1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
18 #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
19
20 #include "base/macros.h"
21 #include "code_generator.h"
22 #include "instruction_simplifier_shared.h"
23 #include "locations.h"
24 #include "nodes.h"
25 #include "utils/arm64/assembler_arm64.h"
26
27 // TODO(VIXL): Make VIXL compile cleanly with -Wshadow, -Wdeprecated-declarations.
28 #pragma GCC diagnostic push
29 #pragma GCC diagnostic ignored "-Wshadow"
30 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
31 #include "aarch64/disasm-aarch64.h"
32 #include "aarch64/macro-assembler-aarch64.h"
33 #include "aarch64/simulator-aarch64.h"
34 #pragma GCC diagnostic pop
35
36 namespace art HIDDEN {
37
38 using helpers::CanFitInShifterOperand;
39 using helpers::HasShifterOperand;
40
41 namespace arm64 {
42 namespace helpers {
43
44 // Convenience helpers to ease conversion to and from VIXL operands.
45 static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32),
46 "Unexpected values for register codes.");
47
VIXLRegCodeFromART(int code)48 inline int VIXLRegCodeFromART(int code) {
49 if (code == SP) {
50 return vixl::aarch64::kSPRegInternalCode;
51 }
52 if (code == XZR) {
53 return vixl::aarch64::kZeroRegCode;
54 }
55 return code;
56 }
57
ARTRegCodeFromVIXL(int code)58 inline int ARTRegCodeFromVIXL(int code) {
59 if (code == vixl::aarch64::kSPRegInternalCode) {
60 return SP;
61 }
62 if (code == vixl::aarch64::kZeroRegCode) {
63 return XZR;
64 }
65 return code;
66 }
67
XRegisterFrom(Location location)68 inline vixl::aarch64::Register XRegisterFrom(Location location) {
69 DCHECK(location.IsRegister()) << location;
70 return vixl::aarch64::XRegister(VIXLRegCodeFromART(location.reg()));
71 }
72
WRegisterFrom(Location location)73 inline vixl::aarch64::Register WRegisterFrom(Location location) {
74 DCHECK(location.IsRegister()) << location;
75 return vixl::aarch64::WRegister(VIXLRegCodeFromART(location.reg()));
76 }
77
RegisterFrom(Location location,DataType::Type type)78 inline vixl::aarch64::Register RegisterFrom(Location location, DataType::Type type) {
79 DCHECK(type != DataType::Type::kVoid && !DataType::IsFloatingPointType(type)) << type;
80 return type == DataType::Type::kInt64 ? XRegisterFrom(location) : WRegisterFrom(location);
81 }
82
OutputRegister(HInstruction * instr)83 inline vixl::aarch64::Register OutputRegister(HInstruction* instr) {
84 return RegisterFrom(instr->GetLocations()->Out(), instr->GetType());
85 }
86
InputRegisterAt(HInstruction * instr,int input_index)87 inline vixl::aarch64::Register InputRegisterAt(HInstruction* instr, int input_index) {
88 return RegisterFrom(instr->GetLocations()->InAt(input_index),
89 instr->InputAt(input_index)->GetType());
90 }
91
DRegisterFrom(Location location)92 inline vixl::aarch64::VRegister DRegisterFrom(Location location) {
93 DCHECK(location.IsFpuRegister()) << location;
94 return vixl::aarch64::DRegister(location.reg());
95 }
96
QRegisterFrom(Location location)97 inline vixl::aarch64::VRegister QRegisterFrom(Location location) {
98 DCHECK(location.IsFpuRegister()) << location;
99 return vixl::aarch64::QRegister(location.reg());
100 }
101
VRegisterFrom(Location location)102 inline vixl::aarch64::VRegister VRegisterFrom(Location location) {
103 DCHECK(location.IsFpuRegister()) << location;
104 return vixl::aarch64::VRegister(location.reg());
105 }
106
ZRegisterFrom(Location location)107 inline vixl::aarch64::ZRegister ZRegisterFrom(Location location) {
108 DCHECK(location.IsFpuRegister()) << location;
109 return vixl::aarch64::ZRegister(location.reg());
110 }
111
SRegisterFrom(Location location)112 inline vixl::aarch64::VRegister SRegisterFrom(Location location) {
113 DCHECK(location.IsFpuRegister()) << location;
114 return vixl::aarch64::SRegister(location.reg());
115 }
116
HRegisterFrom(Location location)117 inline vixl::aarch64::VRegister HRegisterFrom(Location location) {
118 DCHECK(location.IsFpuRegister()) << location;
119 return vixl::aarch64::HRegister(location.reg());
120 }
121
FPRegisterFrom(Location location,DataType::Type type)122 inline vixl::aarch64::VRegister FPRegisterFrom(Location location, DataType::Type type) {
123 DCHECK(DataType::IsFloatingPointType(type)) << type;
124 return type == DataType::Type::kFloat64 ? DRegisterFrom(location) : SRegisterFrom(location);
125 }
126
OutputFPRegister(HInstruction * instr)127 inline vixl::aarch64::VRegister OutputFPRegister(HInstruction* instr) {
128 return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType());
129 }
130
InputFPRegisterAt(HInstruction * instr,int input_index)131 inline vixl::aarch64::VRegister InputFPRegisterAt(HInstruction* instr, int input_index) {
132 return FPRegisterFrom(instr->GetLocations()->InAt(input_index),
133 instr->InputAt(input_index)->GetType());
134 }
135
CPURegisterFrom(Location location,DataType::Type type)136 inline vixl::aarch64::CPURegister CPURegisterFrom(Location location, DataType::Type type) {
137 return DataType::IsFloatingPointType(type)
138 ? vixl::aarch64::CPURegister(FPRegisterFrom(location, type))
139 : vixl::aarch64::CPURegister(RegisterFrom(location, type));
140 }
141
OutputCPURegister(HInstruction * instr)142 inline vixl::aarch64::CPURegister OutputCPURegister(HInstruction* instr) {
143 return DataType::IsFloatingPointType(instr->GetType())
144 ? static_cast<vixl::aarch64::CPURegister>(OutputFPRegister(instr))
145 : static_cast<vixl::aarch64::CPURegister>(OutputRegister(instr));
146 }
147
InputCPURegisterAt(HInstruction * instr,int index)148 inline vixl::aarch64::CPURegister InputCPURegisterAt(HInstruction* instr, int index) {
149 return DataType::IsFloatingPointType(instr->InputAt(index)->GetType())
150 ? static_cast<vixl::aarch64::CPURegister>(InputFPRegisterAt(instr, index))
151 : static_cast<vixl::aarch64::CPURegister>(InputRegisterAt(instr, index));
152 }
153
InputCPURegisterOrZeroRegAt(HInstruction * instr,int index)154 inline vixl::aarch64::CPURegister InputCPURegisterOrZeroRegAt(HInstruction* instr,
155 int index) {
156 HInstruction* input = instr->InputAt(index);
157 DataType::Type input_type = input->GetType();
158 if (IsZeroBitPattern(input)) {
159 return (DataType::Size(input_type) >= vixl::aarch64::kXRegSizeInBytes)
160 ? vixl::aarch64::Register(vixl::aarch64::xzr)
161 : vixl::aarch64::Register(vixl::aarch64::wzr);
162 }
163 return InputCPURegisterAt(instr, index);
164 }
165
Int64FromLocation(Location location)166 inline int64_t Int64FromLocation(Location location) {
167 return Int64FromConstant(location.GetConstant());
168 }
169
OperandFrom(Location location,DataType::Type type)170 inline vixl::aarch64::Operand OperandFrom(Location location, DataType::Type type) {
171 if (location.IsRegister()) {
172 return vixl::aarch64::Operand(RegisterFrom(location, type));
173 } else {
174 return vixl::aarch64::Operand(Int64FromLocation(location));
175 }
176 }
177
InputOperandAt(HInstruction * instr,int input_index)178 inline vixl::aarch64::Operand InputOperandAt(HInstruction* instr, int input_index) {
179 return OperandFrom(instr->GetLocations()->InAt(input_index),
180 instr->InputAt(input_index)->GetType());
181 }
182
StackOperandFrom(Location location)183 inline vixl::aarch64::MemOperand StackOperandFrom(Location location) {
184 return vixl::aarch64::MemOperand(vixl::aarch64::sp, location.GetStackIndex());
185 }
186
SveStackOperandFrom(Location location)187 inline vixl::aarch64::SVEMemOperand SveStackOperandFrom(Location location) {
188 return vixl::aarch64::SVEMemOperand(vixl::aarch64::sp, location.GetStackIndex());
189 }
190
191 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
192 size_t offset = 0) {
193 // A heap reference must be 32bit, so fit in a W register.
194 DCHECK(base.IsW());
195 return vixl::aarch64::MemOperand(base.X(), offset);
196 }
197
198 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
199 const vixl::aarch64::Register& regoffset,
200 vixl::aarch64::Shift shift = vixl::aarch64::LSL,
201 unsigned shift_amount = 0) {
202 // A heap reference must be 32bit, so fit in a W register.
203 DCHECK(base.IsW());
204 return vixl::aarch64::MemOperand(base.X(), regoffset, shift, shift_amount);
205 }
206
HeapOperand(const vixl::aarch64::Register & base,Offset offset)207 inline vixl::aarch64::MemOperand HeapOperand(const vixl::aarch64::Register& base,
208 Offset offset) {
209 return HeapOperand(base, offset.SizeValue());
210 }
211
HeapOperandFrom(Location location,Offset offset)212 inline vixl::aarch64::MemOperand HeapOperandFrom(Location location, Offset offset) {
213 return HeapOperand(RegisterFrom(location, DataType::Type::kReference), offset);
214 }
215
LocationFrom(const vixl::aarch64::Register & reg)216 inline Location LocationFrom(const vixl::aarch64::Register& reg) {
217 return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.GetCode()));
218 }
219
LocationFrom(const vixl::aarch64::VRegister & fpreg)220 inline Location LocationFrom(const vixl::aarch64::VRegister& fpreg) {
221 return Location::FpuRegisterLocation(fpreg.GetCode());
222 }
223
LocationFrom(const vixl::aarch64::ZRegister & zreg)224 inline Location LocationFrom(const vixl::aarch64::ZRegister& zreg) {
225 return Location::FpuRegisterLocation(zreg.GetCode());
226 }
227
OperandFromMemOperand(const vixl::aarch64::MemOperand & mem_op)228 inline vixl::aarch64::Operand OperandFromMemOperand(
229 const vixl::aarch64::MemOperand& mem_op) {
230 if (mem_op.IsImmediateOffset()) {
231 return vixl::aarch64::Operand(mem_op.GetOffset());
232 } else {
233 DCHECK(mem_op.IsRegisterOffset());
234 if (mem_op.GetExtend() != vixl::aarch64::NO_EXTEND) {
235 return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
236 mem_op.GetExtend(),
237 mem_op.GetShiftAmount());
238 } else if (mem_op.GetShift() != vixl::aarch64::NO_SHIFT) {
239 return vixl::aarch64::Operand(mem_op.GetRegisterOffset(),
240 mem_op.GetShift(),
241 mem_op.GetShiftAmount());
242 } else {
243 LOG(FATAL) << "Should not reach here";
244 UNREACHABLE();
245 }
246 }
247 }
248
AddSubCanEncodeAsImmediate(int64_t value)249 inline bool AddSubCanEncodeAsImmediate(int64_t value) {
250 // If `value` does not fit but `-value` does, VIXL will automatically use
251 // the 'opposite' instruction.
252 return vixl::aarch64::Assembler::IsImmAddSub(value)
253 || vixl::aarch64::Assembler::IsImmAddSub(-value);
254 }
255
Arm64CanEncodeConstantAsImmediate(HConstant * constant,HInstruction * instr)256 inline bool Arm64CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) {
257 int64_t value = CodeGenerator::GetInt64ValueOf(constant);
258
259 // TODO: Improve this when IsSIMDConstantEncodable method is implemented in VIXL.
260 if (instr->IsVecReplicateScalar()) {
261 if (constant->IsLongConstant()) {
262 return false;
263 } else if (constant->IsFloatConstant()) {
264 return vixl::aarch64::Assembler::IsImmFP32(constant->AsFloatConstant()->GetValue());
265 } else if (constant->IsDoubleConstant()) {
266 return vixl::aarch64::Assembler::IsImmFP64(constant->AsDoubleConstant()->GetValue());
267 }
268 return IsUint<8>(value);
269 }
270
271 // Code generation for Min/Max:
272 // Cmp left_op, right_op
273 // Csel dst, left_op, right_op, cond
274 if (instr->IsMin() || instr->IsMax()) {
275 if (constant->GetUses().HasExactlyOneElement()) {
276 // If value can be encoded as immediate for the Cmp, then let VIXL handle
277 // the constant generation for the Csel.
278 return AddSubCanEncodeAsImmediate(value);
279 }
280 // These values are encodable as immediates for Cmp and VIXL will use csinc and csinv
281 // with the zr register as right_op, hence no constant generation is required.
282 return constant->IsZeroBitPattern() || constant->IsOne() || constant->IsMinusOne();
283 }
284
285 // For single uses we let VIXL handle the constant generation since it will
286 // use registers that are not managed by the register allocator (wip0, wip1).
287 if (constant->GetUses().HasExactlyOneElement()) {
288 return true;
289 }
290
291 // Our code generator ensures shift distances are within an encodable range.
292 if (instr->IsRor()) {
293 return true;
294 }
295
296 if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) {
297 // Uses logical operations.
298 return vixl::aarch64::Assembler::IsImmLogical(value, vixl::aarch64::kXRegSize);
299 } else if (instr->IsNeg()) {
300 // Uses mov -immediate.
301 return vixl::aarch64::Assembler::IsImmMovn(value, vixl::aarch64::kXRegSize);
302 } else {
303 DCHECK(instr->IsAdd() ||
304 instr->IsIntermediateAddress() ||
305 instr->IsBoundsCheck() ||
306 instr->IsCompare() ||
307 instr->IsCondition() ||
308 instr->IsSub())
309 << instr->DebugName();
310 // Uses aliases of ADD/SUB instructions.
311 return AddSubCanEncodeAsImmediate(value);
312 }
313 }
314
ARM64EncodableConstantOrRegister(HInstruction * constant,HInstruction * instr)315 inline Location ARM64EncodableConstantOrRegister(HInstruction* constant, HInstruction* instr) {
316 if (constant->IsConstant() && Arm64CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) {
317 return Location::ConstantLocation(constant);
318 }
319
320 return Location::RequiresRegister();
321 }
322
323 // Check if registers in art register set have the same register code in vixl. If the register
324 // codes are same, we can initialize vixl register list simply by the register masks. Currently,
325 // only SP/WSP and ZXR/WZR codes are different between art and vixl.
326 // Note: This function is only used for debug checks.
ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,size_t num_core,uint32_t art_fpu_registers,size_t num_fpu)327 inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers,
328 size_t num_core,
329 uint32_t art_fpu_registers,
330 size_t num_fpu) {
331 // The register masks won't work if the number of register is larger than 32.
332 DCHECK_GE(sizeof(art_core_registers) * 8, num_core);
333 DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu);
334 for (size_t art_reg_code = 0; art_reg_code < num_core; ++art_reg_code) {
335 if (RegisterSet::Contains(art_core_registers, art_reg_code)) {
336 if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) {
337 return false;
338 }
339 }
340 }
341 // There is no register code translation for float registers.
342 return true;
343 }
344
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)345 inline vixl::aarch64::Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
346 switch (op_kind) {
347 case HDataProcWithShifterOp::kASR: return vixl::aarch64::ASR;
348 case HDataProcWithShifterOp::kLSL: return vixl::aarch64::LSL;
349 case HDataProcWithShifterOp::kLSR: return vixl::aarch64::LSR;
350 default:
351 LOG(FATAL) << "Unexpected op kind " << op_kind;
352 UNREACHABLE();
353 }
354 }
355
ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind)356 inline vixl::aarch64::Extend ExtendFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
357 switch (op_kind) {
358 case HDataProcWithShifterOp::kUXTB: return vixl::aarch64::UXTB;
359 case HDataProcWithShifterOp::kUXTH: return vixl::aarch64::UXTH;
360 case HDataProcWithShifterOp::kUXTW: return vixl::aarch64::UXTW;
361 case HDataProcWithShifterOp::kSXTB: return vixl::aarch64::SXTB;
362 case HDataProcWithShifterOp::kSXTH: return vixl::aarch64::SXTH;
363 case HDataProcWithShifterOp::kSXTW: return vixl::aarch64::SXTW;
364 default:
365 LOG(FATAL) << "Unexpected op kind " << op_kind;
366 UNREACHABLE();
367 }
368 }
369
ShifterOperandSupportsExtension(HInstruction * instruction)370 inline bool ShifterOperandSupportsExtension(HInstruction* instruction) {
371 DCHECK(HasShifterOperand(instruction, InstructionSet::kArm64));
372 // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg`
373 // does *not* support extension. This is because the `extended register` form
374 // of the `sub` instruction interprets the left register with code 31 as the
375 // stack pointer and not the zero register. (So does the `immediate` form.) In
376 // the other form `shifted register, the register with code 31 is interpreted
377 // as the zero register.
378 return instruction->IsAdd() || instruction->IsSub();
379 }
380
381 } // namespace helpers
382 } // namespace arm64
383 } // namespace art
384
385 #endif // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_
386