                     self->GetException(),
830                                     /* from_code= */ false,
831                                     DeoptimizationMethodType::kDefault);
832 
833     // Set special exception to cause deoptimization.
834     self->SetException(Thread::GetDeoptimizationException());
835   }
836 
837   // No need to restore the args since the method has already been run by the interpreter.
838   return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
839 }
840 
841 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
842 // to jobjects.
843 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
844  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)845   BuildQuickArgumentVisitor(ArtMethod** sp,
846                             bool is_static,
847                             std::string_view shorty,
848                             ScopedObjectAccessUnchecked* soa,
849                             std::vector<jvalue>* args)
850       : QuickArgumentVisitor(sp, is_static, shorty), soa_(soa), args_(args) {}
851 
852   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
853 
854  private:
855   ScopedObjectAccessUnchecked* const soa_;
856   std::vector<jvalue>* const args_;
857 
858   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
859 };
860 
Visit()861 void BuildQuickArgumentVisitor::Visit() {
862   jvalue val;
863   Primitive::Type type = GetParamPrimitiveType();
864   switch (type) {
865     case Primitive::kPrimNot: {
866       StackReference<mirror::Object>* stack_ref =
867           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
868       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
869       break;
870     }
871     case Primitive::kPrimLong:  // Fall-through.
872     case Primitive::kPrimDouble:
873       if (IsSplitLongOrDouble()) {
874         val.j = ReadSplitLongParam();
875       } else {
876         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
877       }
878       break;
879     case Primitive::kPrimBoolean:  // Fall-through.
880     case Primitive::kPrimByte:     // Fall-through.
881     case Primitive::kPrimChar:     // Fall-through.
882     case Primitive::kPrimShort:    // Fall-through.
883     case Primitive::kPrimInt:      // Fall-through.
884     case Primitive::kPrimFloat:
885       val.i = *reinterpret_cast<jint*>(GetParamAddress());
886       break;
887     case Primitive::kPrimVoid:
888       LOG(FATAL) << "UNREACHABLE";
889       UNREACHABLE();
890   }
891   args_->push_back(val);
892 }
893 
894 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
895 // which is responsible for recording callee save registers. We explicitly place into jobjects the
896 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
897 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)898 extern "C" uint64_t artQuickProxyInvokeHandler(
899     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
900     REQUIRES_SHARED(Locks::mutator_lock_) {
901   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
902   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
903   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
904   const char* old_cause =
905       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
906   // Register the top of the managed stack, making stack crawlable.
907   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
908   self->VerifyStack();
909   // Start new JNI local reference state.
910   JNIEnvExt* env = self->GetJniEnv();
911   ScopedObjectAccessUnchecked soa(env);
912   ScopedJniEnvLocalRefState env_state(env);
913   // Create local ref. copies of proxy method and the receiver.
914   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
915 
916   // Placing arguments into args vector and remove the receiver.
917   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
918   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
919                                        << non_proxy_method->PrettyMethod();
920   std::vector<jvalue> args;
921   uint32_t shorty_len = 0;
922   const char* raw_shorty = non_proxy_method->GetShorty(&shorty_len);
923   std::string_view shorty(raw_shorty, shorty_len);
924   BuildQuickArgumentVisitor local_ref_visitor(sp, /* is_static= */ false, shorty, &soa, &args);
925 
926   local_ref_visitor.VisitArguments();
927   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
928   args.erase(args.begin());
929 
930   // Convert proxy method into expected interface method.
931   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
932   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
933   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
934   self->EndAssertNoThreadSuspension(old_cause);
935   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
936   DCHECK(!Runtime::Current()->IsActiveTransaction());
937   ObjPtr<mirror::Method> interface_reflect_method =
938       mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
939   if (interface_reflect_method == nullptr) {
940     soa.Self()->AssertPendingOOMException();
941     return 0;
942   }
943   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
944 
945   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
946   // that performs allocations or instrumentation events.
947   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
948   if (instr->HasMethodEntryListeners()) {
949     instr->MethodEnterEvent(soa.Self(), proxy_method);
950     if (soa.Self()->IsExceptionPending()) {
951       instr->MethodUnwindEvent(self,
952                                proxy_method,
953                                0);
954       return 0;
955     }
956   }
957   JValue result =
958       InvokeProxyInvocationHandler(soa, raw_shorty, rcvr_jobj, interface_method_jobj, args);
959   if (soa.Self()->IsExceptionPending()) {
960     if (instr->HasMethodUnwindListeners()) {
961       instr->MethodUnwindEvent(self,
962                                proxy_method,
963                                0);
964     }
965   } else if (instr->HasMethodExitListeners()) {
966     instr->MethodExitEvent(self,
967                            proxy_method,
968                            {},
969                            result);
970   }
971 
972   return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
973 }
974 
975 // Visitor returning a reference argument at a given position in a Quick stack frame.
976 // NOTE: Only used for testing purposes.
977 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
978  public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,std::string_view shorty,size_t arg_pos)979   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp, std::string_view shorty, size_t arg_pos)
980       : QuickArgumentVisitor(sp, /* is_static= */ false, shorty),
981         cur_pos_(0u),
982         arg_pos_(arg_pos),
983         ref_arg_(nullptr) {
984     CHECK_LT(arg_pos, shorty.length()) << "Argument position greater than the number arguments";
985   }
986 
Visit()987   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
988     if (cur_pos_ == arg_pos_) {
989       Primitive::Type type = GetParamPrimitiveType();
990       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
991       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
992     }
993     ++cur_pos_;
994   }
995 
GetReferenceArgument()996   StackReference<mirror::Object>* GetReferenceArgument() {
997     return ref_arg_;
998   }
999 
1000  private:
1001   // The position of the currently visited argument.
1002   size_t cur_pos_;
1003   // The position of the searched argument.
1004   const size_t arg_pos_;
1005   // The reference argument, if found.
1006   StackReference<mirror::Object>* ref_arg_;
1007 
1008   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1009 };
1010 
1011 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1012 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)1013 EXPORT extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(
1014     size_t arg_pos, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1015   ArtMethod* proxy_method = *sp;
1016   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1017   CHECK(!non_proxy_method->IsStatic())
1018       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1019   std::string_view shorty = non_proxy_method->GetShortyView();
1020   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, arg_pos);
1021   ref_arg_visitor.VisitArguments();
1022   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1023   return ref_arg;
1024 }
1025 
1026 // Visitor returning all the reference arguments in a Quick stack frame.
1027 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
1028  public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty)1029   GetQuickReferenceArgumentsVisitor(ArtMethod** sp, bool is_static, std::string_view shorty)
1030       : QuickArgumentVisitor(sp, is_static, shorty) {}
1031 
Visit()1032   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
1033     Primitive::Type type = GetParamPrimitiveType();
1034     if (type == Primitive::kPrimNot) {
1035       StackReference<mirror::Object>* ref_arg =
1036           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1037       ref_args_.push_back(ref_arg);
1038     }
1039   }
1040 
GetReferenceArguments()1041   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1042     return ref_args_;
1043   }
1044 
1045  private:
1046   // The reference arguments.
1047   std::vector<StackReference<mirror::Object>*> ref_args_;
1048 
1049   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1050 };
1051 
1052 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)1053 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1054     REQUIRES_SHARED(Locks::mutator_lock_) {
1055   ArtMethod* proxy_method = *sp;
1056   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1057   CHECK(!non_proxy_method->IsStatic())
1058       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1059   std::string_view shorty = non_proxy_method->GetShortyView();
1060   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty);
1061   ref_args_visitor.VisitArguments();
1062   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1063   return ref_args;
1064 }
1065 
1066 // Read object references held in arguments from quick frames and place in a JNI local references,
1067 // so they don't get garbage collected.
1068 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
1069  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ScopedObjectAccessUnchecked * soa)1070   RememberForGcArgumentVisitor(ArtMethod** sp,
1071                                bool is_static,
1072                                std::string_view shorty,
1073                                ScopedObjectAccessUnchecked* soa)
1074       : QuickArgumentVisitor(sp, is_static, shorty), soa_(soa) {}
1075 
1076   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1077 
1078   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1079 
1080  private:
1081   ScopedObjectAccessUnchecked* const soa_;
1082   // References which we must update when exiting in case the GC moved the objects.
1083   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1084 
1085   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1086 };
1087 
Visit()1088 void RememberForGcArgumentVisitor::Visit() {
1089   if (IsParamAReference()) {
1090     StackReference<mirror::Object>* stack_ref =
1091         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1092     jobject reference =
1093         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1094     references_.push_back(std::make_pair(reference, stack_ref));
1095   }
1096 }
1097 
FixupReferences()1098 void RememberForGcArgumentVisitor::FixupReferences() {
1099   // Fixup any references which may have changed.
1100   for (const auto& pair : references_) {
1101     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1102     soa_->Env()->DeleteLocalRef(pair.first);
1103   }
1104 }
1105 
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1106 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1107     REQUIRES_SHARED(Locks::mutator_lock_) {
1108   if (dex_pc == static_cast<uint32_t>(-1)) {
1109     CHECK(method == WellKnownClasses::java_lang_String_charAt);
1110     return "<native>";
1111   } else {
1112     CodeItemInstructionAccessor accessor = method->DexInstructions();
1113     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1114     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1115   }
1116 }
1117 
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1118 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1119     REQUIRES_SHARED(Locks::mutator_lock_) {
1120   std::string storage;
1121   const char* descriptor = klass->GetDescriptor(&storage);
1122   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1123   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1124   if (oat_dex_file != nullptr) {
1125     const OatFile* oat_file = oat_dex_file->GetOatFile();
1126     const char* dex2oat_cmdline =
1127         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1128     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1129         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1130   }
1131 }
1132 
DumpB74410240DebugData(ArtMethod ** sp)1133 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1134   // Mimick the search for the caller and dump some data while doing so.
1135   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1136 
1137   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1138   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1139 
1140   constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1141   auto** caller_sp = reinterpret_cast<ArtMethod**>(
1142       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1143   constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1144   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1145       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1146   ArtMethod* outer_method = *caller_sp;
1147 
1148   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1149   CHECK(current_code != nullptr);
1150   CHECK(current_code->IsOptimized());
1151   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1152   CodeInfo code_info(current_code);
1153   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1154   CHECK(stack_map.IsValid());
1155   uint32_t dex_pc = stack_map.GetDexPc();
1156 
1157   // Log the outer method and its associated dex file and class table pointer which can be used
1158   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1159   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1160   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1161       << " native pc: " << caller_pc
1162       << " dex pc: " << dex_pc
1163       << " dex file: " << outer_method->GetDexFile()->GetLocation()
1164       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1165   DumpB74410240ClassData(outer_method->GetDeclaringClass());
1166   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1167 
1168   ArtMethod* caller = outer_method;
1169   BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1170   for (InlineInfo inline_info : inline_infos) {
1171     const char* tag = "";
1172     dex_pc = inline_info.GetDexPc();
1173     if (inline_info.EncodesArtMethod()) {
1174       tag = "encoded ";
1175       caller = inline_info.GetArtMethod();
1176     } else {
1177       uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1178       if (dex_pc == static_cast<uint32_t>(-1)) {
1179         tag = "special ";
1180         CHECK(inline_info.Equals(inline_infos.back()));
1181         caller = WellKnownClasses::java_lang_String_charAt;
1182         CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1183       } else {
1184         ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1185         ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1186         caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1187         CHECK(caller != nullptr);
1188       }
1189     }
1190     LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1191         << ": " << tag << caller->PrettyMethod()
1192         << " dex pc: " << dex_pc
1193         << " dex file: " << caller->GetDexFile()->GetLocation()
1194         << " class table: "
1195         << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1196     DumpB74410240ClassData(caller->GetDeclaringClass());
1197     LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1198   }
1199 }
1200 
1201 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1202 extern "C" const void* artQuickResolutionTrampoline(
1203     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1204     REQUIRES_SHARED(Locks::mutator_lock_) {
1205   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1206   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1207   // does not have the same stack layout as the callee-save method).
1208   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1209   // Start new JNI local reference state
1210   JNIEnvExt* env = self->GetJniEnv();
1211   ScopedObjectAccessUnchecked soa(env);
1212   ScopedJniEnvLocalRefState env_state(env);
1213   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1214 
1215   // Compute details about the called method (avoid GCs)
1216   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1217   InvokeType invoke_type;
1218   MethodReference called_method(nullptr, 0);
1219   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1220   ArtMethod* caller = nullptr;
1221   if (!called_method_known_on_entry) {
1222     uint32_t dex_pc;
1223     caller = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
1224     called_method.dex_file = caller->GetDexFile();
1225 
1226     {
1227       CodeItemInstructionAccessor accessor(caller->DexInstructions());
1228       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1229       const Instruction& instr = accessor.InstructionAt(dex_pc);
1230       Instruction::Code instr_code = instr.Opcode();
1231       bool is_range;
1232       switch (instr_code) {
1233         case Instruction::INVOKE_DIRECT:
1234           invoke_type = kDirect;
1235           is_range = false;
1236           break;
1237         case Instruction::INVOKE_DIRECT_RANGE:
1238           invoke_type = kDirect;
1239           is_range = true;
1240           break;
1241         case Instruction::INVOKE_STATIC:
1242           invoke_type = kStatic;
1243           is_range = false;
1244           break;
1245         case Instruction::INVOKE_STATIC_RANGE:
1246           invoke_type = kStatic;
1247           is_range = true;
1248           break;
1249         case Instruction::INVOKE_SUPER:
1250           invoke_type = kSuper;
1251           is_range = false;
1252           break;
1253         case Instruction::INVOKE_SUPER_RANGE:
1254           invoke_type = kSuper;
1255           is_range = true;
1256           break;
1257         case Instruction::INVOKE_VIRTUAL:
1258           invoke_type = kVirtual;
1259           is_range = false;
1260           break;
1261         case Instruction::INVOKE_VIRTUAL_RANGE:
1262           invoke_type = kVirtual;
1263           is_range = true;
1264           break;
1265         case Instruction::INVOKE_INTERFACE:
1266           invoke_type = kInterface;
1267           is_range = false;
1268           break;
1269         case Instruction::INVOKE_INTERFACE_RANGE:
1270           invoke_type = kInterface;
1271           is_range = true;
1272           break;
1273         default:
1274           DumpB74410240DebugData(sp);
1275           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1276           UNREACHABLE();
1277       }
1278       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1279       VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1280                 << called_method.index;
1281     }
1282   } else {
1283     invoke_type = kStatic;
1284     called_method.dex_file = called->GetDexFile();
1285     called_method.index = called->GetDexMethodIndex();
1286   }
1287   std::string_view shorty =
1288       called_method.dex_file->GetMethodShortyView(called_method.GetMethodId());
1289   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, &soa);
1290   visitor.VisitArguments();
1291   self->EndAssertNoThreadSuspension(old_cause);
1292   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1293   // Resolve method filling in dex cache.
1294   if (!called_method_known_on_entry) {
1295     StackHandleScope<1> hs(self);
1296     mirror::Object* fake_receiver = nullptr;
1297     HandleWrapper<mirror::Object> h_receiver(
1298         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
1299     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1300     called = linker->ResolveMethodWithChecks(called_method.index, caller, invoke_type);
1301   }
1302   const void* code = nullptr;
1303   if (LIKELY(!self->IsExceptionPending())) {
1304     // Incompatible class change should have been handled in resolve method.
1305     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1306         << called->PrettyMethod() << " " << invoke_type;
1307     if (virtual_or_interface || invoke_type == kSuper) {
1308       // Refine called method based on receiver for kVirtual/kInterface, and
1309       // caller for kSuper.
1310       ArtMethod* orig_called = called;
1311       if (invoke_type == kVirtual) {
1312         CHECK(receiver != nullptr) << invoke_type;
1313         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1314       } else if (invoke_type == kInterface) {
1315         CHECK(receiver != nullptr) << invoke_type;
1316         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1317       } else {
1318         DCHECK_EQ(invoke_type, kSuper);
1319         CHECK(caller != nullptr) << invoke_type;
1320         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1321             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1322         if (ref_class->IsInterface()) {
1323           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1324         } else {
1325           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1326               called->GetMethodIndex(), kRuntimePointerSize);
1327         }
1328       }
1329 
1330       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1331                                << mirror::Object::PrettyTypeOf(receiver) << " "
1332                                << invoke_type << " " << orig_called->GetVtableIndex();
1333     }
1334     // Now that we know the actual target, update .bss entry in oat file, if
1335     // any.
1336     if (!called_method_known_on_entry) {
1337       // We only put non copied methods in the BSS. Putting a copy can lead to an
1338       // odd situation where the ArtMethod being executed is unrelated to the
1339       // receiver of the method.
1340       called = called->GetCanonicalMethod();
1341       if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
1342         if (called->GetDexFile() == called_method.dex_file) {
1343           called_method.index = called->GetDexMethodIndex();
1344         } else {
1345           called_method.index = called->FindDexMethodIndexInOtherDexFile(
1346               *called_method.dex_file, called_method.index);
1347           DCHECK_NE(called_method.index, dex::kDexNoIndex);
1348         }
1349       }
1350       ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
1351       MaybeUpdateBssMethodEntry(called, called_method, outer_method);
1352     }
1353 
1354     // Static invokes need class initialization check but instance invokes can proceed even if
1355     // the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
1356     bool success = true;
1357     if (called->StillNeedsClinitCheck()) {
1358       // Ensure that the called method's class is initialized.
1359       StackHandleScope<1> hs(soa.Self());
1360       Handle<mirror::Class> h_called_class = hs.NewHandle(called->GetDeclaringClass());
1361       success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
1362     }
1363     if (success) {
1364       // When the clinit check is at entry of the AOT/nterp code, we do the clinit check
1365       // before doing the suspend check. To ensure the code sees the latest
1366       // version of the class (the code doesn't do a read barrier to reduce
1367       // size), do a suspend check now.
1368       self->CheckSuspend();
1369       instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1370       // Check if we need instrumented code here. Since resolution stubs could suspend, it is
1371       // possible that we instrumented the entry points after we started executing the resolution
1372       // stub.
1373       code = instrumentation->GetMaybeInstrumentedCodeForInvoke(called);
1374     } else {
1375       DCHECK(called->GetDeclaringClass()->IsErroneous());
1376       DCHECK(self->IsExceptionPending());
1377     }
1378   }
1379   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1380   // Fixup any locally saved objects may have moved during a GC.
1381   visitor.FixupReferences();
1382   // Place called method in callee-save frame to be placed as first argument to quick method.
1383   *sp = called;
1384 
1385   return code;
1386 }
1387 
1388 /*
1389  * This class uses a couple of observations to unite the different calling conventions through
1390  * a few constants.
1391  *
1392  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1393  *    possible alignment.
1394  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1395  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1396  *    when we have to split things
1397  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1398  *    and we can use Int handling directly.
1399  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1400  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1401  *    extension should be compatible with Aarch64, which mandates copying the available bits
1402  *    into LSB and leaving the rest unspecified.
1403  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1404  *    the stack.
1405  * 6) There is only little endian.
1406  *
1407  *
1408  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1409  * follows:
1410  *
1411  * void PushGpr(uintptr_t):   Add a value for the next GPR
1412  *
1413  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1414  *                            padding, that is, think the architecture is 32b and aligns 64b.
1415  *
1416  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1417  *                            split this if necessary. The current state will have aligned, if
1418  *                            necessary.
1419  *
1420  * void PushStack(uintptr_t): Push a value to the stack.
1421  */
1422 template<class T> class BuildNativeCallFrameStateMachine {
1423  public:
1424   static constexpr bool kNaNBoxing = QuickArgumentVisitor::NaNBoxing();
1425 #if defined(__arm__)
1426   static constexpr bool kNativeSoftFloatAbi = true;
1427   static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1428   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1429   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1430 
1431   static constexpr size_t kRegistersNeededForLong = 2;
1432   static constexpr size_t kRegistersNeededForDouble = 2;
1433   static constexpr bool kMultiRegistersAligned = true;
1434   static constexpr bool kMultiGPRegistersWidened = false;
1435   static constexpr bool kAlignLongOnStack = true;
1436   static constexpr bool kAlignDoubleOnStack = true;
1437 #elif defined(__aarch64__)
1438   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1439   static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1440   static constexpr size_t kNumNativeGprArgs = 8;  // 8 arguments passed in GPRs.
1441   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1442 
1443   static constexpr size_t kRegistersNeededForLong = 1;
1444   static constexpr size_t kRegistersNeededForDouble = 1;
1445   static constexpr bool kMultiRegistersAligned = false;
1446   static constexpr bool kMultiGPRegistersWidened = false;
1447   static constexpr bool kAlignLongOnStack = false;
1448   static constexpr bool kAlignDoubleOnStack = false;
1449 #elif defined(__riscv)
1450   static constexpr bool kNativeSoftFloatAbi = false;
1451   static constexpr bool kNativeSoftFloatAfterHardFloat = true;
1452   static constexpr size_t kNumNativeGprArgs = 8;
1453   static constexpr size_t kNumNativeFprArgs = 8;
1454 
1455   static constexpr size_t kRegistersNeededForLong = 1;
1456   static constexpr size_t kRegistersNeededForDouble = 1;
1457   static constexpr bool kMultiRegistersAligned = false;
1458   static constexpr bool kMultiGPRegistersWidened = true;
1459   static constexpr bool kAlignLongOnStack = false;
1460   static constexpr bool kAlignDoubleOnStack = false;
1461 #elif defined(__i386__)
1462   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1463   static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1464   static constexpr size_t kNumNativeGprArgs = 0;  // 0 arguments passed in GPRs.
1465   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1466 
1467   static constexpr size_t kRegistersNeededForLong = 2;
1468   static constexpr size_t kRegistersNeededForDouble = 2;
1469   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1470   static constexpr bool kMultiGPRegistersWidened = false;
1471   static constexpr bool kAlignLongOnStack = false;
1472   static constexpr bool kAlignDoubleOnStack = false;
1473 #elif defined(__x86_64__)
1474   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1475   static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1476   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1477   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1478 
1479   static constexpr size_t kRegistersNeededForLong = 1;
1480   static constexpr size_t kRegistersNeededForDouble = 1;
1481   static constexpr bool kMultiRegistersAligned = false;
1482   static constexpr bool kMultiGPRegistersWidened = false;
1483   static constexpr bool kAlignLongOnStack = false;
1484   static constexpr bool kAlignDoubleOnStack = false;
1485 #else
1486 #error "Unsupported architecture"
1487 #endif
1488 
1489  public:
BuildNativeCallFrameStateMachine(T * delegate)1490   explicit BuildNativeCallFrameStateMachine(T* delegate)
1491       : gpr_index_(kNumNativeGprArgs),
1492         fpr_index_(kNumNativeFprArgs),
1493         stack_entries_(0),
1494         delegate_(delegate) {
1495     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1496     // the next register is even; counting down is just to make the compiler happy...
1497     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1498     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1499   }
1500 
~BuildNativeCallFrameStateMachine()1501   virtual ~BuildNativeCallFrameStateMachine() {}
1502 
HavePointerGpr() const1503   bool HavePointerGpr() const {
1504     return gpr_index_ > 0;
1505   }
1506 
AdvancePointer(const void * val)1507   void AdvancePointer(const void* val) {
1508     if (HavePointerGpr()) {
1509       gpr_index_--;
1510       PushGpr(reinterpret_cast<uintptr_t>(val));
1511     } else {
1512       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1513       PushStack(reinterpret_cast<uintptr_t>(val));
1514       gpr_index_ = 0;
1515     }
1516   }
1517 
HaveIntGpr() const1518   bool HaveIntGpr() const {
1519     return gpr_index_ > 0;
1520   }
1521 
AdvanceInt(uint32_t val)1522   void AdvanceInt(uint32_t val) {
1523     if (HaveIntGpr()) {
1524       gpr_index_--;
1525       if (kMultiGPRegistersWidened) {
1526         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1527         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1528       } else {
1529         PushGpr(val);
1530       }
1531     } else {
1532       stack_entries_++;
1533       if (kMultiGPRegistersWidened) {
1534         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1535         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1536       } else {
1537         PushStack(val);
1538       }
1539       gpr_index_ = 0;
1540     }
1541   }
1542 
HaveLongGpr() const1543   bool HaveLongGpr() const {
1544     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1545   }
1546 
LongGprNeedsPadding() const1547   bool LongGprNeedsPadding() const {
1548     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1549         kAlignLongOnStack &&                  // and when it needs alignment
1550         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1551   }
1552 
LongStackNeedsPadding() const1553   bool LongStackNeedsPadding() const {
1554     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1555         kAlignLongOnStack &&                  // and when it needs 8B alignment
1556         (stack_entries_ & 1) == 1;            // counter is odd
1557   }
1558 
AdvanceLong(uint64_t val)1559   void AdvanceLong(uint64_t val) {
1560     if (HaveLongGpr()) {
1561       if (LongGprNeedsPadding()) {
1562         PushGpr(0);
1563         gpr_index_--;
1564       }
1565       if (kRegistersNeededForLong == 1) {
1566         PushGpr(static_cast<uintptr_t>(val));
1567       } else {
1568         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1569         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1570       }
1571       gpr_index_ -= kRegistersNeededForLong;
1572     } else {
1573       if (LongStackNeedsPadding()) {
1574         PushStack(0);
1575         stack_entries_++;
1576       }
1577       if (kRegistersNeededForLong == 1) {
1578         PushStack(static_cast<uintptr_t>(val));
1579         stack_entries_++;
1580       } else {
1581         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1582         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1583         stack_entries_ += 2;
1584       }
1585       gpr_index_ = 0;
1586     }
1587   }
1588 
HaveFloatFpr() const1589   bool HaveFloatFpr() const {
1590     return fpr_index_ > 0;
1591   }
1592 
AdvanceFloat(uint32_t val)1593   void AdvanceFloat(uint32_t val) {
1594     if (kNativeSoftFloatAbi) {
1595       AdvanceInt(val);
1596     } else if (HaveFloatFpr()) {
1597       fpr_index_--;
1598       if (kRegistersNeededForDouble == 1) {
1599         if (kNaNBoxing) {
1600           // NaN boxing: no widening, just use the bits, but reset upper bits to 1s.
1601           // See e.g. RISC-V manual, D extension, section "NaN Boxing of Narrower Values".
1602           PushFpr8(UINT64_C(0xFFFFFFFF00000000) | static_cast<uint64_t>(val));
1603         } else {
1604           // No widening, just use the bits.
1605           PushFpr8(static_cast<uint64_t>(val));
1606         }
1607       } else {
1608         PushFpr4(val);
1609       }
1610     } else if (kNativeSoftFloatAfterHardFloat) {
1611       // After using FP arg registers, pass FP args in general purpose registers or on the stack.
1612       AdvanceInt(val);
1613     } else {
1614       stack_entries_++;
1615       PushStack(static_cast<uintptr_t>(val));
1616       fpr_index_ = 0;
1617     }
1618   }
1619 
HaveDoubleFpr() const1620   bool HaveDoubleFpr() const {
1621     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1622   }
1623 
DoubleFprNeedsPadding() const1624   bool DoubleFprNeedsPadding() const {
1625     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1626         kAlignDoubleOnStack &&                  // and when it needs alignment
1627         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1628   }
1629 
DoubleStackNeedsPadding() const1630   bool DoubleStackNeedsPadding() const {
1631     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1632         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1633         (stack_entries_ & 1) == 1;              // counter is odd
1634   }
1635 
AdvanceDouble(uint64_t val)1636   void AdvanceDouble(uint64_t val) {
1637     if (kNativeSoftFloatAbi) {
1638       AdvanceLong(val);
1639     } else if (HaveDoubleFpr()) {
1640       if (DoubleFprNeedsPadding()) {
1641         PushFpr4(0);
1642         fpr_index_--;
1643       }
1644       PushFpr8(val);
1645       fpr_index_ -= kRegistersNeededForDouble;
1646     } else if (kNativeSoftFloatAfterHardFloat) {
1647       // After using FP arg registers, pass FP args in general purpose registers or on the stack.
1648       AdvanceLong(val);
1649     } else {
1650       if (DoubleStackNeedsPadding()) {
1651         PushStack(0);
1652         stack_entries_++;
1653       }
1654       if (kRegistersNeededForDouble == 1) {
1655         PushStack(static_cast<uintptr_t>(val));
1656         stack_entries_++;
1657       } else {
1658         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1659         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1660         stack_entries_ += 2;
1661       }
1662       fpr_index_ = 0;
1663     }
1664   }
1665 
GetStackEntries() const1666   uint32_t GetStackEntries() const {
1667     return stack_entries_;
1668   }
1669 
GetNumberOfUsedGprs() const1670   uint32_t GetNumberOfUsedGprs() const {
1671     return kNumNativeGprArgs - gpr_index_;
1672   }
1673 
GetNumberOfUsedFprs() const1674   uint32_t GetNumberOfUsedFprs() const {
1675     return kNumNativeFprArgs - fpr_index_;
1676   }
1677 
1678  private:
PushGpr(uintptr_t val)1679   void PushGpr(uintptr_t val) {
1680     delegate_->PushGpr(val);
1681   }
PushFpr4(float val)1682   void PushFpr4(float val) {
1683     delegate_->PushFpr4(val);
1684   }
PushFpr8(uint64_t val)1685   void PushFpr8(uint64_t val) {
1686     delegate_->PushFpr8(val);
1687   }
PushStack(uintptr_t val)1688   void PushStack(uintptr_t val) {
1689     delegate_->PushStack(val);
1690   }
1691 
1692   uint32_t gpr_index_;      // Number of free GPRs
1693   uint32_t fpr_index_;      // Number of free FPRs
1694   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1695                             // extended
1696   T* const delegate_;             // What Push implementation gets called
1697 };
1698 
1699 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1700 // in subclasses.
1701 //
1702 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1703 // them with handles.
1704 class ComputeNativeCallFrameSize {
1705  public:
ComputeNativeCallFrameSize()1706   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1707 
~ComputeNativeCallFrameSize()1708   virtual ~ComputeNativeCallFrameSize() {}
1709 
GetStackSize() const1710   uint32_t GetStackSize() const {
1711     return num_stack_entries_ * sizeof(uintptr_t);
1712   }
1713 
LayoutStackArgs(uint8_t * sp8) const1714   uint8_t* LayoutStackArgs(uint8_t* sp8) const {
1715     sp8 -= GetStackSize();
1716     // Align by kStackAlignment; it is at least as strict as native stack alignment.
1717     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1718     return sp8;
1719   }
1720 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1721   virtual void WalkHeader(
1722       [[maybe_unused]] BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1723       REQUIRES_SHARED(Locks::mutator_lock_) {}
1724 
Walk(std::string_view shorty)1725   void Walk(std::string_view shorty) REQUIRES_SHARED(Locks::mutator_lock_) {
1726     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1727 
1728     WalkHeader(&sm);
1729 
1730     for (char c : shorty.substr(1u)) {
1731       Primitive::Type cur_type_ = Primitive::GetType(c);
1732       switch (cur_type_) {
1733         case Primitive::kPrimNot:
1734           sm.AdvancePointer(nullptr);
1735           break;
1736         case Primitive::kPrimBoolean:
1737         case Primitive::kPrimByte:
1738         case Primitive::kPrimChar:
1739         case Primitive::kPrimShort:
1740         case Primitive::kPrimInt:
1741           sm.AdvanceInt(0);
1742           break;
1743         case Primitive::kPrimFloat:
1744           sm.AdvanceFloat(0);
1745           break;
1746         case Primitive::kPrimDouble:
1747           sm.AdvanceDouble(0);
1748           break;
1749         case Primitive::kPrimLong:
1750           sm.AdvanceLong(0);
1751           break;
1752         default:
1753           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1754           UNREACHABLE();
1755       }
1756     }
1757 
1758     num_stack_entries_ = sm.GetStackEntries();
1759   }
1760 
PushGpr(uintptr_t)1761   void PushGpr(uintptr_t /* val */) {
1762     // not optimizing registers, yet
1763   }
1764 
PushFpr4(float)1765   void PushFpr4(float /* val */) {
1766     // not optimizing registers, yet
1767   }
1768 
PushFpr8(uint64_t)1769   void PushFpr8(uint64_t /* val */) {
1770     // not optimizing registers, yet
1771   }
1772 
PushStack(uintptr_t)1773   void PushStack(uintptr_t /* val */) {
1774     // counting is already done in the superclass
1775   }
1776 
1777  protected:
1778   uint32_t num_stack_entries_;
1779 };
1780 
1781 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1782  public:
ComputeGenericJniFrameSize(bool critical_native)1783   explicit ComputeGenericJniFrameSize(bool critical_native)
1784     : critical_native_(critical_native) {}
1785 
ComputeLayout(ArtMethod ** managed_sp,std::string_view shorty)1786   uintptr_t* ComputeLayout(ArtMethod** managed_sp, std::string_view shorty)
1787       REQUIRES_SHARED(Locks::mutator_lock_) {
1788     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1789 
1790     Walk(shorty);
1791 
1792     // Add space for cookie.
1793     DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
1794     static_assert(sizeof(uintptr_t) >= sizeof(jni::LRTSegmentState));
1795     uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
1796 
1797     // Layout stack arguments.
1798     sp8 = LayoutStackArgs(sp8);
1799 
1800     // Return the new bottom.
1801     DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
1802     return reinterpret_cast<uintptr_t*>(sp8);
1803   }
1804 
GetStartGprRegs(uintptr_t * reserved_area)1805   static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
1806     return reserved_area;
1807   }
1808 
GetStartFprRegs(uintptr_t * reserved_area)1809   static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
1810     constexpr size_t num_gprs =
1811         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1812     return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
1813   }
1814 
GetHiddenArgSlot(uintptr_t * reserved_area)1815   static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
1816     // Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
1817     // FP register size (it is actually 0 on all supported 32-bit architectures).
1818     constexpr size_t num_fprs =
1819         BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1820     return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
1821   }
1822 
GetOutArgsSpSlot(uintptr_t * reserved_area)1823   static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
1824     return GetHiddenArgSlot(reserved_area) + 1;
1825   }
1826 
1827   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1828   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
1829       REQUIRES_SHARED(Locks::mutator_lock_);
1830 
1831  private:
1832   const bool critical_native_;
1833 };
1834 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1835 void ComputeGenericJniFrameSize::WalkHeader(
1836     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1837   // First 2 parameters are always excluded for @CriticalNative.
1838   if (UNLIKELY(critical_native_)) {
1839     return;
1840   }
1841 
1842   // JNIEnv
1843   sm->AdvancePointer(nullptr);
1844 
1845   // Class object or this as first argument
1846   sm->AdvancePointer(nullptr);
1847 }
1848 
1849 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1850 // the template requirements of BuildGenericJniFrameStateMachine.
1851 class FillNativeCall {
1852  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1853   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1854       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1855 
~FillNativeCall()1856   virtual ~FillNativeCall() {}
1857 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1858   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1859     cur_gpr_reg_ = gpr_regs;
1860     cur_fpr_reg_ = fpr_regs;
1861     cur_stack_arg_ = stack_args;
1862   }
1863 
PushGpr(uintptr_t val)1864   void PushGpr(uintptr_t val) {
1865     *cur_gpr_reg_ = val;
1866     cur_gpr_reg_++;
1867   }
1868 
PushFpr4(float val)1869   void PushFpr4(float val) {
1870     *cur_fpr_reg_ = val;
1871     cur_fpr_reg_++;
1872   }
1873 
PushFpr8(uint64_t val)1874   void PushFpr8(uint64_t val) {
1875     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1876     *tmp = val;
1877     cur_fpr_reg_ += 2;
1878   }
1879 
PushStack(uintptr_t val)1880   void PushStack(uintptr_t val) {
1881     *cur_stack_arg_ = val;
1882     cur_stack_arg_++;
1883   }
1884 
1885  private:
1886   uintptr_t* cur_gpr_reg_;
1887   uint32_t* cur_fpr_reg_;
1888   uintptr_t* cur_stack_arg_;
1889 };
1890 
1891 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1892 // of transitioning into native code.
1893 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
1894  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,std::string_view shorty,ArtMethod ** managed_sp,uintptr_t * reserved_area)1895   BuildGenericJniFrameVisitor(Thread* self,
1896                               bool is_static,
1897                               bool critical_native,
1898                               std::string_view shorty,
1899                               ArtMethod** managed_sp,
1900                               uintptr_t* reserved_area)
1901       : QuickArgumentVisitor(managed_sp, is_static, shorty),
1902         jni_call_(nullptr, nullptr, nullptr),
1903         sm_(&jni_call_),
1904         current_vreg_(nullptr) {
1905     DCHECK_ALIGNED(managed_sp, kStackAlignment);
1906     DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
1907 
1908     ComputeGenericJniFrameSize fsc(critical_native);
1909     uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty);
1910 
1911     // Store hidden argument for @CriticalNative.
1912     uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
1913     constexpr uintptr_t kGenericJniTag = 1u;
1914     ArtMethod* method = *managed_sp;
1915     *hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
1916                                        : 0xebad6a89u;  // Bad value.
1917 
1918     // Set out args SP.
1919     uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
1920     *out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
1921 
1922     // Prepare vreg pointer for spilling references.
1923     static constexpr size_t frame_size =
1924         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
1925     current_vreg_ = reinterpret_cast<uint32_t*>(
1926         reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
1927 
1928     jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
1929                     fsc.GetStartFprRegs(reserved_area),
1930                     out_args_sp);
1931 
1932     // First 2 parameters are always excluded for CriticalNative methods.
1933     if (LIKELY(!critical_native)) {
1934       // jni environment is always first argument
1935       sm_.AdvancePointer(self->GetJniEnv());
1936 
1937       if (is_static) {
1938         // The `jclass` is a pointer to the method's declaring class.
1939         // The declaring class must be marked.
1940         auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
1941             method->GetDeclaringClassAddressWithoutBarrier());
1942         if (gUseReadBarrier) {
1943           artJniReadBarrier(method);
1944         }
1945         sm_.AdvancePointer(declaring_class);
1946       }  // else "this" reference is already handled by QuickArgumentVisitor.
1947     }
1948   }
1949 
1950   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1951 
1952  private:
1953   FillNativeCall jni_call_;
1954   BuildNativeCallFrameStateMachine<FillNativeCall> sm_;
1955 
1956   // Pointer to the current vreg in caller's reserved out vreg area.
1957   // Used for spilling reference arguments.
1958   uint32_t* current_vreg_;
1959 
1960   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1961 };
1962 
Visit()1963 void BuildGenericJniFrameVisitor::Visit() {
1964   Primitive::Type type = GetParamPrimitiveType();
1965   switch (type) {
1966     case Primitive::kPrimLong: {
1967       jlong long_arg;
1968       if (IsSplitLongOrDouble()) {
1969         long_arg = ReadSplitLongParam();
1970       } else {
1971         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1972       }
1973       sm_.AdvanceLong(long_arg);
1974       current_vreg_ += 2u;
1975       break;
1976     }
1977     case Primitive::kPrimDouble: {
1978       uint64_t double_arg;
1979       if (IsSplitLongOrDouble()) {
1980         // Read into union so that we don't case to a double.
1981         double_arg = ReadSplitLongParam();
1982       } else {
1983         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1984       }
1985       sm_.AdvanceDouble(double_arg);
1986       current_vreg_ += 2u;
1987       break;
1988     }
1989     case Primitive::kPrimNot: {
1990       mirror::Object* obj =
1991           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
1992       StackReference<mirror::Object>* spill_ref =
1993           reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
1994       spill_ref->Assign(obj);
1995       sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
1996       current_vreg_ += 1u;
1997       break;
1998     }
1999     case Primitive::kPrimFloat:
2000       sm_.AdvanceFloat(*reinterpret_cast<uint32_t*>(GetParamAddress()));
2001       current_vreg_ += 1u;
2002       break;
2003     case Primitive::kPrimBoolean:  // Fall-through.
2004     case Primitive::kPrimByte:     // Fall-through.
2005     case Primitive::kPrimChar:     // Fall-through.
2006     case Primitive::kPrimShort:    // Fall-through.
2007     case Primitive::kPrimInt:      // Fall-through.
2008       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2009       current_vreg_ += 1u;
2010       break;
2011     case Primitive::kPrimVoid:
2012       LOG(FATAL) << "UNREACHABLE";
2013       UNREACHABLE();
2014   }
2015 }
2016 
2017 /*
2018  * Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
2019  *
2020  * On entry, the stack has a standard callee-save frame above `managed_sp`,
2021  * and the reserved area below it. Starting below `managed_sp`, we reserve space
2022  * for local reference cookie (not present for @CriticalNative), HandleScope
2023  * (not present for @CriticalNative) and stack args (if args do not fit into
2024  * registers). At the bottom of the reserved area, there is space for register
2025  * arguments, hidden arg (for @CriticalNative) and the SP for the native call
2026  * (i.e. pointer to the stack args area), which the calling stub shall load
2027  * to perform the native call. We fill all these fields, perform class init
2028  * check (for static methods) and/or locking (for synchronized methods) if
2029  * needed and return to the stub.
2030  *
2031  * The return value is the pointer to the native code, null on failure.
2032  *
2033  * NO_THREAD_SAFETY_ANALYSIS: Depending on the use case, the trampoline may
2034  * or may not lock a synchronization object and transition out of Runnable.
2035  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** managed_sp,uintptr_t * reserved_area)2036 extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
2037                                                     ArtMethod** managed_sp,
2038                                                     uintptr_t* reserved_area)
2039     REQUIRES_SHARED(Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS {
2040   // Note: We cannot walk the stack properly until fixed up below.
2041   ArtMethod* called = *managed_sp;
2042   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2043   Runtime* runtime = Runtime::Current();
2044   std::string_view shorty = called->GetShortyView();
2045   bool critical_native = called->IsCriticalNative();
2046   bool fast_native = called->IsFastNative();
2047   bool normal_native = !critical_native && !fast_native;
2048 
2049   // Run the visitor and update sp.
2050   BuildGenericJniFrameVisitor visitor(self,
2051                                       called->IsStatic(),
2052                                       critical_native,
2053                                       shorty,
2054                                       managed_sp,
2055                                       reserved_area);
2056   {
2057     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2058     visitor.VisitArguments();
2059   }
2060 
2061   // Fix up managed-stack things in Thread. After this we can walk the stack.
2062   self->SetTopOfStackGenericJniTagged(managed_sp);
2063 
2064   self->VerifyStack();
2065 
2066   // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2067   jit::Jit* jit = runtime->GetJit();
2068   if (jit != nullptr) {
2069     jit->MethodEntered(self, called);
2070   }
2071 
2072   // We can set the entrypoint of a native method to generic JNI even when the
2073   // class hasn't been initialized, so we need to do the initialization check
2074   // before invoking the native code.
2075   if (called->StillNeedsClinitCheck()) {
2076     // Ensure static method's class is initialized.
2077     StackHandleScope<1> hs(self);
2078     Handle<mirror::Class> h_class = hs.NewHandle(called->GetDeclaringClass());
2079     if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
2080       DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
2081       return nullptr;  // Report error.
2082     }
2083   }
2084 
2085   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2086   if (UNLIKELY(instr->HasMethodEntryListeners())) {
2087     instr->MethodEnterEvent(self, called);
2088     if (self->IsExceptionPending()) {
2089       return nullptr;
2090     }
2091   }
2092 
2093   // Skip calling `artJniMethodStart()` for @CriticalNative and @FastNative.
2094   if (LIKELY(normal_native)) {
2095     // Start JNI.
2096     if (called->IsSynchronized()) {
2097       ObjPtr<mirror::Object> lock = GetGenericJniSynchronizationObject(self, called);
2098       DCHECK(lock != nullptr);
2099       lock->MonitorEnter(self);
2100       if (self->IsExceptionPending()) {
2101         return nullptr;  // Report error.
2102       }
2103     }
2104     if (UNLIKELY(self->ReadFlag(ThreadFlag::kMonitorJniEntryExit))) {
2105       artJniMonitoredMethodStart(self);
2106     } else {
2107       artJniMethodStart(self);
2108     }
2109   } else {
2110     DCHECK(!called->IsSynchronized())
2111         << "@FastNative/@CriticalNative and synchronize is not supported";
2112   }
2113 
2114   // Skip pushing LRT frame for @CriticalNative.
2115   if (LIKELY(!critical_native)) {
2116     // Push local reference frame.
2117     JNIEnvExt* env = self->GetJniEnv();
2118     DCHECK(env != nullptr);
2119     uint32_t cookie = bit_cast<uint32_t>(env->PushLocalReferenceFrame());
2120 
2121     // Save the cookie on the stack.
2122     uint32_t* sp32 = reinterpret_cast<uint32_t*>(managed_sp);
2123     *(sp32 - 1) = cookie;
2124   }
2125 
2126   // Retrieve the stored native code.
2127   // Note that it may point to the lookup stub or trampoline.
2128   // FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
2129   // does not handle that case. Calls from compiled stubs are also broken.
2130   void const* nativeCode = called->GetEntryPointFromJni();
2131 
2132   VLOG(third_party_jni) << "GenericJNI: "
2133                         << called->PrettyMethod()
2134                         << " -> "
2135                         << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2136 
2137   // Return native code.
2138   return nativeCode;
2139 }
2140 
2141 // Defined in quick_jni_entrypoints.cc.
2142 extern uint64_t GenericJniMethodEnd(Thread* self,
2143                                     uint32_t saved_local_ref_cookie,
2144                                     jvalue result,
2145                                     uint64_t result_f,
2146                                     ArtMethod* called);
2147 
2148 /*
2149  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2150  * unlocking.
2151  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2152 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2153                                                     jvalue result,
2154                                                     uint64_t result_f) {
2155   // We're here just back from a native call. We don't have the shared mutator lock at this point
2156   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2157   // anything that requires a mutator lock before that would cause problems as GC may have the
2158   // exclusive mutator lock and may be moving objects, etc.
2159   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2160   DCHECK(self->GetManagedStack()->GetTopQuickFrameGenericJniTag());
2161   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2162   ArtMethod* called = *sp;
2163   uint32_t cookie = *(sp32 - 1);
2164   return GenericJniMethodEnd(self, cookie, result, result_f, called);
2165 }
2166 
2167 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2168 // for the method pointer.
2169 //
2170 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2171 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2172 
2173 template <InvokeType type>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2174 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2175                                      ObjPtr<mirror::Object> this_object,
2176                                      Thread* self,
2177                                      ArtMethod** sp) {
2178   ScopedQuickEntrypointChecks sqec(self);
2179   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2180   uint32_t dex_pc;
2181   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2182   CodeItemInstructionAccessor accessor(caller_method->DexInstructions());
2183   DCHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
2184   const Instruction& instr = accessor.InstructionAt(dex_pc);
2185   bool string_init = false;
2186   ArtMethod* method = FindMethodToCall<type>(
2187       self, caller_method, &this_object, instr, /* only_lookup_tls_cache= */ true, &string_init);
2188 
2189   if (UNLIKELY(method == nullptr)) {
2190     if (self->IsExceptionPending()) {
2191       // Return a failure if the first lookup threw an exception.
2192       return GetTwoWordFailureValue();  // Failure.
2193     }
2194     const DexFile* dex_file = caller_method->GetDexFile();
2195     std::string_view shorty =
2196         dex_file->GetMethodShortyView(dex_file->GetMethodId(method_idx));
2197     {
2198       // Remember the args in case a GC happens in FindMethodToCall.
2199       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2200       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, &soa);
2201       visitor.VisitArguments();
2202 
2203       method = FindMethodToCall<type>(self,
2204                                       caller_method,
2205                                       &this_object,
2206                                       instr,
2207                                       /* only_lookup_tls_cache= */ false,
2208                                       &string_init);
2209 
2210       visitor.FixupReferences();
2211     }
2212 
2213     if (UNLIKELY(method == nullptr)) {
2214       CHECK(self->IsExceptionPending());
2215       return GetTwoWordFailureValue();  // Failure.
2216     }
2217   }
2218   DCHECK(!self->IsExceptionPending());
2219   const void* code = method->GetEntryPointFromQuickCompiledCode();
2220 
2221   // When we return, the caller will branch to this address, so it had better not be 0!
2222   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2223                           << " location: "
2224                           << method->GetDexFile()->GetLocation();
2225 
2226   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2227                                 reinterpret_cast<uintptr_t>(method));
2228 }
2229 
2230 // Explicit artInvokeCommon template function declarations to please analysis tool.
2231 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type)                                            \
2232   template REQUIRES_SHARED(Locks::mutator_lock_)                                              \
2233   TwoWordReturn artInvokeCommon<type>(                                                        \
2234       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2235 
2236 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual);
2237 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface);
2238 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect);
2239 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic);
2240 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper);
2241 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2242 
2243 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2244 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2245     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2246     REQUIRES_SHARED(Locks::mutator_lock_) {
2247   return artInvokeCommon<kInterface>(method_idx, this_object, self, sp);
2248 }
2249 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2250 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2251     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2252     REQUIRES_SHARED(Locks::mutator_lock_) {
2253   return artInvokeCommon<kDirect>(method_idx, this_object, self, sp);
2254 }
2255 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2256 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2257     uint32_t method_idx, [[maybe_unused]] mirror::Object* this_object, Thread* self, ArtMethod** sp)
2258     REQUIRES_SHARED(Locks::mutator_lock_) {
2259   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2260   // it doesn't cause ObjPtr alignment failure check.
2261   return artInvokeCommon<kStatic>(method_idx, nullptr, self, sp);
2262 }
2263 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2264 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2265     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2266     REQUIRES_SHARED(Locks::mutator_lock_) {
2267   return artInvokeCommon<kSuper>(method_idx, this_object, self, sp);
2268 }
2269 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2270 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2271     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2272     REQUIRES_SHARED(Locks::mutator_lock_) {
2273   return artInvokeCommon<kVirtual>(method_idx, this_object, self, sp);
2274 }
2275 
2276 // Determine target of interface dispatch. The interface method and this object are known non-null.
2277 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2278 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2279                                                       mirror::Object* raw_this_object,
2280                                                       Thread* self,
2281                                                       ArtMethod** sp)
2282     REQUIRES_SHARED(Locks::mutator_lock_) {
2283   ScopedQuickEntrypointChecks sqec(self);
2284 
2285   Runtime* runtime = Runtime::Current();
2286   bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
2287   if (UNLIKELY(resolve_method)) {
2288     // The interface method is unresolved, so resolve it in the dex file of the caller.
2289     // Fetch the dex_method_idx of the target interface method from the caller.
2290     StackHandleScope<1> hs(self);
2291     Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2292     uint32_t dex_pc;
2293     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2294     uint32_t dex_method_idx;
2295     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2296     Instruction::Code instr_code = instr.Opcode();
2297     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2298            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2299         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2300     if (instr_code == Instruction::INVOKE_INTERFACE) {
2301       dex_method_idx = instr.VRegB_35c();
2302     } else {
2303       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2304       dex_method_idx = instr.VRegB_3rc();
2305     }
2306 
2307     const DexFile& dex_file = *caller_method->GetDexFile();
2308     std::string_view shorty =
2309         dex_file.GetMethodShortyView(dex_file.GetMethodId(dex_method_idx));
2310     {
2311       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2312       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2313       RememberForGcArgumentVisitor visitor(sp, false, shorty, &soa);
2314       visitor.VisitArguments();
2315       ClassLinker* class_linker = runtime->GetClassLinker();
2316       interface_method = class_linker->ResolveMethodId(dex_method_idx, caller_method);
2317       visitor.FixupReferences();
2318     }
2319 
2320     if (UNLIKELY(interface_method == nullptr)) {
2321       CHECK(self->IsExceptionPending());
2322       return GetTwoWordFailureValue();  // Failure.
2323     }
2324     ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
2325     MaybeUpdateBssMethodEntry(
2326         interface_method, MethodReference(&dex_file, dex_method_idx), outer_method);
2327 
2328     // Refresh `raw_this_object` which may have changed after resolution.
2329     raw_this_object = this_object.Get();
2330   }
2331 
2332   // The compiler and interpreter make sure the conflict trampoline is never
2333   // called on a method that resolves to j.l.Object.
2334   DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
2335   DCHECK(interface_method->GetDeclaringClass()->IsInterface());
2336   DCHECK(!interface_method->IsRuntimeMethod());
2337   DCHECK(!interface_method->IsCopied());
2338 
2339   ObjPtr<mirror::Object> obj_this = raw_this_object;
2340   ObjPtr<mirror::Class> cls = obj_this->GetClass();
2341   uint32_t imt_index = interface_method->GetImtIndex();
2342   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2343   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2344   DCHECK(conflict_method->IsRuntimeMethod());
2345 
2346   if (UNLIKELY(resolve_method)) {
2347     // Now that we know the interface method, look it up in the conflict table.
2348     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2349     DCHECK(current_table != nullptr);
2350     ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
2351     if (method != nullptr) {
2352       return GetTwoWordSuccessValue(
2353           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2354           reinterpret_cast<uintptr_t>(method));
2355     }
2356     // Interface method is not in the conflict table. Continue looking up in the
2357     // iftable.
2358   }
2359 
2360   ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2361   if (UNLIKELY(method == nullptr)) {
2362     ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2363     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2364         interface_method, obj_this.Ptr(), caller_method);
2365     return GetTwoWordFailureValue();
2366   }
2367 
2368   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2369   // We create a new table with the new pair { interface_method, method }.
2370 
2371   // Classes in the boot image should never need to update conflict methods in
2372   // their IMT.
2373   CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
2374   ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
2375       cls.Ptr(),
2376       conflict_method,
2377       interface_method,
2378       method);
2379   if (new_conflict_method != conflict_method) {
2380     // Update the IMT if we create a new conflict method. No fence needed here, as the
2381     // data is consistent.
2382     imt->Set(imt_index,
2383              new_conflict_method,
2384              kRuntimePointerSize);
2385   }
2386 
2387   const void* code = method->GetEntryPointFromQuickCompiledCode();
2388 
2389   // When we return, the caller will branch to this address, so it had better not be 0!
2390   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2391                           << " location: " << method->GetDexFile()->GetLocation();
2392 
2393   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2394                                 reinterpret_cast<uintptr_t>(method));
2395 }
2396 
2397 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2398 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2399     REQUIRES_SHARED(Locks::mutator_lock_) {
2400   ScopedQuickEntrypointChecks sqec(self);
2401   DCHECK(raw_receiver != nullptr);
2402   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2403 
2404   // Start new JNI local reference state
2405   JNIEnvExt* env = self->GetJniEnv();
2406   ScopedObjectAccessUnchecked soa(env);
2407   ScopedJniEnvLocalRefState env_state(env);
2408   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2409 
2410   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2411   uint32_t dex_pc;
2412   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2413   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2414   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2415          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2416   const dex::ProtoIndex proto_idx(inst.VRegH());
2417   std::string_view shorty = caller_method->GetDexFile()->GetShortyView(proto_idx);
2418   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2419   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, &soa);
2420   gc_visitor.VisitArguments();
2421 
2422   // Wrap raw_receiver in a Handle for safety.
2423   StackHandleScope<3> hs(self);
2424   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2425   raw_receiver = nullptr;
2426   self->EndAssertNoThreadSuspension(old_cause);
2427 
2428   // Resolve method.
2429   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2430   ArtMethod* resolved_method = linker->ResolveMethodWithChecks(
2431       inst.VRegB(), caller_method, kVirtual);
2432 
2433   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2434   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2435 
2436   // Fix references before constructing the shadow frame.
2437   gc_visitor.FixupReferences();
2438 
2439   // Construct shadow frame placing arguments consecutively from |first_arg|.
2440   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2441   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2442   const size_t first_arg = 0;
2443   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2444       CREATE_SHADOW_FRAME(num_vregs, resolved_method, dex_pc);
2445   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2446   ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2447   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2448                                                     kMethodIsStatic,
2449                                                     shorty,
2450                                                     shadow_frame,
2451                                                     first_arg);
2452   shadow_frame_builder.VisitArguments();
2453 
2454   // Push a transition back into managed code onto the linked list in thread.
2455   ManagedStack fragment;
2456   self->PushManagedStackFragment(&fragment);
2457 
2458   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2459   // consecutive order.
2460   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2461   Intrinsics intrinsic = resolved_method->GetIntrinsic();
2462   JValue result;
2463   bool success = false;
2464   if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2465     Handle<mirror::MethodType> method_type(
2466         hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2467     if (UNLIKELY(method_type.IsNull())) {
2468       // This implies we couldn't resolve one or more types in this method handle.
2469       CHECK(self->IsExceptionPending());
2470       return 0UL;
2471     }
2472 
2473     Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2474         ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2475     if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2476       success = MethodHandleInvokeExact(self,
2477                                         *shadow_frame,
2478                                         method_handle,
2479                                         method_type,
2480                                         &operands,
2481                                         &result);
2482     } else {
2483       DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2484                 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2485       success = MethodHandleInvoke(self,
2486                                    *shadow_frame,
2487                                    method_handle,
2488                                    method_type,
2489                                    &operands,
2490                                    &result);
2491     }
2492   } else {
2493     DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2494     Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2495         ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2496     mirror::VarHandle::AccessMode access_mode =
2497         mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2498 
2499     success = VarHandleInvokeAccessor(self,
2500                                       *shadow_frame,
2501                                       var_handle,
2502                                       caller_method,
2503                                       proto_idx,
2504                                       access_mode,
2505                                       &operands,
2506                                       &result);
2507   }
2508 
2509   DCHECK(success || self->IsExceptionPending());
2510 
2511   // Pop transition record.
2512   self->PopManagedStackFragment(fragment);
2513 
2514   bool is_ref = (shorty[0] == 'L');
2515   Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2516       self, DeoptimizationMethodType::kDefault, is_ref, result);
2517 
2518   return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
2519 }
2520 
artInvokePolymorphicWithHiddenReceiver(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2521 extern "C" uint64_t artInvokePolymorphicWithHiddenReceiver(mirror::Object* raw_receiver,
2522                                                            Thread* self,
2523                                                            ArtMethod** sp)
2524     REQUIRES_SHARED(Locks::mutator_lock_) {
2525   ScopedQuickEntrypointChecks sqec(self);
2526   DCHECK(raw_receiver != nullptr);
2527   DCHECK(raw_receiver->InstanceOf(WellKnownClasses::java_lang_invoke_MethodHandle.Get()));
2528   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2529 
2530   JNIEnvExt* env = self->GetJniEnv();
2531   ScopedObjectAccessUnchecked soa(env);
2532   ScopedJniEnvLocalRefState env_state(env);
2533   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2534 
2535   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2536   uint32_t dex_pc;
2537   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2538   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2539   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2540          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2541   const dex::ProtoIndex proto_idx(inst.VRegH());
2542   std::string_view shorty = caller_method->GetDexFile()->GetShortyView(proto_idx);
2543 
2544   // invokeExact is not a static method, but here we use custom calling convention and the receiver
2545   // (MethodHandle) object is not passed as a first argument, but through different means and hence
2546   // shorty and arguments allocation looks as-if invokeExact was static.
2547   RememberForGcArgumentVisitor gc_visitor(sp, /* is_static= */ true, shorty, &soa);
2548   gc_visitor.VisitArguments();
2549 
2550   // Wrap raw_receiver in a Handle for safety.
2551   StackHandleScope<2> hs(self);
2552   Handle<mirror::MethodHandle> method_handle(
2553       hs.NewHandle(down_cast<mirror::MethodHandle*>(raw_receiver)));
2554 
2555   self->EndAssertNoThreadSuspension(old_cause);
2556 
2557   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2558   ArtMethod* invoke_exact = WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact;
2559   if (kIsDebugBuild) {
2560     ArtMethod* resolved_method = linker->ResolveMethodWithChecks(
2561         inst.VRegB(), caller_method, kVirtual);
2562     CHECK_EQ(resolved_method, invoke_exact);
2563   }
2564 
2565   Handle<mirror::MethodType> method_type(
2566       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2567   if (UNLIKELY(method_type.IsNull())) {
2568     // This implies we couldn't resolve one or more types in this method handle.
2569     CHECK(self->IsExceptionPending());
2570     return 0UL;
2571   }
2572 
2573   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2574 
2575   // Fix references before constructing the shadow frame.
2576   gc_visitor.FixupReferences();
2577 
2578   // Construct shadow frame placing arguments consecutively from |first_arg|.
2579   const bool is_range = inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE;
2580   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2581   const size_t first_arg = 0;
2582   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2583       CREATE_SHADOW_FRAME(num_vregs, invoke_exact, dex_pc);
2584   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2585   ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2586   // Pretend the method is static, see the gc_visitor comment above.
2587   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2588                                                     /* is_static= */ true,
2589                                                     shorty,
2590                                                     shadow_frame,
2591                                                     first_arg);
2592   // Receiver is not passed as a regular argument, adding it to ShadowFrame manually.
2593   shadow_frame_builder.SetReceiver(method_handle.Get());
2594   shadow_frame_builder.VisitArguments();
2595 
2596   // Push a transition back into managed code onto the linked list in thread.
2597   ManagedStack fragment;
2598   self->PushManagedStackFragment(&fragment);
2599 
2600   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2601   JValue result;
2602   bool success = MethodHandleInvokeExact(self,
2603                                          *shadow_frame,
2604                                          method_handle,
2605                                          method_type,
2606                                          &operands,
2607                                          &result);
2608 
2609   DCHECK(success || self->IsExceptionPending());
2610 
2611   // Pop transition record.
2612   self->PopManagedStackFragment(fragment);
2613 
2614   bool is_ref = shorty[0] == 'L';
2615   Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2616       self, DeoptimizationMethodType::kDefault, is_ref, result);
2617 
2618   return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
2619 }
2620 
2621 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2622 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2623     REQUIRES_SHARED(Locks::mutator_lock_) {
2624   ScopedQuickEntrypointChecks sqec(self);
2625   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2626 
2627   // invoke-custom is effectively a static call (no receiver).
2628   static constexpr bool kMethodIsStatic = true;
2629 
2630   // Start new JNI local reference state
2631   JNIEnvExt* env = self->GetJniEnv();
2632   ScopedObjectAccessUnchecked soa(env);
2633   ScopedJniEnvLocalRefState env_state(env);
2634 
2635   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2636 
2637   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2638   uint32_t dex_pc;
2639   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2640   const DexFile* dex_file = caller_method->GetDexFile();
2641   const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2642   std::string_view shorty = caller_method->GetDexFile()->GetShortyView(proto_idx);
2643 
2644   // Construct the shadow frame placing arguments consecutively from |first_arg|.
2645   const size_t first_arg = 0;
2646   const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2647   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2648       CREATE_SHADOW_FRAME(num_vregs, caller_method, dex_pc);
2649   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2650   ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2651   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2652                                                     kMethodIsStatic,
2653                                                     shorty,
2654                                                     shadow_frame,
2655                                                     first_arg);
2656   shadow_frame_builder.VisitArguments();
2657 
2658   // Push a transition back into managed code onto the linked list in thread.
2659   ManagedStack fragment;
2660   self->PushManagedStackFragment(&fragment);
2661   self->EndAssertNoThreadSuspension(old_cause);
2662 
2663   // Perform the invoke-custom operation.
2664   RangeInstructionOperands operands(first_arg, num_vregs);
2665   JValue result;
2666   bool success =
2667       interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2668   DCHECK(success || self->IsExceptionPending());
2669 
2670   // Pop transition record.
2671   self->PopManagedStackFragment(fragment);
2672 
2673   bool is_ref = (shorty[0] == 'L');
2674   Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2675       self, DeoptimizationMethodType::kDefault, is_ref, result);
2676 
2677   return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
2678 }
2679 
artJniMethodEntryHook(Thread * self)2680 extern "C" void artJniMethodEntryHook(Thread* self)
2681     REQUIRES_SHARED(Locks::mutator_lock_) {
2682   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2683   ArtMethod* method = *self->GetManagedStack()->GetTopQuickFrame();
2684   instr->MethodEnterEvent(self, method);
2685 }
2686 
artMethodEntryHook(ArtMethod * method,Thread * self,ArtMethod ** sp)2687 extern "C" Context* artMethodEntryHook(ArtMethod* method, Thread* self, ArtMethod** sp)
2688     REQUIRES_SHARED(Locks::mutator_lock_) {
2689   ScopedQuickEntrypointChecks sqec(self);
2690   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2691   if (instr->HasFastMethodEntryListenersOnly()) {
2692     instr->MethodEnterEvent(self, method);
2693     // No exception or deoptimization.
2694     return nullptr;
2695   }
2696 
2697   if (instr->HasMethodEntryListeners()) {
2698     instr->MethodEnterEvent(self, method);
2699     // MethodEnter callback could have requested a deopt for ex: by setting a breakpoint, so
2700     // check if we need a deopt here.
2701     if (instr->ShouldDeoptimizeCaller(self, sp) || instr->IsDeoptimized(method)) {
2702       // Instrumentation can request deoptimizing only a particular method (for ex: when
2703       // there are break points on the method). In such cases deoptimize only this method.
2704       // FullFrame deoptimizations are handled on method exits.
2705       return artDeoptimizeFromCompiledCode(DeoptimizationKind::kDebugging, self);
2706     }
2707   } else {
2708     DCHECK(!instr->IsDeoptimized(method));
2709   }
2710   // No exception or deoptimization.
2711   return nullptr;
2712 }
2713 
artMethodExitHook(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result,uint32_t frame_size)2714 extern "C" Context* artMethodExitHook(Thread* self,
2715                                       ArtMethod** sp,
2716                                       uint64_t* gpr_result,
2717                                       uint64_t* fpr_result,
2718                                       uint32_t frame_size)
2719   REQUIRES_SHARED(Locks::mutator_lock_) {
2720   ScopedQuickEntrypointChecks sqec(self);
2721   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
2722   // Instrumentation exit stub must not be entered with a pending exception.
2723   CHECK(!self->IsExceptionPending())
2724       << "Enter instrumentation exit stub with pending exception " << self->GetException()->Dump();
2725 
2726   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2727   DCHECK(instr->RunExitHooks());
2728 
2729   ArtMethod* method = *sp;
2730   if (instr->HasFastMethodExitListenersOnly()) {
2731     // Fast method listeners are only used for tracing which don't need any deoptimization checks
2732     // or a return value.
2733     JValue return_value;
2734     instr->MethodExitEvent(self, method, /* frame= */ {}, return_value);
2735     // No exception or deoptimization.
2736     return nullptr;
2737   }
2738 
2739   bool is_ref = false;
2740   if (instr->HasMethodExitListeners()) {
2741     StackHandleScope<1> hs(self);
2742 
2743     CHECK(gpr_result != nullptr);
2744     CHECK(fpr_result != nullptr);
2745 
2746     JValue return_value = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2747     MutableHandle<mirror::Object> res(hs.NewHandle<mirror::Object>(nullptr));
2748     if (is_ref) {
2749       // Take a handle to the return value so we won't lose it if we suspend.
2750       res.Assign(return_value.GetL());
2751     }
2752     DCHECK(!method->IsRuntimeMethod());
2753 
2754     // If we need a deoptimization MethodExitEvent will be called by the interpreter when it
2755     // re-executes the return instruction. For native methods we have to process method exit
2756     // events here since deoptimization just removes the native frame.
2757     instr->MethodExitEvent(self, method, /* frame= */ {}, return_value);
2758 
2759     if (is_ref) {
2760       // Restore the return value if it's a reference since it might have moved.
2761       *reinterpret_cast<mirror::Object**>(gpr_result) = res.Get();
2762       return_value.SetL(res.Get());
2763     }
2764   }
2765 
2766   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
2767     // The exception was thrown from the method exit callback. We should not call method unwind
2768     // callbacks for this case.
2769     std::unique_ptr<Context> context =
2770         self->QuickDeliverException(/* is_method_exit_exception= */ true);
2771     DCHECK(context != nullptr);
2772     return context.release();
2773   }
2774 
2775   // We should deoptimize here if the caller requires a deoptimization or if the current method
2776   // needs a deoptimization. We may need deoptimization for the current method if method exit
2777   // hooks requested this frame to be popped. IsForcedInterpreterNeededForUpcall checks for that.
2778   const bool deoptimize = instr->ShouldDeoptimizeCaller(self, sp, frame_size) ||
2779                           Dbg::IsForcedInterpreterNeededForUpcall(self, method);
2780   if (deoptimize) {
2781     JValue ret_val = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2782     DeoptimizationMethodType deopt_method_type = instr->GetDeoptimizationMethodType(method);
2783     self->PushDeoptimizationContext(
2784         ret_val, is_ref, self->GetException(), false, deopt_method_type);
2785     // Method exit callback has already been run for this method. So tell the deoptimizer to skip
2786     // callbacks for this frame.
2787     std::unique_ptr<Context> context = self->Deoptimize(DeoptimizationKind::kFullFrame,
2788                                                         /* single_frame= */ false,
2789                                                         /* skip_method_exit_callbacks= */ true);
2790     DCHECK(context != nullptr);
2791     return context.release();
2792   }
2793 
2794   // No exception or deoptimization.
2795   return nullptr;
2796 }
2797 
2798 }  // namespace art
2799