xref: /aosp_15_r20/art/libdexfile/dex/dex_instruction.h (revision 795d594fd825385562da6b089ea9b2033f3abf5a)
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
18 #define ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
19 
20 #include <android-base/logging.h>
21 
22 #include "base/globals.h"
23 #include "base/macros.h"
24 #include "dex_instruction_list.h"
25 
26 using uint4_t = uint8_t;
27 using int4_t = int8_t;
28 
29 namespace art {
30 
31 class DexFile;
32 
33 // The number of Dalvik opcodes.
34 static constexpr size_t kNumPackedOpcodes = 0x100;
35 
36 class Instruction {
37  public:
38   // NOP-encoded switch-statement signatures.
39   enum Signatures {
40     kPackedSwitchSignature = 0x0100,
41     kSparseSwitchSignature = 0x0200,
42     kArrayDataSignature = 0x0300,
43   };
44 
45   struct PACKED(4) PackedSwitchPayload {
46     const uint16_t ident;
47     const uint16_t case_count;
48     const int32_t first_key;
49     const int32_t targets[];
50 
51    private:
52     DISALLOW_COPY_AND_ASSIGN(PackedSwitchPayload);
53   };
54 
55   struct PACKED(4) SparseSwitchPayload {
56     const uint16_t ident;
57     const uint16_t case_count;
58     const int32_t keys_and_targets[];
59 
60    public:
GetKeysSparseSwitchPayload61     const int32_t* GetKeys() const {
62       return keys_and_targets;
63     }
64 
GetTargetsSparseSwitchPayload65     const int32_t* GetTargets() const {
66       return keys_and_targets + case_count;
67     }
68 
69    private:
70     DISALLOW_COPY_AND_ASSIGN(SparseSwitchPayload);
71   };
72 
73   struct PACKED(4) ArrayDataPayload {
74     const uint16_t ident;
75     const uint16_t element_width;
76     const uint32_t element_count;
77     const uint8_t data[];
78 
79    private:
80     DISALLOW_COPY_AND_ASSIGN(ArrayDataPayload);
81   };
82 
83   enum Code {  // private marker to avoid generate-operator-out.py from processing.
84 #define INSTRUCTION_ENUM(opcode, cname, p, f, i, a, e, v) cname = (opcode),
85     DEX_INSTRUCTION_LIST(INSTRUCTION_ENUM)
86 #undef INSTRUCTION_ENUM
87     RSUB_INT_LIT16 = RSUB_INT,
88   };
89 
90   enum Format : uint8_t {
91     k10x,  // op
92     k12x,  // op vA, vB
93     k11n,  // op vA, #+B
94     k11x,  // op vAA
95     k10t,  // op +AA
96     k20t,  // op +AAAA
97     k22x,  // op vAA, vBBBB
98     k21t,  // op vAA, +BBBB
99     k21s,  // op vAA, #+BBBB
100     k21h,  // op vAA, #+BBBB00000[00000000]
101     k21c,  // op vAA, thing@BBBB
102     k23x,  // op vAA, vBB, vCC
103     k22b,  // op vAA, vBB, #+CC
104     k22t,  // op vA, vB, +CCCC
105     k22s,  // op vA, vB, #+CCCC
106     k22c,  // op vA, vB, thing@CCCC
107     k32x,  // op vAAAA, vBBBB
108     k30t,  // op +AAAAAAAA
109     k31t,  // op vAA, +BBBBBBBB
110     k31i,  // op vAA, #+BBBBBBBB
111     k31c,  // op vAA, thing@BBBBBBBB
112     k35c,  // op {vC, vD, vE, vF, vG}, thing@BBBB (B: count, A: vG)
113     k3rc,  // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB
114 
115     // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH (A: count)
116     // format: AG op BBBB FEDC HHHH
117     k45cc,
118 
119     // op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
120     // format: AA op BBBB CCCC HHHH
121     k4rcc,  // op {VCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH (AA: count)
122 
123     k51l,  // op vAA, #+BBBBBBBBBBBBBBBB
124     kInvalidFormat,
125   };
126 
127   enum IndexType : uint8_t {
128     kIndexUnknown = 0,
129     kIndexNone,               // has no index
130     kIndexTypeRef,            // type reference index
131     kIndexStringRef,          // string reference index
132     kIndexMethodRef,          // method reference index
133     kIndexFieldRef,           // field reference index
134     kIndexMethodAndProtoRef,  // method and a proto reference index (for invoke-polymorphic)
135     kIndexCallSiteRef,        // call site reference index
136     kIndexMethodHandleRef,    // constant method handle reference index
137     kIndexProtoRef,           // prototype reference index
138   };
139 
140   enum Flags : uint8_t {  // private marker to avoid generate-operator-out.py from processing.
141     kBranch              = 0x01,  // conditional or unconditional branch
142     kContinue            = 0x02,  // flow can continue to next statement
143     kSwitch              = 0x04,  // switch statement
144     kThrow               = 0x08,  // could cause an exception to be thrown
145     kReturn              = 0x10,  // returns, no additional statements
146     kInvoke              = 0x20,  // a flavor of invoke
147     kUnconditional       = 0x40,  // unconditional branch
148     kExperimental        = 0x80,  // is an experimental opcode
149   };
150 
151   // Old flags. Keeping them around in case we might need them again some day.
152   enum ExtendedFlags : uint32_t {
153     kAdd                 = 0x0000080,  // addition
154     kSubtract            = 0x0000100,  // subtract
155     kMultiply            = 0x0000200,  // multiply
156     kDivide              = 0x0000400,  // division
157     kRemainder           = 0x0000800,  // remainder
158     kAnd                 = 0x0001000,  // and
159     kOr                  = 0x0002000,  // or
160     kXor                 = 0x0004000,  // xor
161     kShl                 = 0x0008000,  // shl
162     kShr                 = 0x0010000,  // shr
163     kUshr                = 0x0020000,  // ushr
164     kCast                = 0x0040000,  // cast
165     kStore               = 0x0080000,  // store opcode
166     kLoad                = 0x0100000,  // load opcode
167     kClobber             = 0x0200000,  // clobbers memory in a big way (not just a write)
168     kRegCFieldOrConstant = 0x0400000,  // is the third virtual register a field or literal constant (vC)
169     kRegBFieldOrConstant = 0x0800000,  // is the second virtual register a field or literal constant (vB)
170   };
171 
172   enum VerifyFlag : uint32_t {  // private marker to avoid generate-operator-out.py from processing.
173     kVerifyNothing            = 0x0000000,
174     kVerifyRegA               = 0x0000001,
175     kVerifyRegAWide           = 0x0000002,
176     kVerifyRegB               = 0x0000004,
177     kVerifyRegBField          = 0x0000008,
178     kVerifyRegBMethod         = 0x0000010,
179     kVerifyRegBNewInstance    = 0x0000020,
180     kVerifyRegBString         = 0x0000040,
181     kVerifyRegBType           = 0x0000080,
182     kVerifyRegBWide           = 0x0000100,
183     kVerifyRegC               = 0x0000200,
184     kVerifyRegCField          = 0x0000400,
185     kVerifyRegCNewArray       = 0x0000800,
186     kVerifyRegCType           = 0x0001000,
187     kVerifyRegCWide           = 0x0002000,
188     kVerifyArrayData          = 0x0004000,
189     kVerifyBranchTarget       = 0x0008000,
190     kVerifySwitchTargets      = 0x0010000,
191     kVerifyVarArg             = 0x0020000,
192     kVerifyVarArgNonZero      = 0x0040000,
193     kVerifyVarArgRange        = 0x0080000,
194     kVerifyVarArgRangeNonZero = 0x0100000,
195     kVerifyError              = 0x0200000,
196     kVerifyRegHPrototype      = 0x0400000,
197     kVerifyRegBCallSite       = 0x0800000,
198     kVerifyRegBMethodHandle   = 0x1000000,
199     kVerifyRegBPrototype      = 0x2000000,
200   };
201 
202   // Collect the enums in a struct for better locality.
203   struct InstructionDescriptor {
204     uint32_t verify_flags;         // Set of VerifyFlag.
205     Format format;
206     IndexType index_type;
207     uint8_t flags;                 // Set of Flags.
208     int8_t size_in_code_units;
209   };
210 
211   static constexpr uint32_t kMaxVarArgRegs = 5;
212 
213   static constexpr bool kHaveExperimentalInstructions = false;
214 
215   // Returns the size (in 2 byte code units) of this instruction.
SizeInCodeUnits()216   size_t SizeInCodeUnits() const {
217     int8_t result = InstructionDescriptorOf(Opcode()).size_in_code_units;
218     if (UNLIKELY(result < 0)) {
219       return SizeInCodeUnitsComplexOpcode();
220     } else {
221       return static_cast<size_t>(result);
222     }
223   }
224 
225   // Returns the size (in 2 byte code units) of the given instruction format.
226   ALWAYS_INLINE static constexpr size_t SizeInCodeUnits(Format format);
227 
228   // Code units required to calculate the size of the instruction.
CodeUnitsRequiredForSizeComputation()229   size_t CodeUnitsRequiredForSizeComputation() const {
230     const int8_t result = InstructionDescriptorOf(Opcode()).size_in_code_units;
231     return UNLIKELY(result < 0) ? CodeUnitsRequiredForSizeOfComplexOpcode() : 1;
232   }
233 
234   // Reads an instruction out of the stream at the specified address.
At(const uint16_t * code)235   static const Instruction* At(const uint16_t* code) {
236     DCHECK(code != nullptr);
237     return reinterpret_cast<const Instruction*>(code);
238   }
239 
240   // Reads an instruction out of the stream from the current address plus an offset.
RelativeAt(int32_t offset)241   const Instruction* RelativeAt(int32_t offset) const WARN_UNUSED {
242     return At(reinterpret_cast<const uint16_t*>(this) + offset);
243   }
244 
245   // Returns a pointer to the next instruction in the stream.
Next()246   const Instruction* Next() const {
247     return RelativeAt(SizeInCodeUnits());
248   }
249 
250   // Returns a pointer to the instruction after this 1xx instruction in the stream.
Next_1xx()251   const Instruction* Next_1xx() const {
252     DCHECK(FormatOf(Opcode()) >= k10x && FormatOf(Opcode()) <= k10t);
253     return RelativeAt(1);
254   }
255 
256   // Returns a pointer to the instruction after this 2xx instruction in the stream.
Next_2xx()257   const Instruction* Next_2xx() const {
258     DCHECK(FormatOf(Opcode()) >= k20t && FormatOf(Opcode()) <= k22c);
259     return RelativeAt(2);
260   }
261 
262   // Returns a pointer to the instruction after this 3xx instruction in the stream.
Next_3xx()263   const Instruction* Next_3xx() const {
264     DCHECK(FormatOf(Opcode()) >= k32x && FormatOf(Opcode()) <= k3rc);
265     return RelativeAt(3);
266   }
267 
268   // Returns a pointer to the instruction after this 4xx instruction in the stream.
Next_4xx()269   const Instruction* Next_4xx() const {
270     DCHECK(FormatOf(Opcode()) >= k45cc && FormatOf(Opcode()) <= k4rcc);
271     return RelativeAt(4);
272   }
273 
274   // Returns a pointer to the instruction after this 51l instruction in the stream.
Next_51l()275   const Instruction* Next_51l() const {
276     DCHECK(FormatOf(Opcode()) == k51l);
277     return RelativeAt(5);
278   }
279 
280   // Returns the name of this instruction's opcode.
Name()281   const char* Name() const {
282     return Instruction::Name(Opcode());
283   }
284 
285   // Returns the name of the given opcode.
Name(Code opcode)286   static const char* Name(Code opcode) {
287     return kInstructionNames[opcode];
288   }
289 
290   // VRegA
291   bool HasVRegA() const;
292   ALWAYS_INLINE int32_t VRegA() const;
293   ALWAYS_INLINE int32_t VRegA(Format format, uint16_t inst_data) const;
294 
VRegA_10t()295   int8_t VRegA_10t() const {
296     return VRegA_10t(Fetch16(0));
297   }
VRegA_10x()298   uint8_t VRegA_10x() const {
299     return VRegA_10x(Fetch16(0));
300   }
VRegA_11n()301   uint4_t VRegA_11n() const {
302     return VRegA_11n(Fetch16(0));
303   }
VRegA_11x()304   uint8_t VRegA_11x() const {
305     return VRegA_11x(Fetch16(0));
306   }
VRegA_12x()307   uint4_t VRegA_12x() const {
308     return VRegA_12x(Fetch16(0));
309   }
310   int16_t VRegA_20t() const;
VRegA_21c()311   uint8_t VRegA_21c() const {
312     return VRegA_21c(Fetch16(0));
313   }
VRegA_21h()314   uint8_t VRegA_21h() const {
315     return VRegA_21h(Fetch16(0));
316   }
VRegA_21s()317   uint8_t VRegA_21s() const {
318     return VRegA_21s(Fetch16(0));
319   }
VRegA_21t()320   uint8_t VRegA_21t() const {
321     return VRegA_21t(Fetch16(0));
322   }
VRegA_22b()323   uint8_t VRegA_22b() const {
324     return VRegA_22b(Fetch16(0));
325   }
VRegA_22c()326   uint4_t VRegA_22c() const {
327     return VRegA_22c(Fetch16(0));
328   }
VRegA_22s()329   uint4_t VRegA_22s() const {
330     return VRegA_22s(Fetch16(0));
331   }
VRegA_22t()332   uint4_t VRegA_22t() const {
333     return VRegA_22t(Fetch16(0));
334   }
VRegA_22x()335   uint8_t VRegA_22x() const {
336     return VRegA_22x(Fetch16(0));
337   }
VRegA_23x()338   uint8_t VRegA_23x() const {
339     return VRegA_23x(Fetch16(0));
340   }
341   int32_t VRegA_30t() const;
VRegA_31c()342   uint8_t VRegA_31c() const {
343     return VRegA_31c(Fetch16(0));
344   }
VRegA_31i()345   uint8_t VRegA_31i() const {
346     return VRegA_31i(Fetch16(0));
347   }
VRegA_31t()348   uint8_t VRegA_31t() const {
349     return VRegA_31t(Fetch16(0));
350   }
351   uint16_t VRegA_32x() const;
VRegA_35c()352   uint4_t VRegA_35c() const {
353     return VRegA_35c(Fetch16(0));
354   }
VRegA_3rc()355   uint8_t VRegA_3rc() const {
356     return VRegA_3rc(Fetch16(0));
357   }
VRegA_51l()358   uint8_t VRegA_51l() const {
359     return VRegA_51l(Fetch16(0));
360   }
VRegA_45cc()361   uint4_t VRegA_45cc() const {
362     return VRegA_45cc(Fetch16(0));
363   }
VRegA_4rcc()364   uint8_t VRegA_4rcc() const {
365     return VRegA_4rcc(Fetch16(0));
366   }
367 
368   // The following methods return the vA operand for various instruction formats. The "inst_data"
369   // parameter holds the first 16 bits of instruction which the returned value is decoded from.
370   int8_t VRegA_10t(uint16_t inst_data) const;
371   uint8_t VRegA_10x(uint16_t inst_data) const;
372   uint4_t VRegA_11n(uint16_t inst_data) const;
373   uint8_t VRegA_11x(uint16_t inst_data) const;
374   uint4_t VRegA_12x(uint16_t inst_data) const;
375   uint8_t VRegA_21c(uint16_t inst_data) const;
376   uint8_t VRegA_21h(uint16_t inst_data) const;
377   uint8_t VRegA_21s(uint16_t inst_data) const;
378   uint8_t VRegA_21t(uint16_t inst_data) const;
379   uint8_t VRegA_22b(uint16_t inst_data) const;
380   uint4_t VRegA_22c(uint16_t inst_data) const;
381   uint4_t VRegA_22s(uint16_t inst_data) const;
382   uint4_t VRegA_22t(uint16_t inst_data) const;
383   uint8_t VRegA_22x(uint16_t inst_data) const;
384   uint8_t VRegA_23x(uint16_t inst_data) const;
385   uint8_t VRegA_31c(uint16_t inst_data) const;
386   uint8_t VRegA_31i(uint16_t inst_data) const;
387   uint8_t VRegA_31t(uint16_t inst_data) const;
388   uint4_t VRegA_35c(uint16_t inst_data) const;
389   uint8_t VRegA_3rc(uint16_t inst_data) const;
390   uint8_t VRegA_51l(uint16_t inst_data) const;
391   uint4_t VRegA_45cc(uint16_t inst_data) const;
392   uint8_t VRegA_4rcc(uint16_t inst_data) const;
393 
394   // VRegB
395   bool HasVRegB() const;
396   ALWAYS_INLINE int32_t VRegB() const;
397   ALWAYS_INLINE int32_t VRegB(Format format, uint16_t inst_data) const;
398 
399   bool HasWideVRegB() const;
400   uint64_t WideVRegB() const;
401 
VRegB_11n()402   int4_t VRegB_11n() const {
403     return VRegB_11n(Fetch16(0));
404   }
VRegB_12x()405   uint4_t VRegB_12x() const {
406     return VRegB_12x(Fetch16(0));
407   }
408   uint16_t VRegB_21c() const;
409   uint16_t VRegB_21h() const;
410   int16_t VRegB_21s() const;
411   int16_t VRegB_21t() const;
412   uint8_t VRegB_22b() const;
VRegB_22c()413   uint4_t VRegB_22c() const {
414     return VRegB_22c(Fetch16(0));
415   }
VRegB_22s()416   uint4_t VRegB_22s() const {
417     return VRegB_22s(Fetch16(0));
418   }
VRegB_22t()419   uint4_t VRegB_22t() const {
420     return VRegB_22t(Fetch16(0));
421   }
422   uint16_t VRegB_22x() const;
423   uint8_t VRegB_23x() const;
424   uint32_t VRegB_31c() const;
425   int32_t VRegB_31i() const;
426   int32_t VRegB_31t() const;
427   uint16_t VRegB_32x() const;
428   uint16_t VRegB_35c() const;
429   uint16_t VRegB_3rc() const;
430   uint64_t VRegB_51l() const;  // vB_wide
431   uint16_t VRegB_45cc() const;
432   uint16_t VRegB_4rcc() const;
433 
434   // The following methods return the vB operand for all instruction formats where it is encoded in
435   // the first 16 bits of instruction. The "inst_data" parameter holds these 16 bits. The returned
436   // value is decoded from it.
437   int4_t VRegB_11n(uint16_t inst_data) const;
438   uint4_t VRegB_12x(uint16_t inst_data) const;
439   uint4_t VRegB_22c(uint16_t inst_data) const;
440   uint4_t VRegB_22s(uint16_t inst_data) const;
441   uint4_t VRegB_22t(uint16_t inst_data) const;
442 
443   // VRegC
444   bool HasVRegC() const;
445   ALWAYS_INLINE int32_t VRegC() const;
446   ALWAYS_INLINE int32_t VRegC(Format format) const;
447 
448   int8_t VRegC_22b() const;
449   uint16_t VRegC_22c() const;
450   int16_t VRegC_22s() const;
451   int16_t VRegC_22t() const;
452   uint8_t VRegC_23x() const;
453   uint4_t VRegC_35c() const;
454   uint16_t VRegC_3rc() const;
455   uint4_t VRegC_45cc() const;
456   uint16_t VRegC_4rcc() const;
457 
458 
459   // VRegH
460   bool HasVRegH() const;
461   int32_t VRegH() const;
462   ALWAYS_INLINE int32_t VRegH(Format format) const;
463   uint16_t VRegH_45cc() const;
464   uint16_t VRegH_4rcc() const;
465 
466   // Fills the given array with the 'arg' array of the instruction.
467   bool HasVarArgs() const;
468   uint32_t GetVarArgs(uint32_t args[kMaxVarArgRegs], uint16_t inst_data) const;
GetVarArgs(uint32_t args[kMaxVarArgRegs])469   uint32_t GetVarArgs(uint32_t args[kMaxVarArgRegs]) const {
470     return GetVarArgs(args, Fetch16(0));
471   }
472 
473   // Returns the opcode field of the instruction. The given "inst_data" parameter must be the first
474   // 16 bits of instruction.
Opcode(uint16_t inst_data)475   Code Opcode(uint16_t inst_data) const {
476     DCHECK_EQ(inst_data, Fetch16(0));
477     return static_cast<Code>(inst_data & 0xFF);
478   }
479 
480   // Returns the opcode field of the instruction from the first 16 bits of instruction.
Opcode()481   Code Opcode() const {
482     return Opcode(Fetch16(0));
483   }
484 
SetOpcode(Code opcode)485   void SetOpcode(Code opcode) {
486     DCHECK_LT(static_cast<uint16_t>(opcode), 256u);
487     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
488     insns[0] = (insns[0] & 0xff00) | static_cast<uint16_t>(opcode);
489   }
490 
SetVRegA_10x(uint8_t val)491   void SetVRegA_10x(uint8_t val) {
492     DCHECK(FormatOf(Opcode()) == k10x);
493     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
494     insns[0] = (val << 8) | (insns[0] & 0x00ff);
495   }
496 
SetVRegB_3rc(uint16_t val)497   void SetVRegB_3rc(uint16_t val) {
498     DCHECK(FormatOf(Opcode()) == k3rc);
499     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
500     insns[1] = val;
501   }
502 
SetVRegB_35c(uint16_t val)503   void SetVRegB_35c(uint16_t val) {
504     DCHECK(FormatOf(Opcode()) == k35c);
505     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
506     insns[1] = val;
507   }
508 
SetVRegC_22c(uint16_t val)509   void SetVRegC_22c(uint16_t val) {
510     DCHECK(FormatOf(Opcode()) == k22c);
511     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
512     insns[1] = val;
513   }
514 
SetVRegA_21c(uint8_t val)515   void SetVRegA_21c(uint8_t val) {
516     DCHECK(FormatOf(Opcode()) == k21c);
517     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
518     insns[0] = (val << 8) | (insns[0] & 0x00ff);
519   }
520 
SetVRegB_21c(uint16_t val)521   void SetVRegB_21c(uint16_t val) {
522     DCHECK(FormatOf(Opcode()) == k21c);
523     uint16_t* insns = reinterpret_cast<uint16_t*>(this);
524     insns[1] = val;
525   }
526 
527   // Returns the format of the given opcode.
FormatOf(Code opcode)528   static constexpr Format FormatOf(Code opcode) {
529     return InstructionDescriptorOf(opcode).format;
530   }
531 
532   // Returns the index type of the given opcode.
IndexTypeOf(Code opcode)533   static constexpr IndexType IndexTypeOf(Code opcode) {
534     return InstructionDescriptorOf(opcode).index_type;
535   }
536 
537   // Returns the flags for the given opcode.
FlagsOf(Code opcode)538   static constexpr uint8_t FlagsOf(Code opcode) {
539     return InstructionDescriptorOf(opcode).flags;
540   }
541 
542   // Return the verify flags for the given opcode.
VerifyFlagsOf(Code opcode)543   static constexpr uint32_t VerifyFlagsOf(Code opcode) {
544     return InstructionDescriptorOf(opcode).verify_flags;
545   }
546 
547   // Returns true if this instruction is a branch.
IsBranch()548   bool IsBranch() const {
549     return (InstructionDescriptorOf(Opcode()).flags & kBranch) != 0;
550   }
551 
552   // Returns true if this instruction is a unconditional branch.
IsUnconditional()553   bool IsUnconditional() const {
554     return (InstructionDescriptorOf(Opcode()).flags & kUnconditional) != 0;
555   }
556 
557   // Returns the branch offset if this instruction is a branch.
558   int32_t GetTargetOffset() const;
559 
560   // Returns true if the instruction allows control flow to go to the following instruction.
561   bool CanFlowThrough() const;
562 
563   // Returns true if this instruction is a switch.
IsSwitch()564   bool IsSwitch() const {
565     return (InstructionDescriptorOf(Opcode()).flags & kSwitch) != 0;
566   }
567 
568   // Returns true if this instruction can throw.
IsThrow()569   bool IsThrow() const {
570     return (InstructionDescriptorOf(Opcode()).flags & kThrow) != 0;
571   }
572 
573   // Determine if the instruction is any of 'return' instructions.
IsReturn(Code opcode)574   static constexpr bool IsReturn(Code opcode) {
575     return (InstructionDescriptorOf(opcode).flags & kReturn) != 0;
576   }
IsReturn()577   bool IsReturn() const {
578     return IsReturn(Opcode());
579   }
580 
581   // Determine if this instruction ends execution of its basic block.
IsBasicBlockEnd()582   bool IsBasicBlockEnd() const {
583     return IsBranch() || IsReturn() || Opcode() == THROW;
584   }
585 
586   // Determine if this instruction is an invoke.
IsInvoke()587   bool IsInvoke() const {
588     return (InstructionDescriptorOf(Opcode()).flags & kInvoke) != 0;
589   }
590 
591   // Determine if this instruction is experimental.
IsExperimental()592   bool IsExperimental() const {
593     return (InstructionDescriptorOf(Opcode()).flags & kExperimental) != 0;
594   }
595 
GetVerifyTypeArgumentAOf(Code opcode)596   static constexpr uint32_t GetVerifyTypeArgumentAOf(Code opcode) {
597     constexpr uint32_t kMask = kVerifyRegA | kVerifyRegAWide;
598     return VerifyFlagsOf(opcode) & kMask;
599   }
600 
GetVerifyTypeArgumentA()601   uint32_t GetVerifyTypeArgumentA() const {
602     return GetVerifyTypeArgumentAOf(Opcode());
603   }
604 
GetVerifyTypeArgumentBOf(Code opcode)605   static constexpr uint32_t GetVerifyTypeArgumentBOf(Code opcode) {
606     constexpr uint32_t kMask =
607         kVerifyRegB |
608         kVerifyRegBField |
609         kVerifyRegBMethod |
610         kVerifyRegBNewInstance |
611         kVerifyRegBString |
612         kVerifyRegBType |
613         kVerifyRegBWide;
614     return VerifyFlagsOf(opcode) & kMask;
615   }
616 
GetVerifyTypeArgumentB()617   uint32_t GetVerifyTypeArgumentB() const {
618     return GetVerifyTypeArgumentBOf(Opcode());
619   }
620 
GetVerifyTypeArgumentCOf(Code opcode)621   static constexpr uint32_t GetVerifyTypeArgumentCOf(Code opcode) {
622     constexpr uint32_t kMask =
623         kVerifyRegC | kVerifyRegCField | kVerifyRegCNewArray | kVerifyRegCType | kVerifyRegCWide;
624     return VerifyFlagsOf(opcode) & kMask;
625   }
626 
GetVerifyTypeArgumentC()627   uint32_t GetVerifyTypeArgumentC() const {
628     return GetVerifyTypeArgumentCOf(Opcode());
629   }
630 
GetVerifyTypeArgumentHOf(Code opcode)631   static constexpr uint32_t GetVerifyTypeArgumentHOf(Code opcode) {
632     constexpr uint32_t kMask = kVerifyRegHPrototype;
633     return VerifyFlagsOf(opcode) & kMask;
634   }
635 
GetVerifyTypeArgumentH()636   uint32_t GetVerifyTypeArgumentH() const {
637     return GetVerifyTypeArgumentHOf(Opcode());
638   }
639 
GetVerifyExtraFlagsOf(Code opcode)640   static constexpr uint32_t GetVerifyExtraFlagsOf(Code opcode) {
641     constexpr uint32_t kMask =
642         kVerifyArrayData |
643         kVerifyBranchTarget |
644         kVerifySwitchTargets |
645         kVerifyVarArg |
646         kVerifyVarArgNonZero |
647         kVerifyVarArgRange |
648         kVerifyVarArgRangeNonZero |
649         kVerifyError;
650     return VerifyFlagsOf(opcode) & kMask;
651   }
652 
GetVerifyExtraFlags()653   uint32_t GetVerifyExtraFlags() const {
654     return GetVerifyExtraFlagsOf(Opcode());
655   }
656 
657   // Get the dex PC of this instruction as a offset in code units from the beginning of insns.
GetDexPc(const uint16_t * insns)658   uint32_t GetDexPc(const uint16_t* insns) const {
659     return (reinterpret_cast<const uint16_t*>(this) - insns);
660   }
661 
662   // Dump decoded version of instruction
663   std::string DumpString(const DexFile*) const;
664 
665   // Dump code_units worth of this instruction, padding to code_units for shorter instructions
666   std::string DumpHex(size_t code_units) const;
667 
668   // Little-endian dump code_units worth of this instruction, padding to code_units for
669   // shorter instructions
670   std::string DumpHexLE(size_t instr_code_units) const;
671 
Fetch16(size_t offset)672   uint16_t Fetch16(size_t offset) const {
673     const uint16_t* insns = reinterpret_cast<const uint16_t*>(this);
674     return insns[offset];
675   }
676 
677   size_t SizeInCodeUnitsComplexOpcode() const;
678 
679  private:
InstructionDescriptorOf(Code opcode)680   static constexpr const InstructionDescriptor& InstructionDescriptorOf(Code opcode) {
681     return kInstructionDescriptors[opcode];
682   }
683 
684   // Return how many code unit words are required to compute the size of the opcode.
685   size_t CodeUnitsRequiredForSizeOfComplexOpcode() const;
686 
Fetch32(size_t offset)687   uint32_t Fetch32(size_t offset) const {
688     return (Fetch16(offset) | ((uint32_t) Fetch16(offset + 1) << 16));
689   }
690 
InstA()691   uint4_t InstA() const {
692     return InstA(Fetch16(0));
693   }
694 
InstB()695   uint4_t InstB() const {
696     return InstB(Fetch16(0));
697   }
698 
InstAA()699   uint8_t InstAA() const {
700     return InstAA(Fetch16(0));
701   }
702 
InstA(uint16_t inst_data)703   uint4_t InstA(uint16_t inst_data) const {
704     DCHECK_EQ(inst_data, Fetch16(0));
705     return static_cast<uint4_t>((inst_data >> 8) & 0x0f);
706   }
707 
InstB(uint16_t inst_data)708   uint4_t InstB(uint16_t inst_data) const {
709     DCHECK_EQ(inst_data, Fetch16(0));
710     return static_cast<uint4_t>(inst_data >> 12);
711   }
712 
InstAA(uint16_t inst_data)713   uint8_t InstAA(uint16_t inst_data) const {
714     DCHECK_EQ(inst_data, Fetch16(0));
715     return static_cast<uint8_t>(inst_data >> 8);
716   }
717 
718   static const char* const kInstructionNames[];
719 
720   static constexpr std::array<InstructionDescriptor, 256> kInstructionDescriptors = []() constexpr {
721     auto InstructionSizeInCodeUnitsByOpcode = [](Instruction::Code opcode,
722                                                  Instruction::Format format) constexpr -> int8_t {
723       if (opcode == Instruction::Code::NOP) {
724         return -1;
725       } else if ((format >= Instruction::Format::k10x) && (format <= Instruction::Format::k10t)) {
726         return 1;
727       } else if ((format >= Instruction::Format::k20t) && (format <= Instruction::Format::k22c)) {
728         return 2;
729       } else if ((format >= Instruction::Format::k32x) && (format <= Instruction::Format::k3rc)) {
730         return 3;
731       } else if ((format >= Instruction::Format::k45cc) && (format <= Instruction::Format::k4rcc)) {
732         return 4;
733       } else if (format == Instruction::Format::k51l) {
734         return 5;
735       } else {
736         return -1;
737       }
738     };
739 
740     std::array<InstructionDescriptor, 256> result;
741 #define INSTRUCTION_DESCR(opcode, c, p, format, index, flags, eflags, vflags) \
742     result[opcode] = {                                                        \
743         vflags,                                                               \
744         format,                                                               \
745         index,                                                                \
746         flags,                                                                \
747         InstructionSizeInCodeUnitsByOpcode((c), (format)),                    \
748     };
749     DEX_INSTRUCTION_LIST(INSTRUCTION_DESCR)
750 #undef INSTRUCTION_DESCR
751     return result;
752   }();
753 
754   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
755 };
756 std::ostream& operator<<(std::ostream& os, Instruction::Code code);
757 std::ostream& operator<<(std::ostream& os, Instruction::Format format);
758 
759 // Base class for accessing instruction operands. Unifies operand
760 // access for instructions that have range and varargs forms
761 // (e.g. invoke-polymoprhic/range and invoke-polymorphic).
762 class InstructionOperands {
763  public:
InstructionOperands(size_t num_operands)764   explicit InstructionOperands(size_t num_operands) : num_operands_(num_operands) {}
~InstructionOperands()765   virtual ~InstructionOperands() {}
766   virtual uint32_t GetOperand(size_t index) const = 0;
GetNumberOfOperands()767   size_t GetNumberOfOperands() const { return num_operands_; }
768 
769  private:
770   const size_t num_operands_;
771 
772   DISALLOW_IMPLICIT_CONSTRUCTORS(InstructionOperands);
773 };
774 
775 // Class for accessing operands for instructions with a range format
776 // (e.g. 3rc and 4rcc).
777 class RangeInstructionOperands final : public InstructionOperands {
778  public:
RangeInstructionOperands(uint32_t first_operand,size_t num_operands)779   RangeInstructionOperands(uint32_t first_operand, size_t num_operands)
780       : InstructionOperands(num_operands), first_operand_(first_operand) {}
~RangeInstructionOperands()781   ~RangeInstructionOperands() {}
782   uint32_t GetOperand(size_t operand_index) const override;
783 
784  private:
785   const uint32_t first_operand_;
786 
787   DISALLOW_IMPLICIT_CONSTRUCTORS(RangeInstructionOperands);
788 };
789 
790 // Class for accessing operands for instructions with a variable
791 // number of arguments format (e.g. 35c and 45cc).
792 class VarArgsInstructionOperands final : public InstructionOperands {
793  public:
VarArgsInstructionOperands(const uint32_t (& operands)[Instruction::kMaxVarArgRegs],size_t num_operands)794   VarArgsInstructionOperands(const uint32_t (&operands)[Instruction::kMaxVarArgRegs],
795                              size_t num_operands)
796       : InstructionOperands(num_operands), operands_(operands) {}
~VarArgsInstructionOperands()797   ~VarArgsInstructionOperands() {}
798   uint32_t GetOperand(size_t operand_index) const override;
799 
800  private:
801   const uint32_t (&operands_)[Instruction::kMaxVarArgRegs];
802 
803   DISALLOW_IMPLICIT_CONSTRUCTORS(VarArgsInstructionOperands);
804 };
805 
806 // Class for accessing operands without the receiver by wrapping an
807 // existing InstructionOperands instance.
808 class NoReceiverInstructionOperands final : public InstructionOperands {
809  public:
NoReceiverInstructionOperands(const InstructionOperands * const inner)810   explicit NoReceiverInstructionOperands(const InstructionOperands* const inner)
811       : InstructionOperands(inner->GetNumberOfOperands() - 1), inner_(inner) {}
~NoReceiverInstructionOperands()812   ~NoReceiverInstructionOperands() {}
813   uint32_t GetOperand(size_t operand_index) const override;
814 
815  private:
816   const InstructionOperands* const inner_;
817 
818   DISALLOW_IMPLICIT_CONSTRUCTORS(NoReceiverInstructionOperands);
819 };
820 
821 }  // namespace art
822 
823 #endif  // ART_LIBDEXFILE_DEX_DEX_INSTRUCTION_H_
824