1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "aarch64/assembler-aarch64.h"
20 #include "aarch64/registers-aarch64.h"
21 #include "arch/arm64/asm_support_arm64.h"
22 #include "arch/arm64/instruction_set_features_arm64.h"
23 #include "arch/arm64/jni_frame_arm64.h"
24 #include "art_method-inl.h"
25 #include "base/bit_utils.h"
26 #include "base/bit_utils_iterator.h"
27 #include "class_root-inl.h"
28 #include "class_table.h"
29 #include "code_generator_utils.h"
30 #include "com_android_art_flags.h"
31 #include "dex/dex_file_types.h"
32 #include "entrypoints/quick/quick_entrypoints.h"
33 #include "entrypoints/quick/quick_entrypoints_enum.h"
34 #include "gc/accounting/card_table.h"
35 #include "gc/space/image_space.h"
36 #include "heap_poisoning.h"
37 #include "interpreter/mterp/nterp.h"
38 #include "intrinsics.h"
39 #include "intrinsics_arm64.h"
40 #include "intrinsics_list.h"
41 #include "intrinsics_utils.h"
42 #include "jit/profiling_info.h"
43 #include "linker/linker_patch.h"
44 #include "lock_word.h"
45 #include "mirror/array-inl.h"
46 #include "mirror/class-inl.h"
47 #include "mirror/var_handle.h"
48 #include "offsets.h"
49 #include "optimizing/common_arm64.h"
50 #include "optimizing/nodes.h"
51 #include "profiling_info_builder.h"
52 #include "thread.h"
53 #include "trace.h"
54 #include "utils/arm64/assembler_arm64.h"
55 #include "utils/assembler.h"
56 #include "utils/stack_checks.h"
57
58 using namespace vixl::aarch64; // NOLINT(build/namespaces)
59 using vixl::ExactAssemblyScope;
60 using vixl::CodeBufferCheckScope;
61 using vixl::EmissionCheckScope;
62
63 namespace art_flags = com::android::art::flags;
64
65 #ifdef __
66 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
67 #endif
68
69 namespace art HIDDEN {
70
71 template<class MirrorType>
72 class GcRoot;
73
74 namespace arm64 {
75
76 using helpers::ARM64EncodableConstantOrRegister;
77 using helpers::ArtVixlRegCodeCoherentForRegSet;
78 using helpers::CPURegisterFrom;
79 using helpers::DRegisterFrom;
80 using helpers::FPRegisterFrom;
81 using helpers::HeapOperand;
82 using helpers::HeapOperandFrom;
83 using helpers::InputCPURegisterOrZeroRegAt;
84 using helpers::InputFPRegisterAt;
85 using helpers::InputOperandAt;
86 using helpers::InputRegisterAt;
87 using helpers::Int64FromLocation;
88 using helpers::LocationFrom;
89 using helpers::OperandFromMemOperand;
90 using helpers::OutputCPURegister;
91 using helpers::OutputFPRegister;
92 using helpers::OutputRegister;
93 using helpers::RegisterFrom;
94 using helpers::StackOperandFrom;
95 using helpers::VIXLRegCodeFromART;
96 using helpers::WRegisterFrom;
97 using helpers::XRegisterFrom;
98
99 // TODO(mythria): Expand SystemRegister in vixl to include this value.
100 uint16_t SYS_CNTVCT_EL0 = SystemRegisterEncoder<1, 3, 14, 0, 2>::value;
101
102 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
103 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
104 // generates less code/data with a small num_entries.
105 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
106
ARM64Condition(IfCondition cond)107 inline Condition ARM64Condition(IfCondition cond) {
108 switch (cond) {
109 case kCondEQ: return eq;
110 case kCondNE: return ne;
111 case kCondLT: return lt;
112 case kCondLE: return le;
113 case kCondGT: return gt;
114 case kCondGE: return ge;
115 case kCondB: return lo;
116 case kCondBE: return ls;
117 case kCondA: return hi;
118 case kCondAE: return hs;
119 }
120 LOG(FATAL) << "Unreachable";
121 UNREACHABLE();
122 }
123
ARM64FPCondition(IfCondition cond,bool gt_bias)124 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
125 // The ARM64 condition codes can express all the necessary branches, see the
126 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
127 // There is no dex instruction or HIR that would need the missing conditions
128 // "equal or unordered" or "not equal".
129 switch (cond) {
130 case kCondEQ: return eq;
131 case kCondNE: return ne /* unordered */;
132 case kCondLT: return gt_bias ? cc : lt /* unordered */;
133 case kCondLE: return gt_bias ? ls : le /* unordered */;
134 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
135 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
136 default:
137 LOG(FATAL) << "UNREACHABLE";
138 UNREACHABLE();
139 }
140 }
141
ARM64PCondition(HVecPredToBoolean::PCondKind cond)142 Condition ARM64PCondition(HVecPredToBoolean::PCondKind cond) {
143 switch (cond) {
144 case HVecPredToBoolean::PCondKind::kFirst: return mi;
145 case HVecPredToBoolean::PCondKind::kNFirst: return pl;
146 default:
147 LOG(FATAL) << "Unsupported condition type: " << enum_cast<uint32_t>(cond);
148 UNREACHABLE();
149 }
150 }
151
ARM64ReturnLocation(DataType::Type return_type)152 Location ARM64ReturnLocation(DataType::Type return_type) {
153 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
154 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
155 // but we use the exact registers for clarity.
156 if (return_type == DataType::Type::kFloat32) {
157 return LocationFrom(s0);
158 } else if (return_type == DataType::Type::kFloat64) {
159 return LocationFrom(d0);
160 } else if (return_type == DataType::Type::kInt64) {
161 return LocationFrom(x0);
162 } else if (return_type == DataType::Type::kVoid) {
163 return Location::NoLocation();
164 } else {
165 return LocationFrom(w0);
166 }
167 }
168
GetReturnLocation(DataType::Type return_type)169 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
170 return ARM64ReturnLocation(return_type);
171 }
172
OneRegInReferenceOutSaveEverythingCallerSaves()173 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
174 InvokeRuntimeCallingConvention calling_convention;
175 RegisterSet caller_saves = RegisterSet::Empty();
176 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
177 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
178 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
179 DataType::Type::kReference).GetCode());
180 return caller_saves;
181 }
182
183 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
184 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
185 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
186
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)187 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
188 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
189 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
190 for (uint32_t i : LowToHighBits(core_spills)) {
191 // If the register holds an object, update the stack mask.
192 if (locations->RegisterContainsObject(i)) {
193 locations->SetStackBit(stack_offset / kVRegSize);
194 }
195 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
196 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
197 saved_core_stack_offsets_[i] = stack_offset;
198 stack_offset += kXRegSizeInBytes;
199 }
200
201 const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
202 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
203 for (uint32_t i : LowToHighBits(fp_spills)) {
204 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
205 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
206 saved_fpu_stack_offsets_[i] = stack_offset;
207 stack_offset += fp_reg_size;
208 }
209
210 InstructionCodeGeneratorARM64* visitor =
211 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
212 visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
213 }
214
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)215 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
216 InstructionCodeGeneratorARM64* visitor =
217 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
218 visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
219 }
220
221 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
222 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)223 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
224
EmitNativeCode(CodeGenerator * codegen)225 void EmitNativeCode(CodeGenerator* codegen) override {
226 LocationSummary* locations = instruction_->GetLocations();
227 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
228
229 __ Bind(GetEntryLabel());
230 if (instruction_->CanThrowIntoCatchBlock()) {
231 // Live registers will be restored in the catch block if caught.
232 SaveLiveRegisters(codegen, instruction_->GetLocations());
233 }
234 // We're moving two locations to locations that could overlap, so we need a parallel
235 // move resolver.
236 InvokeRuntimeCallingConvention calling_convention;
237 codegen->EmitParallelMoves(locations->InAt(0),
238 LocationFrom(calling_convention.GetRegisterAt(0)),
239 DataType::Type::kInt32,
240 locations->InAt(1),
241 LocationFrom(calling_convention.GetRegisterAt(1)),
242 DataType::Type::kInt32);
243 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
244 ? kQuickThrowStringBounds
245 : kQuickThrowArrayBounds;
246 arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
247 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
248 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
249 }
250
IsFatal() const251 bool IsFatal() const override { return true; }
252
GetDescription() const253 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
254
255 private:
256 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
257 };
258
259 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
260 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)261 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
262
EmitNativeCode(CodeGenerator * codegen)263 void EmitNativeCode(CodeGenerator* codegen) override {
264 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
265 __ Bind(GetEntryLabel());
266 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
267 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
268 }
269
IsFatal() const270 bool IsFatal() const override { return true; }
271
GetDescription() const272 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
273
274 private:
275 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
276 };
277
278 class LoadMethodTypeSlowPathARM64 : public SlowPathCodeARM64 {
279 public:
LoadMethodTypeSlowPathARM64(HLoadMethodType * mt)280 explicit LoadMethodTypeSlowPathARM64(HLoadMethodType* mt) : SlowPathCodeARM64(mt) {}
281
EmitNativeCode(CodeGenerator * codegen)282 void EmitNativeCode(CodeGenerator* codegen) override {
283 LocationSummary* locations = instruction_->GetLocations();
284 Location out = locations->Out();
285 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
286
287 __ Bind(GetEntryLabel());
288 SaveLiveRegisters(codegen, locations);
289
290 InvokeRuntimeCallingConvention calling_convention;
291 const dex::ProtoIndex proto_index = instruction_->AsLoadMethodType()->GetProtoIndex();
292 __ Mov(calling_convention.GetRegisterAt(0).W(), proto_index.index_);
293
294 arm64_codegen->InvokeRuntime(kQuickResolveMethodType,
295 instruction_,
296 instruction_->GetDexPc(),
297 this);
298 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
299
300 DataType::Type type = instruction_->GetType();
301 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
302 RestoreLiveRegisters(codegen, locations);
303
304 __ B(GetExitLabel());
305 }
306
GetDescription() const307 const char* GetDescription() const override { return "LoadMethodTypeSlowPathARM64"; }
308
309 private:
310 DISALLOW_COPY_AND_ASSIGN(LoadMethodTypeSlowPathARM64);
311 };
312
313
314 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
315 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)316 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
317 : SlowPathCodeARM64(at), cls_(cls) {
318 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
319 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
320 }
321
EmitNativeCode(CodeGenerator * codegen)322 void EmitNativeCode(CodeGenerator* codegen) override {
323 LocationSummary* locations = instruction_->GetLocations();
324 Location out = locations->Out();
325 const uint32_t dex_pc = instruction_->GetDexPc();
326 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
327 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
328
329 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
330 __ Bind(GetEntryLabel());
331 SaveLiveRegisters(codegen, locations);
332
333 InvokeRuntimeCallingConvention calling_convention;
334 if (must_resolve_type) {
335 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) ||
336 arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
337 ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
338 &cls_->GetDexFile()));
339 dex::TypeIndex type_index = cls_->GetTypeIndex();
340 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
341 if (cls_->NeedsAccessCheck()) {
342 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
343 arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
344 } else {
345 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
346 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
347 }
348 // If we also must_do_clinit, the resolved type is now in the correct register.
349 } else {
350 DCHECK(must_do_clinit);
351 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
352 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
353 source,
354 cls_->GetType());
355 }
356 if (must_do_clinit) {
357 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
358 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
359 }
360
361 // Move the class to the desired location.
362 if (out.IsValid()) {
363 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
364 DataType::Type type = instruction_->GetType();
365 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
366 }
367 RestoreLiveRegisters(codegen, locations);
368 __ B(GetExitLabel());
369 }
370
GetDescription() const371 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
372
373 private:
374 // The class this slow path will load.
375 HLoadClass* const cls_;
376
377 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
378 };
379
380 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
381 public:
LoadStringSlowPathARM64(HLoadString * instruction)382 explicit LoadStringSlowPathARM64(HLoadString* instruction)
383 : SlowPathCodeARM64(instruction) {}
384
EmitNativeCode(CodeGenerator * codegen)385 void EmitNativeCode(CodeGenerator* codegen) override {
386 LocationSummary* locations = instruction_->GetLocations();
387 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
388 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
389
390 __ Bind(GetEntryLabel());
391 SaveLiveRegisters(codegen, locations);
392
393 InvokeRuntimeCallingConvention calling_convention;
394 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
395 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
396 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
397 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
398 DataType::Type type = instruction_->GetType();
399 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
400
401 RestoreLiveRegisters(codegen, locations);
402
403 __ B(GetExitLabel());
404 }
405
GetDescription() const406 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
407
408 private:
409 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
410 };
411
412 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
413 public:
NullCheckSlowPathARM64(HNullCheck * instr)414 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
415
EmitNativeCode(CodeGenerator * codegen)416 void EmitNativeCode(CodeGenerator* codegen) override {
417 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
418 __ Bind(GetEntryLabel());
419 if (instruction_->CanThrowIntoCatchBlock()) {
420 // Live registers will be restored in the catch block if caught.
421 SaveLiveRegisters(codegen, instruction_->GetLocations());
422 }
423 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
424 instruction_,
425 instruction_->GetDexPc(),
426 this);
427 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
428 }
429
IsFatal() const430 bool IsFatal() const override { return true; }
431
GetDescription() const432 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
433
434 private:
435 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
436 };
437
438 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
439 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)440 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
441 : SlowPathCodeARM64(instruction), successor_(successor) {}
442
EmitNativeCode(CodeGenerator * codegen)443 void EmitNativeCode(CodeGenerator* codegen) override {
444 LocationSummary* locations = instruction_->GetLocations();
445 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
446 __ Bind(GetEntryLabel());
447 SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
448 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
449 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
450 RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
451 if (successor_ == nullptr) {
452 __ B(GetReturnLabel());
453 } else {
454 __ B(arm64_codegen->GetLabelOf(successor_));
455 }
456 }
457
GetReturnLabel()458 vixl::aarch64::Label* GetReturnLabel() {
459 DCHECK(successor_ == nullptr);
460 return &return_label_;
461 }
462
GetSuccessor() const463 HBasicBlock* GetSuccessor() const {
464 return successor_;
465 }
466
GetDescription() const467 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
468
469 private:
470 // If not null, the block to branch to after the suspend check.
471 HBasicBlock* const successor_;
472
473 // If `successor_` is null, the label to branch to after the suspend check.
474 vixl::aarch64::Label return_label_;
475
476 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
477 };
478
479 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
480 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)481 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
482 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
483
EmitNativeCode(CodeGenerator * codegen)484 void EmitNativeCode(CodeGenerator* codegen) override {
485 LocationSummary* locations = instruction_->GetLocations();
486
487 DCHECK(instruction_->IsCheckCast()
488 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
489 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
490 uint32_t dex_pc = instruction_->GetDexPc();
491
492 __ Bind(GetEntryLabel());
493
494 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
495 SaveLiveRegisters(codegen, locations);
496 }
497
498 // We're moving two locations to locations that could overlap, so we need a parallel
499 // move resolver.
500 InvokeRuntimeCallingConvention calling_convention;
501 codegen->EmitParallelMoves(locations->InAt(0),
502 LocationFrom(calling_convention.GetRegisterAt(0)),
503 DataType::Type::kReference,
504 locations->InAt(1),
505 LocationFrom(calling_convention.GetRegisterAt(1)),
506 DataType::Type::kReference);
507 if (instruction_->IsInstanceOf()) {
508 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
509 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
510 DataType::Type ret_type = instruction_->GetType();
511 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
512 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
513 } else {
514 DCHECK(instruction_->IsCheckCast());
515 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
516 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
517 }
518
519 if (!is_fatal_) {
520 RestoreLiveRegisters(codegen, locations);
521 __ B(GetExitLabel());
522 }
523 }
524
GetDescription() const525 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const526 bool IsFatal() const override { return is_fatal_; }
527
528 private:
529 const bool is_fatal_;
530
531 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
532 };
533
534 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
535 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)536 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
537 : SlowPathCodeARM64(instruction) {}
538
EmitNativeCode(CodeGenerator * codegen)539 void EmitNativeCode(CodeGenerator* codegen) override {
540 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
541 __ Bind(GetEntryLabel());
542 LocationSummary* locations = instruction_->GetLocations();
543 SaveLiveRegisters(codegen, locations);
544 InvokeRuntimeCallingConvention calling_convention;
545 __ Mov(calling_convention.GetRegisterAt(0),
546 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
547 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
548 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
549 }
550
GetDescription() const551 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
552
553 private:
554 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
555 };
556
557 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
558 public:
ArraySetSlowPathARM64(HInstruction * instruction)559 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
560
EmitNativeCode(CodeGenerator * codegen)561 void EmitNativeCode(CodeGenerator* codegen) override {
562 LocationSummary* locations = instruction_->GetLocations();
563 __ Bind(GetEntryLabel());
564 SaveLiveRegisters(codegen, locations);
565
566 InvokeRuntimeCallingConvention calling_convention;
567 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
568 parallel_move.AddMove(
569 locations->InAt(0),
570 LocationFrom(calling_convention.GetRegisterAt(0)),
571 DataType::Type::kReference,
572 nullptr);
573 parallel_move.AddMove(
574 locations->InAt(1),
575 LocationFrom(calling_convention.GetRegisterAt(1)),
576 DataType::Type::kInt32,
577 nullptr);
578 parallel_move.AddMove(
579 locations->InAt(2),
580 LocationFrom(calling_convention.GetRegisterAt(2)),
581 DataType::Type::kReference,
582 nullptr);
583 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
584
585 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
586 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
587 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
588 RestoreLiveRegisters(codegen, locations);
589 __ B(GetExitLabel());
590 }
591
GetDescription() const592 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
593
594 private:
595 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
596 };
597
EmitTable(CodeGeneratorARM64 * codegen)598 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
599 uint32_t num_entries = switch_instr_->GetNumEntries();
600 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
601
602 // We are about to use the assembler to place literals directly. Make sure we have enough
603 // underlying code buffer and we have generated the jump table with right size.
604 ExactAssemblyScope scope(codegen->GetVIXLAssembler(),
605 num_entries * sizeof(int32_t),
606 CodeBufferCheckScope::kExactSize);
607 codegen->GetVIXLAssembler()->bind(&table_start_);
608 for (uint32_t i = 0; i < num_entries; i++) {
609 codegen->GetVIXLAssembler()->place(jump_targets_[i].get());
610 }
611 }
612
FixTable(CodeGeneratorARM64 * codegen)613 void JumpTableARM64::FixTable(CodeGeneratorARM64* codegen) {
614 uint32_t num_entries = switch_instr_->GetNumEntries();
615 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
616
617 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
618 for (uint32_t i = 0; i < num_entries; i++) {
619 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
620 DCHECK(target_label->IsBound());
621 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
622 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
623 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
624 jump_targets_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler());
625 }
626 }
627
628 // Slow path generating a read barrier for a heap reference.
629 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
630 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)631 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
632 Location out,
633 Location ref,
634 Location obj,
635 uint32_t offset,
636 Location index)
637 : SlowPathCodeARM64(instruction),
638 out_(out),
639 ref_(ref),
640 obj_(obj),
641 offset_(offset),
642 index_(index) {
643 // If `obj` is equal to `out` or `ref`, it means the initial object
644 // has been overwritten by (or after) the heap object reference load
645 // to be instrumented, e.g.:
646 //
647 // __ Ldr(out, HeapOperand(out, class_offset);
648 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
649 //
650 // In that case, we have lost the information about the original
651 // object, and the emitted read barrier cannot work properly.
652 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
653 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
654 }
655
EmitNativeCode(CodeGenerator * codegen)656 void EmitNativeCode(CodeGenerator* codegen) override {
657 DCHECK(codegen->EmitReadBarrier());
658 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
659 LocationSummary* locations = instruction_->GetLocations();
660 DataType::Type type = DataType::Type::kReference;
661 DCHECK(locations->CanCall());
662 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
663 DCHECK(instruction_->IsInstanceFieldGet() ||
664 instruction_->IsStaticFieldGet() ||
665 instruction_->IsArrayGet() ||
666 instruction_->IsInstanceOf() ||
667 instruction_->IsCheckCast() ||
668 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
669 << "Unexpected instruction in read barrier for heap reference slow path: "
670 << instruction_->DebugName();
671 // The read barrier instrumentation of object ArrayGet
672 // instructions does not support the HIntermediateAddress
673 // instruction.
674 DCHECK(!(instruction_->IsArrayGet() &&
675 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
676
677 __ Bind(GetEntryLabel());
678
679 SaveLiveRegisters(codegen, locations);
680
681 // We may have to change the index's value, but as `index_` is a
682 // constant member (like other "inputs" of this slow path),
683 // introduce a copy of it, `index`.
684 Location index = index_;
685 if (index_.IsValid()) {
686 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
687 if (instruction_->IsArrayGet()) {
688 // Compute the actual memory offset and store it in `index`.
689 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
690 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
691 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
692 // We are about to change the value of `index_reg` (see the
693 // calls to vixl::MacroAssembler::Lsl and
694 // vixl::MacroAssembler::Mov below), but it has
695 // not been saved by the previous call to
696 // art::SlowPathCode::SaveLiveRegisters, as it is a
697 // callee-save register --
698 // art::SlowPathCode::SaveLiveRegisters does not consider
699 // callee-save registers, as it has been designed with the
700 // assumption that callee-save registers are supposed to be
701 // handled by the called function. So, as a callee-save
702 // register, `index_reg` _would_ eventually be saved onto
703 // the stack, but it would be too late: we would have
704 // changed its value earlier. Therefore, we manually save
705 // it here into another freely available register,
706 // `free_reg`, chosen of course among the caller-save
707 // registers (as a callee-save `free_reg` register would
708 // exhibit the same problem).
709 //
710 // Note we could have requested a temporary register from
711 // the register allocator instead; but we prefer not to, as
712 // this is a slow path, and we know we can find a
713 // caller-save register that is available.
714 Register free_reg = FindAvailableCallerSaveRegister(codegen);
715 __ Mov(free_reg.W(), index_reg);
716 index_reg = free_reg;
717 index = LocationFrom(index_reg);
718 } else {
719 // The initial register stored in `index_` has already been
720 // saved in the call to art::SlowPathCode::SaveLiveRegisters
721 // (as it is not a callee-save register), so we can freely
722 // use it.
723 }
724 // Shifting the index value contained in `index_reg` by the scale
725 // factor (2) cannot overflow in practice, as the runtime is
726 // unable to allocate object arrays with a size larger than
727 // 2^26 - 1 (that is, 2^28 - 4 bytes).
728 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
729 static_assert(
730 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
731 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
732 __ Add(index_reg, index_reg, Operand(offset_));
733 } else {
734 // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
735 // (as in the case of ArrayGet), as it is actually an offset to an object field within an
736 // object.
737 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
738 DCHECK(instruction_->GetLocations()->Intrinsified());
739 HInvoke* invoke = instruction_->AsInvoke();
740 DCHECK(IsUnsafeGetReference(invoke) ||
741 IsVarHandleGet(invoke) ||
742 IsUnsafeCASReference(invoke) ||
743 IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
744 DCHECK_EQ(offset_, 0u);
745 DCHECK(index_.IsRegister());
746 }
747 }
748
749 // We're moving two or three locations to locations that could
750 // overlap, so we need a parallel move resolver.
751 InvokeRuntimeCallingConvention calling_convention;
752 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
753 parallel_move.AddMove(ref_,
754 LocationFrom(calling_convention.GetRegisterAt(0)),
755 type,
756 nullptr);
757 parallel_move.AddMove(obj_,
758 LocationFrom(calling_convention.GetRegisterAt(1)),
759 type,
760 nullptr);
761 if (index.IsValid()) {
762 parallel_move.AddMove(index,
763 LocationFrom(calling_convention.GetRegisterAt(2)),
764 DataType::Type::kInt32,
765 nullptr);
766 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
767 } else {
768 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
769 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
770 }
771 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
772 instruction_,
773 instruction_->GetDexPc(),
774 this);
775 CheckEntrypointTypes<
776 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
777 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
778
779 RestoreLiveRegisters(codegen, locations);
780
781 __ B(GetExitLabel());
782 }
783
GetDescription() const784 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
785
786 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)787 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
788 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
789 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
790 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
791 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
792 return Register(VIXLRegCodeFromART(i), kXRegSize);
793 }
794 }
795 // We shall never fail to find a free caller-save register, as
796 // there are more than two core caller-save registers on ARM64
797 // (meaning it is possible to find one which is different from
798 // `ref` and `obj`).
799 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
800 LOG(FATAL) << "Could not find a free register";
801 UNREACHABLE();
802 }
803
804 const Location out_;
805 const Location ref_;
806 const Location obj_;
807 const uint32_t offset_;
808 // An additional location containing an index to an array.
809 // Only used for HArrayGet and the UnsafeGetObject &
810 // UnsafeGetObjectVolatile intrinsics.
811 const Location index_;
812
813 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
814 };
815
816 // Slow path generating a read barrier for a GC root.
817 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
818 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)819 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
820 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
821 }
822
EmitNativeCode(CodeGenerator * codegen)823 void EmitNativeCode(CodeGenerator* codegen) override {
824 DCHECK(codegen->EmitReadBarrier());
825 LocationSummary* locations = instruction_->GetLocations();
826 DataType::Type type = DataType::Type::kReference;
827 DCHECK(locations->CanCall());
828 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
829 DCHECK(instruction_->IsLoadClass() ||
830 instruction_->IsLoadString() ||
831 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
832 << "Unexpected instruction in read barrier for GC root slow path: "
833 << instruction_->DebugName();
834
835 __ Bind(GetEntryLabel());
836 SaveLiveRegisters(codegen, locations);
837
838 InvokeRuntimeCallingConvention calling_convention;
839 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
840 // The argument of the ReadBarrierForRootSlow is not a managed
841 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
842 // thus we need a 64-bit move here, and we cannot use
843 //
844 // arm64_codegen->MoveLocation(
845 // LocationFrom(calling_convention.GetRegisterAt(0)),
846 // root_,
847 // type);
848 //
849 // which would emit a 32-bit move, as `type` is a (32-bit wide)
850 // reference type (`DataType::Type::kReference`).
851 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
852 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
853 instruction_,
854 instruction_->GetDexPc(),
855 this);
856 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
857 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
858
859 RestoreLiveRegisters(codegen, locations);
860 __ B(GetExitLabel());
861 }
862
GetDescription() const863 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
864
865 private:
866 const Location out_;
867 const Location root_;
868
869 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
870 };
871
872 class TracingMethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
873 public:
TracingMethodEntryExitHooksSlowPathARM64(bool is_method_entry)874 explicit TracingMethodEntryExitHooksSlowPathARM64(bool is_method_entry)
875 : SlowPathCodeARM64(/* instruction= */ nullptr), is_method_entry_(is_method_entry) {}
876
EmitNativeCode(CodeGenerator * codegen)877 void EmitNativeCode(CodeGenerator* codegen) override {
878 QuickEntrypointEnum entry_point =
879 (is_method_entry_) ? kQuickRecordEntryTraceEvent : kQuickRecordExitTraceEvent;
880 vixl::aarch64::Label call;
881 __ Bind(GetEntryLabel());
882 uint32_t entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entry_point).Int32Value();
883 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
884 __ Blr(lr);
885 __ B(GetExitLabel());
886 }
887
GetDescription() const888 const char* GetDescription() const override {
889 return "TracingMethodEntryExitHooksSlowPath";
890 }
891
892 private:
893 const bool is_method_entry_;
894
895 DISALLOW_COPY_AND_ASSIGN(TracingMethodEntryExitHooksSlowPathARM64);
896 };
897
898 class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
899 public:
MethodEntryExitHooksSlowPathARM64(HInstruction * instruction)900 explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction)
901 : SlowPathCodeARM64(instruction) {}
902
EmitNativeCode(CodeGenerator * codegen)903 void EmitNativeCode(CodeGenerator* codegen) override {
904 LocationSummary* locations = instruction_->GetLocations();
905 QuickEntrypointEnum entry_point =
906 (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
907 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
908 __ Bind(GetEntryLabel());
909 SaveLiveRegisters(codegen, locations);
910 if (instruction_->IsMethodExitHook()) {
911 __ Mov(vixl::aarch64::x4, arm64_codegen->GetFrameSize());
912 }
913 arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
914 RestoreLiveRegisters(codegen, locations);
915 __ B(GetExitLabel());
916 }
917
GetDescription() const918 const char* GetDescription() const override {
919 return "MethodEntryExitHooksSlowPath";
920 }
921
922 private:
923 DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64);
924 };
925
926 class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 {
927 public:
CompileOptimizedSlowPathARM64(HSuspendCheck * check,Register profiling_info)928 CompileOptimizedSlowPathARM64(HSuspendCheck* check, Register profiling_info)
929 : SlowPathCodeARM64(check),
930 profiling_info_(profiling_info) {}
931
EmitNativeCode(CodeGenerator * codegen)932 void EmitNativeCode(CodeGenerator* codegen) override {
933 uint32_t entrypoint_offset =
934 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
935 __ Bind(GetEntryLabel());
936 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
937 UseScratchRegisterScope temps(arm64_codegen->GetVIXLAssembler());
938 Register counter = temps.AcquireW();
939 __ Mov(counter, ProfilingInfo::GetOptimizeThreshold());
940 __ Strh(counter,
941 MemOperand(profiling_info_, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
942 if (instruction_ != nullptr) {
943 // Only saves live vector regs for SIMD.
944 SaveLiveRegisters(codegen, instruction_->GetLocations());
945 }
946 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
947 // Note: we don't record the call here (and therefore don't generate a stack
948 // map), as the entrypoint should never be suspended.
949 __ Blr(lr);
950 if (instruction_ != nullptr) {
951 // Only restores live vector regs for SIMD.
952 RestoreLiveRegisters(codegen, instruction_->GetLocations());
953 }
954 __ B(GetExitLabel());
955 }
956
GetDescription() const957 const char* GetDescription() const override {
958 return "CompileOptimizedSlowPath";
959 }
960
961 private:
962 // The register where the profiling info is stored when entering the slow
963 // path.
964 Register profiling_info_;
965
966 DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64);
967 };
968
969 #undef __
970
GetNextLocation(DataType::Type type)971 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
972 Location next_location;
973 if (type == DataType::Type::kVoid) {
974 LOG(FATAL) << "Unreachable type " << type;
975 }
976
977 if (DataType::IsFloatingPointType(type) &&
978 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
979 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
980 } else if (!DataType::IsFloatingPointType(type) &&
981 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
982 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
983 } else {
984 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
985 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
986 : Location::StackSlot(stack_offset);
987 }
988
989 // Space on the stack is reserved for all arguments.
990 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
991 return next_location;
992 }
993
GetMethodLocation() const994 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
995 return LocationFrom(kArtMethodRegister);
996 }
997
GetNextLocation(DataType::Type type)998 Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
999 DCHECK_NE(type, DataType::Type::kReference);
1000
1001 Location location = Location::NoLocation();
1002 if (DataType::IsFloatingPointType(type)) {
1003 if (fpr_index_ < kParameterFPRegistersLength) {
1004 location = LocationFrom(kParameterFPRegisters[fpr_index_]);
1005 ++fpr_index_;
1006 }
1007 } else {
1008 // Native ABI uses the same registers as managed, except that the method register x0
1009 // is a normal argument.
1010 if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
1011 location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
1012 ++gpr_index_;
1013 }
1014 }
1015 if (location.IsInvalid()) {
1016 if (DataType::Is64BitType(type)) {
1017 location = Location::DoubleStackSlot(stack_offset_);
1018 } else {
1019 location = Location::StackSlot(stack_offset_);
1020 }
1021 stack_offset_ += kFramePointerSize;
1022
1023 if (for_register_allocation_) {
1024 location = Location::Any();
1025 }
1026 }
1027 return location;
1028 }
1029
GetReturnLocation(DataType::Type type) const1030 Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
1031 // We perform conversion to the managed ABI return register after the call if needed.
1032 InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
1033 return dex_calling_convention.GetReturnLocation(type);
1034 }
1035
GetMethodLocation() const1036 Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
1037 // Pass the method in the hidden argument x15.
1038 return Location::RegisterLocation(x15.GetCode());
1039 }
1040
1041 namespace detail {
1042
1043 // Mark which intrinsics we don't have handcrafted code for.
1044 template <Intrinsics T>
1045 struct IsUnimplemented {
1046 bool is_unimplemented = false;
1047 };
1048
1049 #define TRUE_OVERRIDE(Name) \
1050 template <> \
1051 struct IsUnimplemented<Intrinsics::k##Name> { \
1052 bool is_unimplemented = true; \
1053 };
1054 UNIMPLEMENTED_INTRINSIC_LIST_ARM64(TRUE_OVERRIDE)
1055 #undef TRUE_OVERRIDE
1056
1057 static constexpr bool kIsIntrinsicUnimplemented[] = {
1058 false, // kNone
1059 #define IS_UNIMPLEMENTED(Intrinsic, ...) \
1060 IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
1061 ART_INTRINSICS_LIST(IS_UNIMPLEMENTED)
1062 #undef IS_UNIMPLEMENTED
1063 };
1064
1065 } // namespace detail
1066
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1067 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
1068 const CompilerOptions& compiler_options,
1069 OptimizingCompilerStats* stats)
1070 : CodeGenerator(graph,
1071 kNumberOfAllocatableRegisters,
1072 kNumberOfAllocatableFPRegisters,
1073 kNumberOfAllocatableRegisterPairs,
1074 callee_saved_core_registers.GetList(),
1075 callee_saved_fp_registers.GetList(),
1076 compiler_options,
1077 stats,
1078 ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
1079 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1080 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1081 location_builder_neon_(graph, this),
1082 instruction_visitor_neon_(graph, this),
1083 location_builder_sve_(graph, this),
1084 instruction_visitor_sve_(graph, this),
1085 move_resolver_(graph->GetAllocator(), this),
1086 assembler_(graph->GetAllocator(),
1087 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
1088 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1089 app_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1090 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1091 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1092 app_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1093 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1094 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1095 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1096 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1097 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1098 method_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1099 boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1100 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1101 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1102 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1103 jit_patches_(&assembler_, graph->GetAllocator()),
1104 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1105 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1106 // Save the link register (containing the return address) to mimic Quick.
1107 AddAllocatedRegister(LocationFrom(lr));
1108
1109 bool use_sve = ShouldUseSVE();
1110 if (use_sve) {
1111 location_builder_ = &location_builder_sve_;
1112 instruction_visitor_ = &instruction_visitor_sve_;
1113 } else {
1114 location_builder_ = &location_builder_neon_;
1115 instruction_visitor_ = &instruction_visitor_neon_;
1116 }
1117 }
1118
ShouldUseSVE() const1119 bool CodeGeneratorARM64::ShouldUseSVE() const {
1120 return GetInstructionSetFeatures().HasSVE();
1121 }
1122
GetSIMDRegisterWidth() const1123 size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const {
1124 return SupportsPredicatedSIMD()
1125 ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte
1126 : vixl::aarch64::kQRegSizeInBytes;
1127 }
1128
1129 #define __ GetVIXLAssembler()->
1130
FixJumpTables()1131 void CodeGeneratorARM64::FixJumpTables() {
1132 for (auto&& jump_table : jump_tables_) {
1133 jump_table->FixTable(this);
1134 }
1135 }
1136
Finalize()1137 void CodeGeneratorARM64::Finalize() {
1138 FixJumpTables();
1139
1140 // Emit JIT baker read barrier slow paths.
1141 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
1142 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1143 uint32_t encoded_data = entry.first;
1144 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
1145 __ Bind(slow_path_entry);
1146 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1147 }
1148
1149 // Ensure we emit the literal pool.
1150 __ FinalizeCode();
1151
1152 CodeGenerator::Finalize();
1153
1154 // Verify Baker read barrier linker patches.
1155 if (kIsDebugBuild) {
1156 ArrayRef<const uint8_t> code(GetCode());
1157 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1158 DCHECK(info.label.IsBound());
1159 uint32_t literal_offset = info.label.GetLocation();
1160 DCHECK_ALIGNED(literal_offset, 4u);
1161
1162 auto GetInsn = [&code](uint32_t offset) {
1163 DCHECK_ALIGNED(offset, 4u);
1164 return
1165 (static_cast<uint32_t>(code[offset + 0]) << 0) +
1166 (static_cast<uint32_t>(code[offset + 1]) << 8) +
1167 (static_cast<uint32_t>(code[offset + 2]) << 16)+
1168 (static_cast<uint32_t>(code[offset + 3]) << 24);
1169 };
1170
1171 const uint32_t encoded_data = info.custom_data;
1172 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1173 // Check that the next instruction matches the expected LDR.
1174 switch (kind) {
1175 case BakerReadBarrierKind::kField:
1176 case BakerReadBarrierKind::kAcquire: {
1177 DCHECK_GE(code.size() - literal_offset, 8u);
1178 uint32_t next_insn = GetInsn(literal_offset + 4u);
1179 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1180 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1181 if (kind == BakerReadBarrierKind::kField) {
1182 // LDR (immediate) with correct base_reg.
1183 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
1184 } else {
1185 DCHECK(kind == BakerReadBarrierKind::kAcquire);
1186 // LDAR with correct base_reg.
1187 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
1188 }
1189 break;
1190 }
1191 case BakerReadBarrierKind::kArray: {
1192 DCHECK_GE(code.size() - literal_offset, 8u);
1193 uint32_t next_insn = GetInsn(literal_offset + 4u);
1194 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
1195 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
1196 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1197 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1198 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
1199 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
1200 break;
1201 }
1202 case BakerReadBarrierKind::kGcRoot: {
1203 DCHECK_GE(literal_offset, 4u);
1204 uint32_t prev_insn = GetInsn(literal_offset - 4u);
1205 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1206 // Usually LDR (immediate) with correct root_reg but
1207 // we may have a "MOV marked, old_value" for intrinsic CAS.
1208 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
1209 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
1210 }
1211 break;
1212 }
1213 default:
1214 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1215 UNREACHABLE();
1216 }
1217 }
1218 }
1219 }
1220
PrepareForEmitNativeCode()1221 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1222 // Note: There are 6 kinds of moves:
1223 // 1. constant -> GPR/FPR (non-cycle)
1224 // 2. constant -> stack (non-cycle)
1225 // 3. GPR/FPR -> GPR/FPR
1226 // 4. GPR/FPR -> stack
1227 // 5. stack -> GPR/FPR
1228 // 6. stack -> stack (non-cycle)
1229 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1230 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1231 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1232 // dependency.
1233 vixl_temps_.Open(GetVIXLAssembler());
1234 }
1235
FinishEmitNativeCode()1236 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1237 vixl_temps_.Close();
1238 }
1239
AllocateScratchLocationFor(Location::Kind kind)1240 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1241 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1242 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1243 || kind == Location::kSIMDStackSlot);
1244 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1245 ? Location::kFpuRegister
1246 : Location::kRegister;
1247 Location scratch = GetScratchLocation(kind);
1248 if (!scratch.Equals(Location::NoLocation())) {
1249 return scratch;
1250 }
1251 // Allocate from VIXL temp registers.
1252 if (kind == Location::kRegister) {
1253 scratch = LocationFrom(vixl_temps_.AcquireX());
1254 } else {
1255 DCHECK_EQ(kind, Location::kFpuRegister);
1256 scratch = codegen_->GetGraph()->HasSIMD()
1257 ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
1258 : LocationFrom(vixl_temps_.AcquireD());
1259 }
1260 AddScratchLocation(scratch);
1261 return scratch;
1262 }
1263
FreeScratchLocation(Location loc)1264 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1265 if (loc.IsRegister()) {
1266 vixl_temps_.Release(XRegisterFrom(loc));
1267 } else {
1268 DCHECK(loc.IsFpuRegister());
1269 if (codegen_->GetGraph()->HasSIMD()) {
1270 codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
1271 } else {
1272 vixl_temps_.Release(DRegisterFrom(loc));
1273 }
1274 }
1275 RemoveScratchLocation(loc);
1276 }
1277
EmitMove(size_t index)1278 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1279 MoveOperands* move = moves_[index];
1280 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1281 }
1282
VisitMethodExitHook(HMethodExitHook * method_hook)1283 void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) {
1284 LocationSummary* locations = new (GetGraph()->GetAllocator())
1285 LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1286 DataType::Type return_type = method_hook->InputAt(0)->GetType();
1287 locations->SetInAt(0, ARM64ReturnLocation(return_type));
1288 }
1289
GenerateMethodEntryExitHook(HInstruction * instruction)1290 void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) {
1291 MacroAssembler* masm = GetVIXLAssembler();
1292 UseScratchRegisterScope temps(masm);
1293 Register addr = temps.AcquireX();
1294 Register curr_entry = temps.AcquireX();
1295 Register value = curr_entry.W();
1296
1297 SlowPathCodeARM64* slow_path =
1298 new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction);
1299 codegen_->AddSlowPath(slow_path);
1300
1301 if (instruction->IsMethodExitHook()) {
1302 // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
1303 // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
1304 // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
1305 // disabled in debuggable runtime. The other bit is used when this method itself requires a
1306 // deoptimization due to redefinition. So it is safe to just check for non-zero value here.
1307 __ Ldr(value, MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
1308 __ Cbnz(value, slow_path->GetEntryLabel());
1309 }
1310
1311 uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
1312 MemberOffset offset = instruction->IsMethodExitHook() ?
1313 instrumentation::Instrumentation::HaveMethodExitListenersOffset() :
1314 instrumentation::Instrumentation::HaveMethodEntryListenersOffset();
1315 __ Mov(addr, address + offset.Int32Value());
1316 __ Ldrb(value, MemOperand(addr, 0));
1317 __ Cmp(value, Operand(instrumentation::Instrumentation::kFastTraceListeners));
1318 // Check if there are any method entry / exit listeners. If no, continue.
1319 __ B(lt, slow_path->GetExitLabel());
1320 // Check if there are any slow (jvmti / trace with thread cpu time) method entry / exit listeners.
1321 // If yes, just take the slow path.
1322 __ B(gt, slow_path->GetEntryLabel());
1323
1324 Register init_entry = addr;
1325 // Check if there is place in the buffer to store a new entry, if no, take slow path.
1326 uint32_t trace_buffer_curr_entry_offset =
1327 Thread::TraceBufferCurrPtrOffset<kArm64PointerSize>().Int32Value();
1328 __ Ldr(curr_entry, MemOperand(tr, trace_buffer_curr_entry_offset));
1329 __ Sub(curr_entry, curr_entry, kNumEntriesForWallClock * sizeof(void*));
1330 __ Ldr(init_entry, MemOperand(tr, Thread::TraceBufferPtrOffset<kArm64PointerSize>().SizeValue()));
1331 __ Cmp(curr_entry, init_entry);
1332 __ B(lt, slow_path->GetEntryLabel());
1333
1334 // Update the index in the `Thread`.
1335 __ Str(curr_entry, MemOperand(tr, trace_buffer_curr_entry_offset));
1336
1337 Register tmp = init_entry;
1338 // Record method pointer and trace action.
1339 __ Ldr(tmp, MemOperand(sp, 0));
1340 // Use last two bits to encode trace method action. For MethodEntry it is 0
1341 // so no need to set the bits since they are 0 already.
1342 if (instruction->IsMethodExitHook()) {
1343 DCHECK_GE(ArtMethod::Alignment(kRuntimePointerSize), static_cast<size_t>(4));
1344 static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodEnter) == 0);
1345 static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodExit) == 1);
1346 __ Orr(tmp, tmp, Operand(enum_cast<int32_t>(TraceAction::kTraceMethodExit)));
1347 }
1348 __ Str(tmp, MemOperand(curr_entry, kMethodOffsetInBytes));
1349 // Record the timestamp.
1350 __ Mrs(tmp, (SystemRegister)SYS_CNTVCT_EL0);
1351 __ Str(tmp, MemOperand(curr_entry, kTimestampOffsetInBytes));
1352 __ Bind(slow_path->GetExitLabel());
1353 }
1354
VisitMethodExitHook(HMethodExitHook * instruction)1355 void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) {
1356 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1357 DCHECK(codegen_->RequiresCurrentMethod());
1358 GenerateMethodEntryExitHook(instruction);
1359 }
1360
VisitMethodEntryHook(HMethodEntryHook * method_hook)1361 void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
1362 new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1363 }
1364
VisitMethodEntryHook(HMethodEntryHook * instruction)1365 void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
1366 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1367 DCHECK(codegen_->RequiresCurrentMethod());
1368 GenerateMethodEntryExitHook(instruction);
1369 }
1370
MaybeRecordTraceEvent(bool is_method_entry)1371 void CodeGeneratorARM64::MaybeRecordTraceEvent(bool is_method_entry) {
1372 if (!art_flags::always_enable_profile_code()) {
1373 return;
1374 }
1375
1376 MacroAssembler* masm = GetVIXLAssembler();
1377 UseScratchRegisterScope temps(masm);
1378 Register addr = temps.AcquireX();
1379 CHECK(addr.Is(vixl::aarch64::x16));
1380
1381 SlowPathCodeARM64* slow_path =
1382 new (GetScopedAllocator()) TracingMethodEntryExitHooksSlowPathARM64(is_method_entry);
1383 AddSlowPath(slow_path);
1384
1385 __ Ldr(addr, MemOperand(tr, Thread::TraceBufferPtrOffset<kArm64PointerSize>().SizeValue()));
1386 __ Cbnz(addr, slow_path->GetEntryLabel());
1387 __ Bind(slow_path->GetExitLabel());
1388 }
1389
MaybeIncrementHotness(HSuspendCheck * suspend_check,bool is_frame_entry)1390 void CodeGeneratorARM64::MaybeIncrementHotness(HSuspendCheck* suspend_check, bool is_frame_entry) {
1391 MacroAssembler* masm = GetVIXLAssembler();
1392 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1393 UseScratchRegisterScope temps(masm);
1394 Register counter = temps.AcquireX();
1395 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1396 if (!is_frame_entry) {
1397 __ Ldr(method, MemOperand(sp, 0));
1398 }
1399 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1400 vixl::aarch64::Label done;
1401 DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
1402 __ Cbz(counter, &done);
1403 __ Add(counter, counter, -1);
1404 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1405 __ Bind(&done);
1406 }
1407
1408 if (GetGraph()->IsCompilingBaseline() &&
1409 GetGraph()->IsUsefulOptimizing() &&
1410 !Runtime::Current()->IsAotCompiler()) {
1411 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
1412 DCHECK(info != nullptr);
1413 DCHECK(!HasEmptyFrame());
1414 uint64_t address = reinterpret_cast64<uint64_t>(info);
1415 UseScratchRegisterScope temps(masm);
1416 Register counter = temps.AcquireW();
1417 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64(
1418 suspend_check, /* profiling_info= */ lr);
1419 AddSlowPath(slow_path);
1420 __ Ldr(lr, jit_patches_.DeduplicateUint64Literal(address));
1421 __ Ldrh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1422 __ Cbz(counter, slow_path->GetEntryLabel());
1423 __ Add(counter, counter, -1);
1424 __ Strh(counter, MemOperand(lr, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1425 __ Bind(slow_path->GetExitLabel());
1426 }
1427 }
1428
GenerateFrameEntry()1429 void CodeGeneratorARM64::GenerateFrameEntry() {
1430 MacroAssembler* masm = GetVIXLAssembler();
1431
1432 // Check if we need to generate the clinit check. We will jump to the
1433 // resolution stub if the class is not initialized and the executing thread is
1434 // not the thread initializing it.
1435 // We do this before constructing the frame to get the correct stack trace if
1436 // an exception is thrown.
1437 if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
1438 UseScratchRegisterScope temps(masm);
1439 vixl::aarch64::Label resolution;
1440 vixl::aarch64::Label memory_barrier;
1441
1442 Register temp1 = temps.AcquireW();
1443 Register temp2 = temps.AcquireW();
1444
1445 // Check if we're visibly initialized.
1446
1447 // We don't emit a read barrier here to save on code size. We rely on the
1448 // resolution trampoline to do a suspend check before re-entering this code.
1449 __ Ldr(temp1, MemOperand(kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()));
1450 __ Ldrb(temp2, HeapOperand(temp1, kClassStatusByteOffset));
1451 __ Cmp(temp2, kShiftedVisiblyInitializedValue);
1452 __ B(hs, &frame_entry_label_);
1453
1454 // Check if we're initialized and jump to code that does a memory barrier if
1455 // so.
1456 __ Cmp(temp2, kShiftedInitializedValue);
1457 __ B(hs, &memory_barrier);
1458
1459 // Check if we're initializing and the thread initializing is the one
1460 // executing the code.
1461 __ Cmp(temp2, kShiftedInitializingValue);
1462 __ B(lo, &resolution);
1463
1464 __ Ldr(temp1, HeapOperand(temp1, mirror::Class::ClinitThreadIdOffset().Int32Value()));
1465 __ Ldr(temp2, MemOperand(tr, Thread::TidOffset<kArm64PointerSize>().Int32Value()));
1466 __ Cmp(temp1, temp2);
1467 __ B(eq, &frame_entry_label_);
1468 __ Bind(&resolution);
1469
1470 // Jump to the resolution stub.
1471 ThreadOffset64 entrypoint_offset =
1472 GetThreadOffset<kArm64PointerSize>(kQuickQuickResolutionTrampoline);
1473 __ Ldr(temp1.X(), MemOperand(tr, entrypoint_offset.Int32Value()));
1474 __ Br(temp1.X());
1475
1476 __ Bind(&memory_barrier);
1477 GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1478 }
1479 __ Bind(&frame_entry_label_);
1480
1481 bool do_overflow_check =
1482 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1483 if (do_overflow_check) {
1484 UseScratchRegisterScope temps(masm);
1485 Register temp = temps.AcquireX();
1486 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1487 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1488 {
1489 // Ensure that between load and RecordPcInfo there are no pools emitted.
1490 ExactAssemblyScope eas(GetVIXLAssembler(),
1491 kInstructionSize,
1492 CodeBufferCheckScope::kExactSize);
1493 __ ldr(wzr, MemOperand(temp, 0));
1494 RecordPcInfo(nullptr, 0);
1495 }
1496 }
1497
1498 if (!HasEmptyFrame()) {
1499 // Make sure the frame size isn't unreasonably large.
1500 DCHECK_LE(GetFrameSize(), GetMaximumFrameSize());
1501
1502 // Stack layout:
1503 // sp[frame_size - 8] : lr.
1504 // ... : other preserved core registers.
1505 // ... : other preserved fp registers.
1506 // ... : reserved frame space.
1507 // sp[0] : current method.
1508 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1509 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1510 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1511 DCHECK(!preserved_core_registers.IsEmpty());
1512 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1513 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1514
1515 // Save the current method if we need it, or if using STP reduces code
1516 // size. Note that we do not do this in HCurrentMethod, as the
1517 // instruction might have been removed in the SSA graph.
1518 CPURegister lowest_spill;
1519 if (core_spills_offset == kXRegSizeInBytes) {
1520 // If there is no gap between the method and the lowest core spill, use
1521 // aligned STP pre-index to store both. Max difference is 512. We do
1522 // that to reduce code size even if we do not have to save the method.
1523 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1524 lowest_spill = preserved_core_registers.PopLowestIndex();
1525 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1526 } else if (RequiresCurrentMethod()) {
1527 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1528 } else {
1529 __ Claim(frame_size);
1530 }
1531 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1532 if (lowest_spill.IsValid()) {
1533 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1534 core_spills_offset += kXRegSizeInBytes;
1535 }
1536 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1537 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1538
1539 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1540 // Initialize should_deoptimize flag to 0.
1541 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1542 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1543 }
1544
1545 MaybeRecordTraceEvent(/* is_method_entry= */ true);
1546 }
1547 MaybeIncrementHotness(/* suspend_check= */ nullptr, /* is_frame_entry= */ true);
1548 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1549 }
1550
GenerateFrameExit()1551 void CodeGeneratorARM64::GenerateFrameExit() {
1552 GetAssembler()->cfi().RememberState();
1553 if (!HasEmptyFrame()) {
1554 MaybeRecordTraceEvent(/* is_method_entry= */ false);
1555
1556 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1557 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1558 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1559 DCHECK(!preserved_core_registers.IsEmpty());
1560 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1561 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1562
1563 CPURegister lowest_spill;
1564 if (core_spills_offset == kXRegSizeInBytes) {
1565 // If there is no gap between the method and the lowest core spill, use
1566 // aligned LDP pre-index to pop both. Max difference is 504. We do
1567 // that to reduce code size even though the loaded method is unused.
1568 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1569 lowest_spill = preserved_core_registers.PopLowestIndex();
1570 core_spills_offset += kXRegSizeInBytes;
1571 }
1572 GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1573 GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
1574 if (lowest_spill.IsValid()) {
1575 __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1576 GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
1577 } else {
1578 __ Drop(frame_size);
1579 }
1580 GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1581 }
1582 __ Ret();
1583 GetAssembler()->cfi().RestoreState();
1584 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1585 }
1586
GetFramePreservedCoreRegisters() const1587 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1588 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1589 return CPURegList(CPURegister::kRegister, kXRegSize,
1590 core_spill_mask_);
1591 }
1592
GetFramePreservedFPRegisters() const1593 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1594 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1595 GetNumberOfFloatingPointRegisters()));
1596 return CPURegList(CPURegister::kVRegister, kDRegSize,
1597 fpu_spill_mask_);
1598 }
1599
Bind(HBasicBlock * block)1600 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1601 __ Bind(GetLabelOf(block));
1602 }
1603
MoveConstant(Location location,int32_t value)1604 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1605 DCHECK(location.IsRegister());
1606 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1607 }
1608
AddLocationAsTemp(Location location,LocationSummary * locations)1609 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1610 if (location.IsRegister()) {
1611 locations->AddTemp(location);
1612 } else {
1613 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1614 }
1615 }
1616
MaybeMarkGCCard(Register object,Register value,bool emit_null_check)1617 void CodeGeneratorARM64::MaybeMarkGCCard(Register object, Register value, bool emit_null_check) {
1618 vixl::aarch64::Label done;
1619 if (emit_null_check) {
1620 __ Cbz(value, &done);
1621 }
1622 MarkGCCard(object);
1623 if (emit_null_check) {
1624 __ Bind(&done);
1625 }
1626 }
1627
MarkGCCard(Register object)1628 void CodeGeneratorARM64::MarkGCCard(Register object) {
1629 UseScratchRegisterScope temps(GetVIXLAssembler());
1630 Register card = temps.AcquireX();
1631 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1632 // Load the address of the card table into `card`.
1633 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1634 // Calculate the offset (in the card table) of the card corresponding to `object`.
1635 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1636 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1637 // `object`'s card.
1638 //
1639 // Register `card` contains the address of the card table. Note that the card
1640 // table's base is biased during its creation so that it always starts at an
1641 // address whose least-significant byte is equal to `kCardDirty` (see
1642 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1643 // below writes the `kCardDirty` (byte) value into the `object`'s card
1644 // (located at `card + object >> kCardShift`).
1645 //
1646 // This dual use of the value in register `card` (1. to calculate the location
1647 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1648 // (no need to explicitly load `kCardDirty` as an immediate value).
1649 __ Strb(card, MemOperand(card, temp.X()));
1650 }
1651
CheckGCCardIsValid(Register object)1652 void CodeGeneratorARM64::CheckGCCardIsValid(Register object) {
1653 UseScratchRegisterScope temps(GetVIXLAssembler());
1654 Register card = temps.AcquireX();
1655 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1656 vixl::aarch64::Label done;
1657 // Load the address of the card table into `card`.
1658 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1659 // Calculate the offset (in the card table) of the card corresponding to `object`.
1660 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1661 // assert (!clean || !self->is_gc_marking)
1662 __ Ldrb(temp, MemOperand(card, temp.X()));
1663 static_assert(gc::accounting::CardTable::kCardClean == 0);
1664 __ Cbnz(temp, &done);
1665 __ Cbz(mr, &done);
1666 __ Unreachable();
1667 __ Bind(&done);
1668 }
1669
SetupBlockedRegisters() const1670 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1671 // Blocked core registers:
1672 // lr : Runtime reserved.
1673 // tr : Runtime reserved.
1674 // mr : Runtime reserved.
1675 // ip1 : VIXL core temp.
1676 // ip0 : VIXL core temp.
1677 // x18 : Platform register.
1678 //
1679 // Blocked fp registers:
1680 // d31 : VIXL fp temp.
1681 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1682 reserved_core_registers.Combine(runtime_reserved_core_registers);
1683 while (!reserved_core_registers.IsEmpty()) {
1684 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1685 }
1686 blocked_core_registers_[X18] = true;
1687
1688 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1689 while (!reserved_fp_registers.IsEmpty()) {
1690 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1691 }
1692
1693 if (GetGraph()->IsDebuggable()) {
1694 // Stubs do not save callee-save floating point registers. If the graph
1695 // is debuggable, we need to deal with these registers differently. For
1696 // now, just block them.
1697 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1698 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1699 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1700 }
1701 }
1702 }
1703
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1704 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1705 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1706 __ Str(reg, MemOperand(sp, stack_index));
1707 return kArm64WordSize;
1708 }
1709
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1710 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1711 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1712 __ Ldr(reg, MemOperand(sp, stack_index));
1713 return kArm64WordSize;
1714 }
1715
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)1716 size_t CodeGeneratorARM64::SaveFloatingPointRegister([[maybe_unused]] size_t stack_index,
1717 [[maybe_unused]] uint32_t reg_id) {
1718 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1719 << "use SaveRestoreLiveRegistersHelper";
1720 UNREACHABLE();
1721 }
1722
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)1723 size_t CodeGeneratorARM64::RestoreFloatingPointRegister([[maybe_unused]] size_t stack_index,
1724 [[maybe_unused]] uint32_t reg_id) {
1725 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1726 << "use SaveRestoreLiveRegistersHelper";
1727 UNREACHABLE();
1728 }
1729
DumpCoreRegister(std::ostream & stream,int reg) const1730 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1731 stream << XRegister(reg);
1732 }
1733
DumpFloatingPointRegister(std::ostream & stream,int reg) const1734 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1735 stream << DRegister(reg);
1736 }
1737
GetInstructionSetFeatures() const1738 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1739 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1740 }
1741
MoveConstant(CPURegister destination,HConstant * constant)1742 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1743 if (constant->IsIntConstant()) {
1744 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1745 } else if (constant->IsLongConstant()) {
1746 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1747 } else if (constant->IsNullConstant()) {
1748 __ Mov(Register(destination), 0);
1749 } else if (constant->IsFloatConstant()) {
1750 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1751 } else {
1752 DCHECK(constant->IsDoubleConstant());
1753 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1754 }
1755 }
1756
1757
CoherentConstantAndType(Location constant,DataType::Type type)1758 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1759 DCHECK(constant.IsConstant());
1760 HConstant* cst = constant.GetConstant();
1761 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1762 // Null is mapped to a core W register, which we associate with kPrimInt.
1763 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1764 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1765 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1766 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1767 }
1768
1769 // Allocate a scratch register from the VIXL pool, querying first
1770 // the floating-point register pool, and then the core register
1771 // pool. This is essentially a reimplementation of
1772 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1773 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1774 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1775 vixl::aarch64::UseScratchRegisterScope* temps,
1776 int size_in_bits) {
1777 return masm->GetScratchVRegisterList()->IsEmpty()
1778 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1779 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1780 }
1781
MoveLocation(Location destination,Location source,DataType::Type dst_type)1782 void CodeGeneratorARM64::MoveLocation(Location destination,
1783 Location source,
1784 DataType::Type dst_type) {
1785 if (source.Equals(destination)) {
1786 return;
1787 }
1788
1789 // A valid move can always be inferred from the destination and source
1790 // locations. When moving from and to a register, the argument type can be
1791 // used to generate 32bit instead of 64bit moves. In debug mode we also
1792 // checks the coherency of the locations and the type.
1793 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1794
1795 if (destination.IsRegister() || destination.IsFpuRegister()) {
1796 if (unspecified_type) {
1797 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1798 if (source.IsStackSlot() ||
1799 (src_cst != nullptr && (src_cst->IsIntConstant()
1800 || src_cst->IsFloatConstant()
1801 || src_cst->IsNullConstant()))) {
1802 // For stack slots and 32bit constants, a 64bit type is appropriate.
1803 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1804 } else {
1805 // If the source is a double stack slot or a 64bit constant, a 64bit
1806 // type is appropriate. Else the source is a register, and since the
1807 // type has not been specified, we chose a 64bit type to force a 64bit
1808 // move.
1809 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1810 }
1811 }
1812 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1813 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1814 CPURegister dst = CPURegisterFrom(destination, dst_type);
1815 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1816 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1817 __ Ldr(dst, StackOperandFrom(source));
1818 } else if (source.IsSIMDStackSlot()) {
1819 GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
1820 } else if (source.IsConstant()) {
1821 DCHECK(CoherentConstantAndType(source, dst_type));
1822 MoveConstant(dst, source.GetConstant());
1823 } else if (source.IsRegister()) {
1824 if (destination.IsRegister()) {
1825 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1826 } else {
1827 DCHECK(destination.IsFpuRegister());
1828 DataType::Type source_type = DataType::Is64BitType(dst_type)
1829 ? DataType::Type::kInt64
1830 : DataType::Type::kInt32;
1831 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1832 }
1833 } else {
1834 DCHECK(source.IsFpuRegister());
1835 if (destination.IsRegister()) {
1836 DataType::Type source_type = DataType::Is64BitType(dst_type)
1837 ? DataType::Type::kFloat64
1838 : DataType::Type::kFloat32;
1839 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1840 } else {
1841 DCHECK(destination.IsFpuRegister());
1842 if (GetGraph()->HasSIMD()) {
1843 GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
1844 } else {
1845 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1846 }
1847 }
1848 }
1849 } else if (destination.IsSIMDStackSlot()) {
1850 GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
1851 } else { // The destination is not a register. It must be a stack slot.
1852 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1853 if (source.IsRegister() || source.IsFpuRegister()) {
1854 if (unspecified_type) {
1855 if (source.IsRegister()) {
1856 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1857 } else {
1858 dst_type =
1859 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1860 }
1861 }
1862 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1863 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1864 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1865 } else if (source.IsConstant()) {
1866 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1867 << source << " " << dst_type;
1868 UseScratchRegisterScope temps(GetVIXLAssembler());
1869 HConstant* src_cst = source.GetConstant();
1870 CPURegister temp;
1871 if (src_cst->IsZeroBitPattern()) {
1872 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1873 ? Register(xzr)
1874 : Register(wzr);
1875 } else {
1876 if (src_cst->IsIntConstant()) {
1877 temp = temps.AcquireW();
1878 } else if (src_cst->IsLongConstant()) {
1879 temp = temps.AcquireX();
1880 } else if (src_cst->IsFloatConstant()) {
1881 temp = temps.AcquireS();
1882 } else {
1883 DCHECK(src_cst->IsDoubleConstant());
1884 temp = temps.AcquireD();
1885 }
1886 MoveConstant(temp, src_cst);
1887 }
1888 __ Str(temp, StackOperandFrom(destination));
1889 } else {
1890 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1891 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1892 UseScratchRegisterScope temps(GetVIXLAssembler());
1893 // Use any scratch register (a core or a floating-point one)
1894 // from VIXL scratch register pools as a temporary.
1895 //
1896 // We used to only use the FP scratch register pool, but in some
1897 // rare cases the only register from this pool (D31) would
1898 // already be used (e.g. within a ParallelMove instruction, when
1899 // a move is blocked by a another move requiring a scratch FP
1900 // register, which would reserve D31). To prevent this issue, we
1901 // ask for a scratch register of any type (core or FP).
1902 //
1903 // Also, we start by asking for a FP scratch register first, as the
1904 // demand of scratch core registers is higher. This is why we
1905 // use AcquireFPOrCoreCPURegisterOfSize instead of
1906 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1907 // allocates core scratch registers first.
1908 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1909 GetVIXLAssembler(),
1910 &temps,
1911 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1912 __ Ldr(temp, StackOperandFrom(source));
1913 __ Str(temp, StackOperandFrom(destination));
1914 }
1915 }
1916 }
1917
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1918 void CodeGeneratorARM64::Load(DataType::Type type,
1919 CPURegister dst,
1920 const MemOperand& src) {
1921 switch (type) {
1922 case DataType::Type::kBool:
1923 case DataType::Type::kUint8:
1924 __ Ldrb(Register(dst), src);
1925 break;
1926 case DataType::Type::kInt8:
1927 __ Ldrsb(Register(dst), src);
1928 break;
1929 case DataType::Type::kUint16:
1930 __ Ldrh(Register(dst), src);
1931 break;
1932 case DataType::Type::kInt16:
1933 __ Ldrsh(Register(dst), src);
1934 break;
1935 case DataType::Type::kInt32:
1936 case DataType::Type::kReference:
1937 case DataType::Type::kInt64:
1938 case DataType::Type::kFloat32:
1939 case DataType::Type::kFloat64:
1940 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1941 __ Ldr(dst, src);
1942 break;
1943 case DataType::Type::kUint32:
1944 case DataType::Type::kUint64:
1945 case DataType::Type::kVoid:
1946 LOG(FATAL) << "Unreachable type " << type;
1947 }
1948 }
1949
LoadAcquire(HInstruction * instruction,DataType::Type type,CPURegister dst,const MemOperand & src,bool needs_null_check)1950 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1951 DataType::Type type,
1952 CPURegister dst,
1953 const MemOperand& src,
1954 bool needs_null_check) {
1955 MacroAssembler* masm = GetVIXLAssembler();
1956 UseScratchRegisterScope temps(masm);
1957 Register temp_base = temps.AcquireX();
1958
1959 DCHECK(!src.IsPreIndex());
1960 DCHECK(!src.IsPostIndex());
1961
1962 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1963 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1964 {
1965 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1966 MemOperand base = MemOperand(temp_base);
1967 switch (type) {
1968 case DataType::Type::kBool:
1969 case DataType::Type::kUint8:
1970 case DataType::Type::kInt8:
1971 {
1972 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1973 __ ldarb(Register(dst), base);
1974 if (needs_null_check) {
1975 MaybeRecordImplicitNullCheck(instruction);
1976 }
1977 }
1978 if (type == DataType::Type::kInt8) {
1979 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1980 }
1981 break;
1982 case DataType::Type::kUint16:
1983 case DataType::Type::kInt16:
1984 {
1985 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1986 __ ldarh(Register(dst), base);
1987 if (needs_null_check) {
1988 MaybeRecordImplicitNullCheck(instruction);
1989 }
1990 }
1991 if (type == DataType::Type::kInt16) {
1992 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1993 }
1994 break;
1995 case DataType::Type::kInt32:
1996 case DataType::Type::kReference:
1997 case DataType::Type::kInt64:
1998 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1999 {
2000 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2001 __ ldar(Register(dst), base);
2002 if (needs_null_check) {
2003 MaybeRecordImplicitNullCheck(instruction);
2004 }
2005 }
2006 break;
2007 case DataType::Type::kFloat32:
2008 case DataType::Type::kFloat64: {
2009 DCHECK(dst.IsFPRegister());
2010 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
2011
2012 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
2013 {
2014 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2015 __ ldar(temp, base);
2016 if (needs_null_check) {
2017 MaybeRecordImplicitNullCheck(instruction);
2018 }
2019 }
2020 __ Fmov(VRegister(dst), temp);
2021 break;
2022 }
2023 case DataType::Type::kUint32:
2024 case DataType::Type::kUint64:
2025 case DataType::Type::kVoid:
2026 LOG(FATAL) << "Unreachable type " << type;
2027 }
2028 }
2029 }
2030
Store(DataType::Type type,CPURegister src,const MemOperand & dst)2031 void CodeGeneratorARM64::Store(DataType::Type type,
2032 CPURegister src,
2033 const MemOperand& dst) {
2034 switch (type) {
2035 case DataType::Type::kBool:
2036 case DataType::Type::kUint8:
2037 case DataType::Type::kInt8:
2038 __ Strb(Register(src), dst);
2039 break;
2040 case DataType::Type::kUint16:
2041 case DataType::Type::kInt16:
2042 __ Strh(Register(src), dst);
2043 break;
2044 case DataType::Type::kInt32:
2045 case DataType::Type::kReference:
2046 case DataType::Type::kInt64:
2047 case DataType::Type::kFloat32:
2048 case DataType::Type::kFloat64:
2049 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2050 __ Str(src, dst);
2051 break;
2052 case DataType::Type::kUint32:
2053 case DataType::Type::kUint64:
2054 case DataType::Type::kVoid:
2055 LOG(FATAL) << "Unreachable type " << type;
2056 }
2057 }
2058
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)2059 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
2060 DataType::Type type,
2061 CPURegister src,
2062 const MemOperand& dst,
2063 bool needs_null_check) {
2064 MacroAssembler* masm = GetVIXLAssembler();
2065 UseScratchRegisterScope temps(GetVIXLAssembler());
2066 Register temp_base = temps.AcquireX();
2067
2068 DCHECK(!dst.IsPreIndex());
2069 DCHECK(!dst.IsPostIndex());
2070
2071 // TODO(vixl): Let the MacroAssembler handle this.
2072 Operand op = OperandFromMemOperand(dst);
2073 __ Add(temp_base, dst.GetBaseRegister(), op);
2074 MemOperand base = MemOperand(temp_base);
2075 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2076 switch (type) {
2077 case DataType::Type::kBool:
2078 case DataType::Type::kUint8:
2079 case DataType::Type::kInt8:
2080 {
2081 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2082 __ stlrb(Register(src), base);
2083 if (needs_null_check) {
2084 MaybeRecordImplicitNullCheck(instruction);
2085 }
2086 }
2087 break;
2088 case DataType::Type::kUint16:
2089 case DataType::Type::kInt16:
2090 {
2091 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2092 __ stlrh(Register(src), base);
2093 if (needs_null_check) {
2094 MaybeRecordImplicitNullCheck(instruction);
2095 }
2096 }
2097 break;
2098 case DataType::Type::kInt32:
2099 case DataType::Type::kReference:
2100 case DataType::Type::kInt64:
2101 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2102 {
2103 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2104 __ stlr(Register(src), base);
2105 if (needs_null_check) {
2106 MaybeRecordImplicitNullCheck(instruction);
2107 }
2108 }
2109 break;
2110 case DataType::Type::kFloat32:
2111 case DataType::Type::kFloat64: {
2112 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
2113 Register temp_src;
2114 if (src.IsZero()) {
2115 // The zero register is used to avoid synthesizing zero constants.
2116 temp_src = Register(src);
2117 } else {
2118 DCHECK(src.IsFPRegister());
2119 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
2120 __ Fmov(temp_src, VRegister(src));
2121 }
2122 {
2123 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2124 __ stlr(temp_src, base);
2125 if (needs_null_check) {
2126 MaybeRecordImplicitNullCheck(instruction);
2127 }
2128 }
2129 break;
2130 }
2131 case DataType::Type::kUint32:
2132 case DataType::Type::kUint64:
2133 case DataType::Type::kVoid:
2134 LOG(FATAL) << "Unreachable type " << type;
2135 }
2136 }
2137
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2138 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
2139 HInstruction* instruction,
2140 uint32_t dex_pc,
2141 SlowPathCode* slow_path) {
2142 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2143
2144 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
2145 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2146 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2147 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2148 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
2149 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2150 // Ensure the pc position is recorded immediately after the `blr` instruction.
2151 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
2152 __ blr(lr);
2153 if (EntrypointRequiresStackMap(entrypoint)) {
2154 RecordPcInfo(instruction, dex_pc, slow_path);
2155 }
2156 } else {
2157 // Ensure the pc position is recorded immediately after the `bl` instruction.
2158 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
2159 EmitEntrypointThunkCall(entrypoint_offset);
2160 if (EntrypointRequiresStackMap(entrypoint)) {
2161 RecordPcInfo(instruction, dex_pc, slow_path);
2162 }
2163 }
2164 }
2165
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2166 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2167 HInstruction* instruction,
2168 SlowPathCode* slow_path) {
2169 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2170 __ Ldr(lr, MemOperand(tr, entry_point_offset));
2171 __ Blr(lr);
2172 }
2173
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)2174 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
2175 Register class_reg) {
2176 UseScratchRegisterScope temps(GetVIXLAssembler());
2177 Register temp = temps.AcquireW();
2178
2179 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
2180 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
2181 // size, load only the high byte of the field and compare with 0xf0.
2182 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
2183 // show that this pattern is slower (tested on little cores).
2184 __ Ldrb(temp, HeapOperand(class_reg, kClassStatusByteOffset));
2185 __ Cmp(temp, kShiftedVisiblyInitializedValue);
2186 __ B(lo, slow_path->GetEntryLabel());
2187 __ Bind(slow_path->GetExitLabel());
2188 }
2189
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)2190 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
2191 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
2192 uint32_t path_to_root = check->GetBitstringPathToRoot();
2193 uint32_t mask = check->GetBitstringMask();
2194 DCHECK(IsPowerOfTwo(mask + 1));
2195 size_t mask_bits = WhichPowerOf2(mask + 1);
2196
2197 if (mask_bits == 16u) {
2198 // Load only the bitstring part of the status word.
2199 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2200 } else {
2201 // /* uint32_t */ temp = temp->status_
2202 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2203 // Extract the bitstring bits.
2204 __ Ubfx(temp, temp, 0, mask_bits);
2205 }
2206 // Compare the bitstring bits to `path_to_root`.
2207 __ Cmp(temp, path_to_root);
2208 }
2209
GenerateMemoryBarrier(MemBarrierKind kind)2210 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
2211 BarrierType type = BarrierAll;
2212
2213 switch (kind) {
2214 case MemBarrierKind::kAnyAny:
2215 case MemBarrierKind::kAnyStore: {
2216 type = BarrierAll;
2217 break;
2218 }
2219 case MemBarrierKind::kLoadAny: {
2220 type = BarrierReads;
2221 break;
2222 }
2223 case MemBarrierKind::kStoreStore: {
2224 type = BarrierWrites;
2225 break;
2226 }
2227 default:
2228 LOG(FATAL) << "Unexpected memory barrier " << kind;
2229 }
2230 __ Dmb(InnerShareable, type);
2231 }
2232
CanUseImplicitSuspendCheck() const2233 bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const {
2234 // Use implicit suspend checks if requested in compiler options unless there are SIMD
2235 // instructions in the graph. The implicit suspend check saves all FP registers as
2236 // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit
2237 // registers, so they need to be saved in an explicit slow path.
2238 return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD();
2239 }
2240
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)2241 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
2242 HBasicBlock* successor) {
2243 if (instruction->IsNoOp()) {
2244 if (successor != nullptr) {
2245 __ B(codegen_->GetLabelOf(successor));
2246 }
2247 return;
2248 }
2249
2250 if (codegen_->CanUseImplicitSuspendCheck()) {
2251 __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister));
2252 codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
2253 if (successor != nullptr) {
2254 __ B(codegen_->GetLabelOf(successor));
2255 }
2256 return;
2257 }
2258
2259 SuspendCheckSlowPathARM64* slow_path =
2260 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
2261 if (slow_path == nullptr) {
2262 slow_path =
2263 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
2264 instruction->SetSlowPath(slow_path);
2265 codegen_->AddSlowPath(slow_path);
2266 if (successor != nullptr) {
2267 DCHECK(successor->IsLoopHeader());
2268 }
2269 } else {
2270 DCHECK_EQ(slow_path->GetSuccessor(), successor);
2271 }
2272
2273 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
2274 Register temp = temps.AcquireW();
2275
2276 __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
2277 __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
2278 if (successor == nullptr) {
2279 __ B(ne, slow_path->GetEntryLabel());
2280 __ Bind(slow_path->GetReturnLabel());
2281 } else {
2282 __ B(eq, codegen_->GetLabelOf(successor));
2283 __ B(slow_path->GetEntryLabel());
2284 // slow_path will return to GetLabelOf(successor).
2285 }
2286 }
2287
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)2288 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
2289 CodeGeneratorARM64* codegen)
2290 : InstructionCodeGenerator(graph, codegen),
2291 assembler_(codegen->GetAssembler()),
2292 codegen_(codegen) {}
2293
HandleBinaryOp(HBinaryOperation * instr)2294 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
2295 DCHECK_EQ(instr->InputCount(), 2U);
2296 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2297 DataType::Type type = instr->GetResultType();
2298 switch (type) {
2299 case DataType::Type::kInt32:
2300 case DataType::Type::kInt64:
2301 locations->SetInAt(0, Location::RequiresRegister());
2302 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
2303 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2304 break;
2305
2306 case DataType::Type::kFloat32:
2307 case DataType::Type::kFloat64:
2308 locations->SetInAt(0, Location::RequiresFpuRegister());
2309 locations->SetInAt(1, Location::RequiresFpuRegister());
2310 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2311 break;
2312
2313 default:
2314 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
2315 }
2316 }
2317
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2318 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
2319 const FieldInfo& field_info) {
2320 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2321
2322 bool object_field_get_with_read_barrier =
2323 (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2324 LocationSummary* locations =
2325 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2326 object_field_get_with_read_barrier
2327 ? LocationSummary::kCallOnSlowPath
2328 : LocationSummary::kNoCall);
2329 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
2330 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2331 // We need a temporary register for the read barrier load in
2332 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2333 // only if the field is volatile or the offset is too big.
2334 if (field_info.IsVolatile() ||
2335 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
2336 locations->AddTemp(FixedTempLocation());
2337 }
2338 }
2339 // Input for object receiver.
2340 locations->SetInAt(0, Location::RequiresRegister());
2341 if (DataType::IsFloatingPointType(instruction->GetType())) {
2342 locations->SetOut(Location::RequiresFpuRegister());
2343 } else {
2344 // The output overlaps for an object field get for non-Baker read barriers: we do not want
2345 // the load to overwrite the object's location, as we need it to emit the read barrier.
2346 // Baker read barrier implementation with introspection does not have this restriction.
2347 bool overlap = object_field_get_with_read_barrier && !kUseBakerReadBarrier;
2348 locations->SetOut(Location::RequiresRegister(),
2349 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2350 }
2351 }
2352
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2353 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
2354 const FieldInfo& field_info) {
2355 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2356 LocationSummary* locations = instruction->GetLocations();
2357 uint32_t receiver_input = 0;
2358 Location base_loc = locations->InAt(receiver_input);
2359 Location out = locations->Out();
2360 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2361 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2362 DataType::Type load_type = instruction->GetType();
2363 MemOperand field =
2364 HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset());
2365
2366 if (load_type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2367 // Object FieldGet with Baker's read barrier case.
2368 // /* HeapReference<Object> */ out = *(base + offset)
2369 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
2370 Location maybe_temp =
2371 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2372 // Note that potential implicit null checks are handled in this
2373 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
2374 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2375 instruction,
2376 out,
2377 base,
2378 offset,
2379 maybe_temp,
2380 /* needs_null_check= */ true,
2381 field_info.IsVolatile());
2382 } else {
2383 // General case.
2384 if (field_info.IsVolatile()) {
2385 // Note that a potential implicit null check is handled in this
2386 // CodeGeneratorARM64::LoadAcquire call.
2387 // NB: LoadAcquire will record the pc info if needed.
2388 codegen_->LoadAcquire(instruction,
2389 load_type,
2390 OutputCPURegister(instruction),
2391 field,
2392 /* needs_null_check= */ true);
2393 } else {
2394 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2395 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2396 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2397 codegen_->MaybeRecordImplicitNullCheck(instruction);
2398 }
2399 if (load_type == DataType::Type::kReference) {
2400 // If read barriers are enabled, emit read barriers other than
2401 // Baker's using a slow path (and also unpoison the loaded
2402 // reference, if heap poisoning is enabled).
2403 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2404 }
2405 }
2406 }
2407
HandleFieldSet(HInstruction * instruction)2408 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2409 LocationSummary* locations =
2410 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2411 locations->SetInAt(0, Location::RequiresRegister());
2412 HInstruction* value = instruction->InputAt(1);
2413 if (IsZeroBitPattern(value)) {
2414 locations->SetInAt(1, Location::ConstantLocation(value));
2415 } else if (DataType::IsFloatingPointType(value->GetType())) {
2416 locations->SetInAt(1, Location::RequiresFpuRegister());
2417 } else {
2418 locations->SetInAt(1, Location::RequiresRegister());
2419 }
2420 }
2421
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null,WriteBarrierKind write_barrier_kind)2422 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2423 const FieldInfo& field_info,
2424 bool value_can_be_null,
2425 WriteBarrierKind write_barrier_kind) {
2426 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2427
2428 Register obj = InputRegisterAt(instruction, 0);
2429 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2430 CPURegister source = value;
2431 Offset offset = field_info.GetFieldOffset();
2432 DataType::Type field_type = field_info.GetFieldType();
2433 {
2434 // We use a block to end the scratch scope before the write barrier, thus
2435 // freeing the temporary registers so they can be used in `MarkGCCard`.
2436 UseScratchRegisterScope temps(GetVIXLAssembler());
2437
2438 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2439 DCHECK(value.IsW());
2440 Register temp = temps.AcquireW();
2441 __ Mov(temp, value.W());
2442 GetAssembler()->PoisonHeapReference(temp.W());
2443 source = temp;
2444 }
2445
2446 if (field_info.IsVolatile()) {
2447 codegen_->StoreRelease(
2448 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2449 } else {
2450 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2451 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2452 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2453 codegen_->MaybeRecordImplicitNullCheck(instruction);
2454 }
2455 }
2456
2457 const bool needs_write_barrier =
2458 codegen_->StoreNeedsWriteBarrier(field_type, instruction->InputAt(1), write_barrier_kind);
2459
2460 if (needs_write_barrier) {
2461 DCHECK_IMPLIES(Register(value).IsZero(),
2462 write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn);
2463 codegen_->MaybeMarkGCCard(
2464 obj,
2465 Register(value),
2466 value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn);
2467 } else if (codegen_->ShouldCheckGCCard(field_type, instruction->InputAt(1), write_barrier_kind)) {
2468 codegen_->CheckGCCardIsValid(obj);
2469 }
2470 }
2471
HandleBinaryOp(HBinaryOperation * instr)2472 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2473 DataType::Type type = instr->GetType();
2474
2475 switch (type) {
2476 case DataType::Type::kInt32:
2477 case DataType::Type::kInt64: {
2478 Register dst = OutputRegister(instr);
2479 Register lhs = InputRegisterAt(instr, 0);
2480 Operand rhs = InputOperandAt(instr, 1);
2481 if (instr->IsAdd()) {
2482 __ Add(dst, lhs, rhs);
2483 } else if (instr->IsAnd()) {
2484 __ And(dst, lhs, rhs);
2485 } else if (instr->IsOr()) {
2486 __ Orr(dst, lhs, rhs);
2487 } else if (instr->IsSub()) {
2488 __ Sub(dst, lhs, rhs);
2489 } else if (instr->IsRol()) {
2490 if (rhs.IsImmediate()) {
2491 uint32_t shift = (-rhs.GetImmediate()) & (lhs.GetSizeInBits() - 1);
2492 __ Ror(dst, lhs, shift);
2493 } else {
2494 UseScratchRegisterScope temps(GetVIXLAssembler());
2495
2496 // Ensure shift distance is in the same size register as the result. If
2497 // we are rotating a long and the shift comes in a w register originally,
2498 // we don't need to sxtw for use as an x since the shift distances are
2499 // all & reg_bits - 1.
2500 Register right = RegisterFrom(instr->GetLocations()->InAt(1), type);
2501 Register negated = (type == DataType::Type::kInt32) ? temps.AcquireW() : temps.AcquireX();
2502 __ Neg(negated, right);
2503 __ Ror(dst, lhs, negated);
2504 }
2505 } else if (instr->IsRor()) {
2506 if (rhs.IsImmediate()) {
2507 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2508 __ Ror(dst, lhs, shift);
2509 } else {
2510 // Ensure shift distance is in the same size register as the result. If
2511 // we are rotating a long and the shift comes in a w register originally,
2512 // we don't need to sxtw for use as an x since the shift distances are
2513 // all & reg_bits - 1.
2514 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2515 }
2516 } else if (instr->IsMin() || instr->IsMax()) {
2517 __ Cmp(lhs, rhs);
2518 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2519 } else {
2520 DCHECK(instr->IsXor());
2521 __ Eor(dst, lhs, rhs);
2522 }
2523 break;
2524 }
2525 case DataType::Type::kFloat32:
2526 case DataType::Type::kFloat64: {
2527 VRegister dst = OutputFPRegister(instr);
2528 VRegister lhs = InputFPRegisterAt(instr, 0);
2529 VRegister rhs = InputFPRegisterAt(instr, 1);
2530 if (instr->IsAdd()) {
2531 __ Fadd(dst, lhs, rhs);
2532 } else if (instr->IsSub()) {
2533 __ Fsub(dst, lhs, rhs);
2534 } else if (instr->IsMin()) {
2535 __ Fmin(dst, lhs, rhs);
2536 } else if (instr->IsMax()) {
2537 __ Fmax(dst, lhs, rhs);
2538 } else {
2539 LOG(FATAL) << "Unexpected floating-point binary operation";
2540 }
2541 break;
2542 }
2543 default:
2544 LOG(FATAL) << "Unexpected binary operation type " << type;
2545 }
2546 }
2547
HandleShift(HBinaryOperation * instr)2548 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2549 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2550
2551 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2552 DataType::Type type = instr->GetResultType();
2553 switch (type) {
2554 case DataType::Type::kInt32:
2555 case DataType::Type::kInt64: {
2556 locations->SetInAt(0, Location::RequiresRegister());
2557 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2558 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2559 break;
2560 }
2561 default:
2562 LOG(FATAL) << "Unexpected shift type " << type;
2563 }
2564 }
2565
HandleShift(HBinaryOperation * instr)2566 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2567 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2568
2569 DataType::Type type = instr->GetType();
2570 switch (type) {
2571 case DataType::Type::kInt32:
2572 case DataType::Type::kInt64: {
2573 Register dst = OutputRegister(instr);
2574 Register lhs = InputRegisterAt(instr, 0);
2575 Operand rhs = InputOperandAt(instr, 1);
2576 if (rhs.IsImmediate()) {
2577 uint32_t shift_value = rhs.GetImmediate() &
2578 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2579 if (instr->IsShl()) {
2580 __ Lsl(dst, lhs, shift_value);
2581 } else if (instr->IsShr()) {
2582 __ Asr(dst, lhs, shift_value);
2583 } else {
2584 __ Lsr(dst, lhs, shift_value);
2585 }
2586 } else {
2587 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2588
2589 if (instr->IsShl()) {
2590 __ Lsl(dst, lhs, rhs_reg);
2591 } else if (instr->IsShr()) {
2592 __ Asr(dst, lhs, rhs_reg);
2593 } else {
2594 __ Lsr(dst, lhs, rhs_reg);
2595 }
2596 }
2597 break;
2598 }
2599 default:
2600 LOG(FATAL) << "Unexpected shift operation type " << type;
2601 }
2602 }
2603
VisitAdd(HAdd * instruction)2604 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2605 HandleBinaryOp(instruction);
2606 }
2607
VisitAdd(HAdd * instruction)2608 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2609 HandleBinaryOp(instruction);
2610 }
2611
VisitAnd(HAnd * instruction)2612 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2613 HandleBinaryOp(instruction);
2614 }
2615
VisitAnd(HAnd * instruction)2616 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2617 HandleBinaryOp(instruction);
2618 }
2619
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2620 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2621 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2622 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2623 locations->SetInAt(0, Location::RequiresRegister());
2624 // There is no immediate variant of negated bitwise instructions in AArch64.
2625 locations->SetInAt(1, Location::RequiresRegister());
2626 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2627 }
2628
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2629 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2630 Register dst = OutputRegister(instr);
2631 Register lhs = InputRegisterAt(instr, 0);
2632 Register rhs = InputRegisterAt(instr, 1);
2633
2634 switch (instr->GetOpKind()) {
2635 case HInstruction::kAnd:
2636 __ Bic(dst, lhs, rhs);
2637 break;
2638 case HInstruction::kOr:
2639 __ Orn(dst, lhs, rhs);
2640 break;
2641 case HInstruction::kXor:
2642 __ Eon(dst, lhs, rhs);
2643 break;
2644 default:
2645 LOG(FATAL) << "Unreachable";
2646 }
2647 }
2648
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2649 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2650 HDataProcWithShifterOp* instruction) {
2651 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2652 instruction->GetType() == DataType::Type::kInt64);
2653 LocationSummary* locations =
2654 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2655 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2656 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)));
2657 } else {
2658 locations->SetInAt(0, Location::RequiresRegister());
2659 }
2660 locations->SetInAt(1, Location::RequiresRegister());
2661 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2662 }
2663
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2664 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2665 HDataProcWithShifterOp* instruction) {
2666 DataType::Type type = instruction->GetType();
2667 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2668 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2669 Register out = OutputRegister(instruction);
2670 Register left;
2671 if (kind != HInstruction::kNeg) {
2672 left = InputRegisterAt(instruction, 0);
2673 }
2674 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2675 // shifter operand operation, the IR generating `right_reg` (input to the type
2676 // conversion) can have a different type from the current instruction's type,
2677 // so we manually indicate the type.
2678 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2679 Operand right_operand(0);
2680
2681 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2682 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2683 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2684 } else {
2685 right_operand = Operand(right_reg,
2686 helpers::ShiftFromOpKind(op_kind),
2687 instruction->GetShiftAmount());
2688 }
2689
2690 // Logical binary operations do not support extension operations in the
2691 // operand. Note that VIXL would still manage if it was passed by generating
2692 // the extension as a separate instruction.
2693 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2694 DCHECK_IMPLIES(right_operand.IsExtendedRegister(),
2695 kind != HInstruction::kAnd && kind != HInstruction::kOr &&
2696 kind != HInstruction::kXor && kind != HInstruction::kNeg);
2697 switch (kind) {
2698 case HInstruction::kAdd:
2699 __ Add(out, left, right_operand);
2700 break;
2701 case HInstruction::kAnd:
2702 __ And(out, left, right_operand);
2703 break;
2704 case HInstruction::kNeg:
2705 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2706 __ Neg(out, right_operand);
2707 break;
2708 case HInstruction::kOr:
2709 __ Orr(out, left, right_operand);
2710 break;
2711 case HInstruction::kSub:
2712 __ Sub(out, left, right_operand);
2713 break;
2714 case HInstruction::kXor:
2715 __ Eor(out, left, right_operand);
2716 break;
2717 default:
2718 LOG(FATAL) << "Unexpected operation kind: " << kind;
2719 UNREACHABLE();
2720 }
2721 }
2722
VisitIntermediateAddress(HIntermediateAddress * instruction)2723 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2724 LocationSummary* locations =
2725 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2726 locations->SetInAt(0, Location::RequiresRegister());
2727 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2728 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2729 }
2730
VisitIntermediateAddress(HIntermediateAddress * instruction)2731 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2732 __ Add(OutputRegister(instruction),
2733 InputRegisterAt(instruction, 0),
2734 Operand(InputOperandAt(instruction, 1)));
2735 }
2736
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2737 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2738 LocationSummary* locations =
2739 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2740
2741 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2742
2743 locations->SetInAt(0, Location::RequiresRegister());
2744 // For byte case we don't need to shift the index variable so we can encode the data offset into
2745 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2746 // data offset constant generation out of the loop and reduce the critical path length in the
2747 // loop.
2748 locations->SetInAt(1, shift->GetValue() == 0
2749 ? Location::ConstantLocation(instruction->GetOffset())
2750 : Location::RequiresRegister());
2751 locations->SetInAt(2, Location::ConstantLocation(shift));
2752 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2753 }
2754
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2755 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2756 HIntermediateAddressIndex* instruction) {
2757 Register index_reg = InputRegisterAt(instruction, 0);
2758 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2759 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2760
2761 if (shift == 0) {
2762 __ Add(OutputRegister(instruction), index_reg, offset);
2763 } else {
2764 Register offset_reg = InputRegisterAt(instruction, 1);
2765 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2766 }
2767 }
2768
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2769 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2770 LocationSummary* locations =
2771 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2772 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2773 if (instr->GetOpKind() == HInstruction::kSub &&
2774 accumulator->IsConstant() &&
2775 accumulator->AsConstant()->IsArithmeticZero()) {
2776 // Don't allocate register for Mneg instruction.
2777 } else {
2778 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2779 Location::RequiresRegister());
2780 }
2781 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2782 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2783 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2784 }
2785
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2786 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2787 Register res = OutputRegister(instr);
2788 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2789 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2790
2791 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2792 // This fixup should be carried out for all multiply-accumulate instructions:
2793 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2794 if (instr->GetType() == DataType::Type::kInt64 &&
2795 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2796 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2797 ptrdiff_t off = masm->GetCursorOffset();
2798 if (off >= static_cast<ptrdiff_t>(kInstructionSize) &&
2799 masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) {
2800 // Make sure we emit only exactly one nop.
2801 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2802 __ nop();
2803 }
2804 }
2805
2806 if (instr->GetOpKind() == HInstruction::kAdd) {
2807 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2808 __ Madd(res, mul_left, mul_right, accumulator);
2809 } else {
2810 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2811 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2812 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2813 __ Mneg(res, mul_left, mul_right);
2814 } else {
2815 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2816 __ Msub(res, mul_left, mul_right, accumulator);
2817 }
2818 }
2819 }
2820
VisitArrayGet(HArrayGet * instruction)2821 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2822 bool object_array_get_with_read_barrier =
2823 (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2824 LocationSummary* locations =
2825 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2826 object_array_get_with_read_barrier
2827 ? LocationSummary::kCallOnSlowPath
2828 : LocationSummary::kNoCall);
2829 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2830 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2831 if (instruction->GetIndex()->IsConstant()) {
2832 // Array loads with constant index are treated as field loads.
2833 // We need a temporary register for the read barrier load in
2834 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2835 // only if the offset is too big.
2836 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2837 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2838 offset += index << DataType::SizeShift(DataType::Type::kReference);
2839 if (offset >= kReferenceLoadMinFarOffset) {
2840 locations->AddTemp(FixedTempLocation());
2841 }
2842 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2843 // We need a non-scratch temporary for the array data pointer in
2844 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2845 // intermediate address.
2846 locations->AddTemp(Location::RequiresRegister());
2847 }
2848 }
2849 locations->SetInAt(0, Location::RequiresRegister());
2850 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2851 if (DataType::IsFloatingPointType(instruction->GetType())) {
2852 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2853 } else {
2854 // The output overlaps for an object array get for non-Baker read barriers: we do not want
2855 // the load to overwrite the object's location, as we need it to emit the read barrier.
2856 // Baker read barrier implementation with introspection does not have this restriction.
2857 bool overlap = object_array_get_with_read_barrier && !kUseBakerReadBarrier;
2858 locations->SetOut(Location::RequiresRegister(),
2859 overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2860 }
2861 }
2862
VisitArrayGet(HArrayGet * instruction)2863 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2864 DataType::Type type = instruction->GetType();
2865 Register obj = InputRegisterAt(instruction, 0);
2866 LocationSummary* locations = instruction->GetLocations();
2867 Location index = locations->InAt(1);
2868 Location out = locations->Out();
2869 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2870 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2871 instruction->IsStringCharAt();
2872 MacroAssembler* masm = GetVIXLAssembler();
2873 UseScratchRegisterScope temps(masm);
2874
2875 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2876 // does not support the HIntermediateAddress instruction.
2877 DCHECK(!((type == DataType::Type::kReference) &&
2878 instruction->GetArray()->IsIntermediateAddress() &&
2879 codegen_->EmitNonBakerReadBarrier()));
2880
2881 if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2882 // Object ArrayGet with Baker's read barrier case.
2883 // Note that a potential implicit null check is handled in the
2884 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2885 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2886 if (index.IsConstant()) {
2887 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2888 // Array load with a constant index can be treated as a field load.
2889 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2890 Location maybe_temp =
2891 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2892 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2893 out,
2894 obj.W(),
2895 offset,
2896 maybe_temp,
2897 /* needs_null_check= */ false,
2898 /* use_load_acquire= */ false);
2899 } else {
2900 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2901 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2902 }
2903 } else {
2904 // General case.
2905 MemOperand source = HeapOperand(obj);
2906 Register length;
2907 if (maybe_compressed_char_at) {
2908 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2909 length = temps.AcquireW();
2910 {
2911 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2912 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2913
2914 if (instruction->GetArray()->IsIntermediateAddress()) {
2915 DCHECK_LT(count_offset, offset);
2916 int64_t adjusted_offset =
2917 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2918 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2919 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2920 } else {
2921 __ Ldr(length, HeapOperand(obj, count_offset));
2922 }
2923 codegen_->MaybeRecordImplicitNullCheck(instruction);
2924 }
2925 }
2926 if (index.IsConstant()) {
2927 if (maybe_compressed_char_at) {
2928 vixl::aarch64::Label uncompressed_load, done;
2929 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2930 "Expecting 0=compressed, 1=uncompressed");
2931 __ Tbnz(length.W(), 0, &uncompressed_load);
2932 __ Ldrb(Register(OutputCPURegister(instruction)),
2933 HeapOperand(obj, offset + Int64FromLocation(index)));
2934 __ B(&done);
2935 __ Bind(&uncompressed_load);
2936 __ Ldrh(Register(OutputCPURegister(instruction)),
2937 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2938 __ Bind(&done);
2939 } else {
2940 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2941 source = HeapOperand(obj, offset);
2942 }
2943 } else {
2944 Register temp = temps.AcquireSameSizeAs(obj);
2945 if (instruction->GetArray()->IsIntermediateAddress()) {
2946 // We do not need to compute the intermediate address from the array: the
2947 // input instruction has done it already. See the comment in
2948 // `TryExtractArrayAccessAddress()`.
2949 if (kIsDebugBuild) {
2950 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2951 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2952 }
2953 temp = obj;
2954 } else {
2955 __ Add(temp, obj, offset);
2956 }
2957 if (maybe_compressed_char_at) {
2958 vixl::aarch64::Label uncompressed_load, done;
2959 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2960 "Expecting 0=compressed, 1=uncompressed");
2961 __ Tbnz(length.W(), 0, &uncompressed_load);
2962 __ Ldrb(Register(OutputCPURegister(instruction)),
2963 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2964 __ B(&done);
2965 __ Bind(&uncompressed_load);
2966 __ Ldrh(Register(OutputCPURegister(instruction)),
2967 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2968 __ Bind(&done);
2969 } else {
2970 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2971 }
2972 }
2973 if (!maybe_compressed_char_at) {
2974 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2975 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2976 codegen_->Load(type, OutputCPURegister(instruction), source);
2977 codegen_->MaybeRecordImplicitNullCheck(instruction);
2978 }
2979
2980 if (type == DataType::Type::kReference) {
2981 static_assert(
2982 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2983 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2984 Location obj_loc = locations->InAt(0);
2985 if (index.IsConstant()) {
2986 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2987 } else {
2988 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2989 }
2990 }
2991 }
2992 }
2993
VisitArrayLength(HArrayLength * instruction)2994 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2995 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2996 locations->SetInAt(0, Location::RequiresRegister());
2997 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2998 }
2999
VisitArrayLength(HArrayLength * instruction)3000 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
3001 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
3002 vixl::aarch64::Register out = OutputRegister(instruction);
3003 {
3004 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
3005 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3006 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
3007 codegen_->MaybeRecordImplicitNullCheck(instruction);
3008 }
3009 // Mask out compression flag from String's array length.
3010 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
3011 __ Lsr(out.W(), out.W(), 1u);
3012 }
3013 }
3014
VisitArraySet(HArraySet * instruction)3015 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
3016 DataType::Type value_type = instruction->GetComponentType();
3017
3018 bool needs_type_check = instruction->NeedsTypeCheck();
3019 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
3020 instruction,
3021 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
3022 locations->SetInAt(0, Location::RequiresRegister());
3023 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetIndex()));
3024 HInstruction* value = instruction->GetValue();
3025 if (IsZeroBitPattern(value)) {
3026 locations->SetInAt(2, Location::ConstantLocation(value));
3027 } else if (DataType::IsFloatingPointType(value_type)) {
3028 locations->SetInAt(2, Location::RequiresFpuRegister());
3029 } else {
3030 locations->SetInAt(2, Location::RequiresRegister());
3031 }
3032 }
3033
VisitArraySet(HArraySet * instruction)3034 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
3035 DataType::Type value_type = instruction->GetComponentType();
3036 LocationSummary* locations = instruction->GetLocations();
3037 bool needs_type_check = instruction->NeedsTypeCheck();
3038 const WriteBarrierKind write_barrier_kind = instruction->GetWriteBarrierKind();
3039 bool needs_write_barrier =
3040 codegen_->StoreNeedsWriteBarrier(value_type, instruction->GetValue(), write_barrier_kind);
3041
3042 Register array = InputRegisterAt(instruction, 0);
3043 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
3044 CPURegister source = value;
3045 Location index = locations->InAt(1);
3046 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
3047 MemOperand destination = HeapOperand(array);
3048 MacroAssembler* masm = GetVIXLAssembler();
3049
3050 if (!needs_write_barrier) {
3051 if (codegen_->ShouldCheckGCCard(value_type, instruction->GetValue(), write_barrier_kind)) {
3052 codegen_->CheckGCCardIsValid(array);
3053 }
3054
3055 DCHECK(!needs_type_check);
3056 UseScratchRegisterScope temps(masm);
3057 if (index.IsConstant()) {
3058 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
3059 destination = HeapOperand(array, offset);
3060 } else {
3061 Register temp_dest = temps.AcquireSameSizeAs(array);
3062 if (instruction->GetArray()->IsIntermediateAddress()) {
3063 // We do not need to compute the intermediate address from the array: the
3064 // input instruction has done it already. See the comment in
3065 // `TryExtractArrayAccessAddress()`.
3066 if (kIsDebugBuild) {
3067 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
3068 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
3069 }
3070 temp_dest = array;
3071 } else {
3072 __ Add(temp_dest, array, offset);
3073 }
3074 destination = HeapOperand(temp_dest,
3075 XRegisterFrom(index),
3076 LSL,
3077 DataType::SizeShift(value_type));
3078 }
3079
3080 if (kPoisonHeapReferences && value_type == DataType::Type::kReference) {
3081 DCHECK(value.IsW());
3082 Register temp_src = temps.AcquireW();
3083 __ Mov(temp_src, value.W());
3084 GetAssembler()->PoisonHeapReference(temp_src.W());
3085 source = temp_src;
3086 }
3087
3088 {
3089 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
3090 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3091 codegen_->Store(value_type, source, destination);
3092 codegen_->MaybeRecordImplicitNullCheck(instruction);
3093 }
3094 } else {
3095 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
3096 bool can_value_be_null = true;
3097 // The WriteBarrierKind::kEmitNotBeingReliedOn case is able to skip the write barrier when its
3098 // value is null (without an extra CompareAndBranchIfZero since we already checked if the
3099 // value is null for the type check).
3100 bool skip_marking_gc_card = false;
3101 SlowPathCodeARM64* slow_path = nullptr;
3102 vixl::aarch64::Label skip_writing_card;
3103 if (!Register(value).IsZero()) {
3104 can_value_be_null = instruction->GetValueCanBeNull();
3105 skip_marking_gc_card =
3106 can_value_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn;
3107 vixl::aarch64::Label do_store;
3108 if (can_value_be_null) {
3109 if (skip_marking_gc_card) {
3110 __ Cbz(Register(value), &skip_writing_card);
3111 } else {
3112 __ Cbz(Register(value), &do_store);
3113 }
3114 }
3115
3116 if (needs_type_check) {
3117 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
3118 codegen_->AddSlowPath(slow_path);
3119
3120 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3121 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3122 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3123
3124 UseScratchRegisterScope temps(masm);
3125 Register temp = temps.AcquireSameSizeAs(array);
3126 Register temp2 = temps.AcquireSameSizeAs(array);
3127
3128 // Note that when Baker read barriers are enabled, the type
3129 // checks are performed without read barriers. This is fine,
3130 // even in the case where a class object is in the from-space
3131 // after the flip, as a comparison involving such a type would
3132 // not produce a false positive; it may of course produce a
3133 // false negative, in which case we would take the ArraySet
3134 // slow path.
3135
3136 // /* HeapReference<Class> */ temp = array->klass_
3137 {
3138 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
3139 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3140 __ Ldr(temp, HeapOperand(array, class_offset));
3141 codegen_->MaybeRecordImplicitNullCheck(instruction);
3142 }
3143 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3144
3145 // /* HeapReference<Class> */ temp = temp->component_type_
3146 __ Ldr(temp, HeapOperand(temp, component_offset));
3147 // /* HeapReference<Class> */ temp2 = value->klass_
3148 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
3149 // If heap poisoning is enabled, no need to unpoison `temp`
3150 // nor `temp2`, as we are comparing two poisoned references.
3151 __ Cmp(temp, temp2);
3152
3153 if (instruction->StaticTypeOfArrayIsObjectArray()) {
3154 vixl::aarch64::Label do_put;
3155 __ B(eq, &do_put);
3156 // If heap poisoning is enabled, the `temp` reference has
3157 // not been unpoisoned yet; unpoison it now.
3158 GetAssembler()->MaybeUnpoisonHeapReference(temp);
3159
3160 // /* HeapReference<Class> */ temp = temp->super_class_
3161 __ Ldr(temp, HeapOperand(temp, super_offset));
3162 // If heap poisoning is enabled, no need to unpoison
3163 // `temp`, as we are comparing against null below.
3164 __ Cbnz(temp, slow_path->GetEntryLabel());
3165 __ Bind(&do_put);
3166 } else {
3167 __ B(ne, slow_path->GetEntryLabel());
3168 }
3169 }
3170
3171 if (can_value_be_null && !skip_marking_gc_card) {
3172 DCHECK(do_store.IsLinked());
3173 __ Bind(&do_store);
3174 }
3175 }
3176
3177 DCHECK_NE(write_barrier_kind, WriteBarrierKind::kDontEmit);
3178 DCHECK_IMPLIES(Register(value).IsZero(),
3179 write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn);
3180 codegen_->MarkGCCard(array);
3181
3182 if (skip_marking_gc_card) {
3183 // Note that we don't check that the GC card is valid as it can be correctly clean.
3184 DCHECK(skip_writing_card.IsLinked());
3185 __ Bind(&skip_writing_card);
3186 }
3187
3188 UseScratchRegisterScope temps(masm);
3189 if (kPoisonHeapReferences) {
3190 DCHECK(value.IsW());
3191 Register temp_source = temps.AcquireW();
3192 __ Mov(temp_source, value.W());
3193 GetAssembler()->PoisonHeapReference(temp_source);
3194 source = temp_source;
3195 }
3196
3197 if (index.IsConstant()) {
3198 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
3199 destination = HeapOperand(array, offset);
3200 } else {
3201 Register temp_base = temps.AcquireSameSizeAs(array);
3202 __ Add(temp_base, array, offset);
3203 destination = HeapOperand(temp_base,
3204 XRegisterFrom(index),
3205 LSL,
3206 DataType::SizeShift(value_type));
3207 }
3208
3209 {
3210 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
3211 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3212 __ Str(source, destination);
3213
3214 if (can_value_be_null || !needs_type_check) {
3215 codegen_->MaybeRecordImplicitNullCheck(instruction);
3216 }
3217 }
3218
3219 if (slow_path != nullptr) {
3220 __ Bind(slow_path->GetExitLabel());
3221 }
3222 }
3223 }
3224
VisitBoundsCheck(HBoundsCheck * instruction)3225 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3226 RegisterSet caller_saves = RegisterSet::Empty();
3227 InvokeRuntimeCallingConvention calling_convention;
3228 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3229 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
3230 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
3231
3232 // If both index and length are constant, we can check the bounds statically and
3233 // generate code accordingly. We want to make sure we generate constant locations
3234 // in that case, regardless of whether they are encodable in the comparison or not.
3235 HInstruction* index = instruction->InputAt(0);
3236 HInstruction* length = instruction->InputAt(1);
3237 bool both_const = index->IsConstant() && length->IsConstant();
3238 locations->SetInAt(0, both_const
3239 ? Location::ConstantLocation(index)
3240 : ARM64EncodableConstantOrRegister(index, instruction));
3241 locations->SetInAt(1, both_const
3242 ? Location::ConstantLocation(length)
3243 : ARM64EncodableConstantOrRegister(length, instruction));
3244 }
3245
VisitBoundsCheck(HBoundsCheck * instruction)3246 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3247 LocationSummary* locations = instruction->GetLocations();
3248 Location index_loc = locations->InAt(0);
3249 Location length_loc = locations->InAt(1);
3250
3251 int cmp_first_input = 0;
3252 int cmp_second_input = 1;
3253 Condition cond = hs;
3254
3255 if (index_loc.IsConstant()) {
3256 int64_t index = Int64FromLocation(index_loc);
3257 if (length_loc.IsConstant()) {
3258 int64_t length = Int64FromLocation(length_loc);
3259 if (index < 0 || index >= length) {
3260 BoundsCheckSlowPathARM64* slow_path =
3261 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3262 codegen_->AddSlowPath(slow_path);
3263 __ B(slow_path->GetEntryLabel());
3264 } else {
3265 // BCE will remove the bounds check if we are guaranteed to pass.
3266 // However, some optimization after BCE may have generated this, and we should not
3267 // generate a bounds check if it is a valid range.
3268 }
3269 return;
3270 }
3271 // Only the index is constant: change the order of the operands and commute the condition
3272 // so we can use an immediate constant for the index (only the second input to a cmp
3273 // instruction can be an immediate).
3274 cmp_first_input = 1;
3275 cmp_second_input = 0;
3276 cond = ls;
3277 }
3278 BoundsCheckSlowPathARM64* slow_path =
3279 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3280 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
3281 InputOperandAt(instruction, cmp_second_input));
3282 codegen_->AddSlowPath(slow_path);
3283 __ B(slow_path->GetEntryLabel(), cond);
3284 }
3285
VisitClinitCheck(HClinitCheck * check)3286 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
3287 LocationSummary* locations =
3288 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
3289 locations->SetInAt(0, Location::RequiresRegister());
3290 if (check->HasUses()) {
3291 locations->SetOut(Location::SameAsFirstInput());
3292 }
3293 // Rely on the type initialization to save everything we need.
3294 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
3295 }
3296
VisitClinitCheck(HClinitCheck * check)3297 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
3298 // We assume the class is not null.
3299 SlowPathCodeARM64* slow_path =
3300 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
3301 codegen_->AddSlowPath(slow_path);
3302 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
3303 }
3304
IsFloatingPointZeroConstant(HInstruction * inst)3305 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
3306 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
3307 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
3308 }
3309
GenerateFcmp(HInstruction * instruction)3310 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
3311 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
3312 Location rhs_loc = instruction->GetLocations()->InAt(1);
3313 if (rhs_loc.IsConstant()) {
3314 // 0.0 is the only immediate that can be encoded directly in
3315 // an FCMP instruction.
3316 //
3317 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
3318 // specify that in a floating-point comparison, positive zero
3319 // and negative zero are considered equal, so we can use the
3320 // literal 0.0 for both cases here.
3321 //
3322 // Note however that some methods (Float.equal, Float.compare,
3323 // Float.compareTo, Double.equal, Double.compare,
3324 // Double.compareTo, Math.max, Math.min, StrictMath.max,
3325 // StrictMath.min) consider 0.0 to be (strictly) greater than
3326 // -0.0. So if we ever translate calls to these methods into a
3327 // HCompare instruction, we must handle the -0.0 case with
3328 // care here.
3329 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
3330 __ Fcmp(lhs_reg, 0.0);
3331 } else {
3332 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
3333 }
3334 }
3335
VisitCompare(HCompare * compare)3336 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
3337 LocationSummary* locations =
3338 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
3339 DataType::Type compare_type = compare->GetComparisonType();
3340 HInstruction* rhs = compare->InputAt(1);
3341 switch (compare_type) {
3342 case DataType::Type::kBool:
3343 case DataType::Type::kUint8:
3344 case DataType::Type::kInt8:
3345 case DataType::Type::kUint16:
3346 case DataType::Type::kInt16:
3347 case DataType::Type::kInt32:
3348 case DataType::Type::kUint32:
3349 case DataType::Type::kInt64:
3350 case DataType::Type::kUint64: {
3351 locations->SetInAt(0, Location::RequiresRegister());
3352 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, compare));
3353 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3354 break;
3355 }
3356 case DataType::Type::kFloat32:
3357 case DataType::Type::kFloat64: {
3358 locations->SetInAt(0, Location::RequiresFpuRegister());
3359 locations->SetInAt(1,
3360 IsFloatingPointZeroConstant(rhs)
3361 ? Location::ConstantLocation(rhs)
3362 : Location::RequiresFpuRegister());
3363 locations->SetOut(Location::RequiresRegister());
3364 break;
3365 }
3366 default:
3367 LOG(FATAL) << "Unexpected type for compare operation " << compare_type;
3368 }
3369 }
3370
VisitCompare(HCompare * compare)3371 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
3372 DataType::Type compare_type = compare->GetComparisonType();
3373
3374 // 0 if: left == right
3375 // 1 if: left > right
3376 // -1 if: left < right
3377 Condition less_cond = lt;
3378 switch (compare_type) {
3379 case DataType::Type::kUint32:
3380 case DataType::Type::kUint64:
3381 less_cond = lo;
3382 FALLTHROUGH_INTENDED;
3383 case DataType::Type::kBool:
3384 case DataType::Type::kUint8:
3385 case DataType::Type::kInt8:
3386 case DataType::Type::kUint16:
3387 case DataType::Type::kInt16:
3388 case DataType::Type::kInt32:
3389 case DataType::Type::kInt64: {
3390 Register result = OutputRegister(compare);
3391 Register left = InputRegisterAt(compare, 0);
3392 Operand right = InputOperandAt(compare, 1);
3393 __ Cmp(left, right);
3394 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
3395 __ Cneg(result, result, less_cond); // result == -1 if LT or unchanged otherwise
3396 break;
3397 }
3398 case DataType::Type::kFloat32:
3399 case DataType::Type::kFloat64: {
3400 Register result = OutputRegister(compare);
3401 GenerateFcmp(compare);
3402 __ Cset(result, ne);
3403 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
3404 break;
3405 }
3406 default:
3407 LOG(FATAL) << "Unimplemented compare type " << compare_type;
3408 }
3409 }
3410
HandleCondition(HCondition * instruction)3411 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
3412 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3413
3414 HInstruction* rhs = instruction->InputAt(1);
3415 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3416 locations->SetInAt(0, Location::RequiresFpuRegister());
3417 locations->SetInAt(1,
3418 IsFloatingPointZeroConstant(rhs)
3419 ? Location::ConstantLocation(rhs)
3420 : Location::RequiresFpuRegister());
3421 } else {
3422 // Integer cases.
3423 locations->SetInAt(0, Location::RequiresRegister());
3424 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, instruction));
3425 }
3426
3427 if (!instruction->IsEmittedAtUseSite()) {
3428 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3429 }
3430 }
3431
HandleCondition(HCondition * instruction)3432 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
3433 if (instruction->IsEmittedAtUseSite()) {
3434 return;
3435 }
3436
3437 LocationSummary* locations = instruction->GetLocations();
3438 Register res = RegisterFrom(locations->Out(), instruction->GetType());
3439 IfCondition if_cond = instruction->GetCondition();
3440
3441 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3442 GenerateFcmp(instruction);
3443 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
3444 } else {
3445 // Integer cases.
3446 Register lhs = InputRegisterAt(instruction, 0);
3447 Operand rhs = InputOperandAt(instruction, 1);
3448 __ Cmp(lhs, rhs);
3449 __ Cset(res, ARM64Condition(if_cond));
3450 }
3451 }
3452
3453 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
3454 M(Equal) \
3455 M(NotEqual) \
3456 M(LessThan) \
3457 M(LessThanOrEqual) \
3458 M(GreaterThan) \
3459 M(GreaterThanOrEqual) \
3460 M(Below) \
3461 M(BelowOrEqual) \
3462 M(Above) \
3463 M(AboveOrEqual)
3464 #define DEFINE_CONDITION_VISITORS(Name) \
3465 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3466 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3467 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3468 #undef DEFINE_CONDITION_VISITORS
3469 #undef FOR_EACH_CONDITION_INSTRUCTION
3470
3471 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3472 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3473 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3474 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3475
3476 Register out = OutputRegister(instruction);
3477 Register dividend = InputRegisterAt(instruction, 0);
3478
3479 Register final_dividend;
3480 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
3481 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
3482 // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
3483 // imm == 2
3484 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
3485 // asr out, out(0x80000001), #1 => out = 0xc0000000
3486 // This is the same as 'asr out, 0x80000000, #1'
3487 //
3488 // imm > 2
3489 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
3490 // of the rightmost 1s is ctz_imm.
3491 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3492 // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
3493 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
3494 // leftmost 1s is ctz_imm + 1.
3495 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
3496 //
3497 // imm == INT32_MIN
3498 // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
3499 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3500 // csel out, temp(-1), dividend(0x80000000), lt => out = -1
3501 // neg out, out(-1), asr #31 => out = 1
3502 // This is the same as 'neg out, dividend(0x80000000), asr #31'.
3503 final_dividend = dividend;
3504 } else {
3505 if (abs_imm == 2) {
3506 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3507 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3508 } else {
3509 UseScratchRegisterScope temps(GetVIXLAssembler());
3510 Register temp = temps.AcquireSameSizeAs(out);
3511 __ Add(temp, dividend, abs_imm - 1);
3512 __ Cmp(dividend, 0);
3513 __ Csel(out, temp, dividend, lt);
3514 }
3515 final_dividend = out;
3516 }
3517
3518 int ctz_imm = CTZ(abs_imm);
3519 if (imm > 0) {
3520 __ Asr(out, final_dividend, ctz_imm);
3521 } else {
3522 __ Neg(out, Operand(final_dividend, ASR, ctz_imm));
3523 }
3524 }
3525
3526 // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div).
3527 // So dividend needs to be added.
NeedToAddDividend(int64_t magic_number,int64_t divisor)3528 static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
3529 return divisor > 0 && magic_number < 0;
3530 }
3531
3532 // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div).
3533 // So dividend needs to be subtracted.
NeedToSubDividend(int64_t magic_number,int64_t divisor)3534 static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
3535 return divisor < 0 && magic_number > 0;
3536 }
3537
3538 // Generate code which increments the value in register 'in' by 1 if the value is negative.
3539 // It is done with 'add out, in, in, lsr #31 or #63'.
3540 // If the value is a result of an operation setting the N flag, CINC MI can be used
3541 // instead of ADD. 'use_cond_inc' controls this.
GenerateIncrementNegativeByOne(Register out,Register in,bool use_cond_inc)3542 void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
3543 Register out,
3544 Register in,
3545 bool use_cond_inc) {
3546 if (use_cond_inc) {
3547 __ Cinc(out, in, mi);
3548 } else {
3549 __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
3550 }
3551 }
3552
3553 // Helper to generate code producing the result of HRem with a constant divisor.
GenerateResultRemWithAnyConstant(Register out,Register dividend,Register quotient,int64_t divisor,UseScratchRegisterScope * temps_scope)3554 void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
3555 Register out,
3556 Register dividend,
3557 Register quotient,
3558 int64_t divisor,
3559 UseScratchRegisterScope* temps_scope) {
3560 Register temp_imm = temps_scope->AcquireSameSizeAs(out);
3561 __ Mov(temp_imm, divisor);
3562 __ Msub(out, quotient, temp_imm, dividend);
3563 }
3564
3565 // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and
3566 // a divisor is a positive constant, not power of 2.
GenerateInt64UnsignedDivRemWithAnyPositiveConstant(HBinaryOperation * instruction)3567 void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant(
3568 HBinaryOperation* instruction) {
3569 DCHECK(instruction->IsDiv() || instruction->IsRem());
3570 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3571
3572 LocationSummary* locations = instruction->GetLocations();
3573 Location second = locations->InAt(1);
3574 DCHECK(second.IsConstant());
3575
3576 Register out = OutputRegister(instruction);
3577 Register dividend = InputRegisterAt(instruction, 0);
3578 int64_t imm = Int64FromConstant(second.GetConstant());
3579 DCHECK_GT(imm, 0);
3580
3581 int64_t magic;
3582 int shift;
3583 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3584
3585 UseScratchRegisterScope temps(GetVIXLAssembler());
3586 Register temp = temps.AcquireSameSizeAs(out);
3587
3588 auto generate_unsigned_div_code = [this, magic, shift](Register out,
3589 Register dividend,
3590 Register temp) {
3591 // temp = get_high(dividend * magic)
3592 __ Mov(temp, magic);
3593 if (magic > 0 && shift == 0) {
3594 __ Smulh(out, dividend, temp);
3595 } else {
3596 __ Smulh(temp, dividend, temp);
3597 if (magic < 0) {
3598 // The negative magic means that the multiplier m is greater than INT64_MAX.
3599 // In such a case shift is never 0. See the proof in
3600 // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant.
3601 __ Add(temp, temp, dividend);
3602 }
3603 DCHECK_NE(shift, 0);
3604 __ Lsr(out, temp, shift);
3605 }
3606 };
3607
3608 if (instruction->IsDiv()) {
3609 generate_unsigned_div_code(out, dividend, temp);
3610 } else {
3611 generate_unsigned_div_code(temp, dividend, temp);
3612 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3613 }
3614 }
3615
3616 // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor
3617 // (not power of 2).
GenerateInt64DivRemWithAnyConstant(HBinaryOperation * instruction)3618 void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
3619 HBinaryOperation* instruction) {
3620 DCHECK(instruction->IsDiv() || instruction->IsRem());
3621 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3622
3623 LocationSummary* locations = instruction->GetLocations();
3624 Location second = locations->InAt(1);
3625 DCHECK(second.IsConstant());
3626
3627 Register out = OutputRegister(instruction);
3628 Register dividend = InputRegisterAt(instruction, 0);
3629 int64_t imm = Int64FromConstant(second.GetConstant());
3630
3631 int64_t magic;
3632 int shift;
3633 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3634
3635 UseScratchRegisterScope temps(GetVIXLAssembler());
3636 Register temp = temps.AcquireSameSizeAs(out);
3637
3638 // temp = get_high(dividend * magic)
3639 __ Mov(temp, magic);
3640 __ Smulh(temp, dividend, temp);
3641
3642 // The multiplication result might need some corrections to be finalized.
3643 // The last correction is to increment by 1, if the result is negative.
3644 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3645 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3646 // However if one of the corrections is ADD or SUB, the sign can be detected
3647 // with ADDS/SUBS. They set the N flag if the result is negative.
3648 // This allows to use CINC MI which has latency 1.
3649 bool use_cond_inc = false;
3650
3651 // Some combinations of magic_number and the divisor require to correct the result.
3652 // Check whether the correction is needed.
3653 if (NeedToAddDividend(magic, imm)) {
3654 __ Adds(temp, temp, dividend);
3655 use_cond_inc = true;
3656 } else if (NeedToSubDividend(magic, imm)) {
3657 __ Subs(temp, temp, dividend);
3658 use_cond_inc = true;
3659 }
3660
3661 if (shift != 0) {
3662 __ Asr(temp, temp, shift);
3663 }
3664
3665 if (instruction->IsRem()) {
3666 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3667 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3668 } else {
3669 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3670 }
3671 }
3672
GenerateInt32DivRemWithAnyConstant(HBinaryOperation * instruction)3673 void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
3674 HBinaryOperation* instruction) {
3675 DCHECK(instruction->IsDiv() || instruction->IsRem());
3676 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
3677
3678 LocationSummary* locations = instruction->GetLocations();
3679 Location second = locations->InAt(1);
3680 DCHECK(second.IsConstant());
3681
3682 Register out = OutputRegister(instruction);
3683 Register dividend = InputRegisterAt(instruction, 0);
3684 int64_t imm = Int64FromConstant(second.GetConstant());
3685
3686 int64_t magic;
3687 int shift;
3688 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
3689 UseScratchRegisterScope temps(GetVIXLAssembler());
3690 Register temp = temps.AcquireSameSizeAs(out);
3691
3692 // temp = get_high(dividend * magic)
3693 __ Mov(temp, magic);
3694 __ Smull(temp.X(), dividend, temp);
3695
3696 // The multiplication result might need some corrections to be finalized.
3697 // The last correction is to increment by 1, if the result is negative.
3698 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3699 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3700 // However if one of the corrections is ADD or SUB, the sign can be detected
3701 // with ADDS/SUBS. They set the N flag if the result is negative.
3702 // This allows to use CINC MI which has latency 1.
3703 bool use_cond_inc = false;
3704
3705 // ADD/SUB correction is performed in the high 32 bits
3706 // as high 32 bits are ignored because type are kInt32.
3707 if (NeedToAddDividend(magic, imm)) {
3708 __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3709 use_cond_inc = true;
3710 } else if (NeedToSubDividend(magic, imm)) {
3711 __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3712 use_cond_inc = true;
3713 }
3714
3715 // Extract the result from the high 32 bits and apply the final right shift.
3716 DCHECK_LT(shift, 32);
3717 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
3718 // No need to adjust the result for a non-negative dividend and a positive divisor.
3719 if (instruction->IsDiv()) {
3720 __ Lsr(out.X(), temp.X(), 32 + shift);
3721 } else {
3722 __ Lsr(temp.X(), temp.X(), 32 + shift);
3723 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3724 }
3725 } else {
3726 __ Asr(temp.X(), temp.X(), 32 + shift);
3727
3728 if (instruction->IsRem()) {
3729 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3730 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3731 } else {
3732 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3733 }
3734 }
3735 }
3736
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction,int64_t divisor)3737 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction,
3738 int64_t divisor) {
3739 DCHECK(instruction->IsDiv() || instruction->IsRem());
3740 if (instruction->GetResultType() == DataType::Type::kInt64) {
3741 if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) {
3742 GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction);
3743 } else {
3744 GenerateInt64DivRemWithAnyConstant(instruction);
3745 }
3746 } else {
3747 GenerateInt32DivRemWithAnyConstant(instruction);
3748 }
3749 }
3750
GenerateIntDivForConstDenom(HDiv * instruction)3751 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3752 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3753
3754 if (imm == 0) {
3755 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3756 return;
3757 }
3758
3759 if (IsPowerOfTwo(AbsOrMin(imm))) {
3760 GenerateIntDivForPower2Denom(instruction);
3761 } else {
3762 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3763 DCHECK(imm < -2 || imm > 2) << imm;
3764 GenerateDivRemWithAnyConstant(instruction, imm);
3765 }
3766 }
3767
GenerateIntDiv(HDiv * instruction)3768 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3769 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3770 << instruction->GetResultType();
3771
3772 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3773 GenerateIntDivForConstDenom(instruction);
3774 } else {
3775 Register out = OutputRegister(instruction);
3776 Register dividend = InputRegisterAt(instruction, 0);
3777 Register divisor = InputRegisterAt(instruction, 1);
3778 __ Sdiv(out, dividend, divisor);
3779 }
3780 }
3781
VisitDiv(HDiv * div)3782 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3783 LocationSummary* locations =
3784 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3785 switch (div->GetResultType()) {
3786 case DataType::Type::kInt32:
3787 case DataType::Type::kInt64:
3788 locations->SetInAt(0, Location::RequiresRegister());
3789 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3790 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3791 break;
3792
3793 case DataType::Type::kFloat32:
3794 case DataType::Type::kFloat64:
3795 locations->SetInAt(0, Location::RequiresFpuRegister());
3796 locations->SetInAt(1, Location::RequiresFpuRegister());
3797 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3798 break;
3799
3800 default:
3801 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3802 }
3803 }
3804
VisitDiv(HDiv * div)3805 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3806 DataType::Type type = div->GetResultType();
3807 switch (type) {
3808 case DataType::Type::kInt32:
3809 case DataType::Type::kInt64:
3810 GenerateIntDiv(div);
3811 break;
3812
3813 case DataType::Type::kFloat32:
3814 case DataType::Type::kFloat64:
3815 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3816 break;
3817
3818 default:
3819 LOG(FATAL) << "Unexpected div type " << type;
3820 }
3821 }
3822
VisitDivZeroCheck(HDivZeroCheck * instruction)3823 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3824 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3825 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3826 }
3827
VisitDivZeroCheck(HDivZeroCheck * instruction)3828 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3829 SlowPathCodeARM64* slow_path =
3830 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3831 codegen_->AddSlowPath(slow_path);
3832 Location value = instruction->GetLocations()->InAt(0);
3833
3834 DataType::Type type = instruction->GetType();
3835
3836 if (!DataType::IsIntegralType(type)) {
3837 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3838 UNREACHABLE();
3839 }
3840
3841 if (value.IsConstant()) {
3842 int64_t divisor = Int64FromLocation(value);
3843 if (divisor == 0) {
3844 __ B(slow_path->GetEntryLabel());
3845 } else {
3846 // A division by a non-null constant is valid. We don't need to perform
3847 // any check, so simply fall through.
3848 }
3849 } else {
3850 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3851 }
3852 }
3853
VisitDoubleConstant(HDoubleConstant * constant)3854 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3855 LocationSummary* locations =
3856 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3857 locations->SetOut(Location::ConstantLocation(constant));
3858 }
3859
VisitDoubleConstant(HDoubleConstant * constant)3860 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3861 [[maybe_unused]] HDoubleConstant* constant) {
3862 // Will be generated at use site.
3863 }
3864
VisitExit(HExit * exit)3865 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3866 exit->SetLocations(nullptr);
3867 }
3868
VisitExit(HExit * exit)3869 void InstructionCodeGeneratorARM64::VisitExit([[maybe_unused]] HExit* exit) {}
3870
VisitFloatConstant(HFloatConstant * constant)3871 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3872 LocationSummary* locations =
3873 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3874 locations->SetOut(Location::ConstantLocation(constant));
3875 }
3876
VisitFloatConstant(HFloatConstant * constant)3877 void InstructionCodeGeneratorARM64::VisitFloatConstant([[maybe_unused]] HFloatConstant* constant) {
3878 // Will be generated at use site.
3879 }
3880
HandleGoto(HInstruction * got,HBasicBlock * successor)3881 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3882 if (successor->IsExitBlock()) {
3883 DCHECK(got->GetPrevious()->AlwaysThrows());
3884 return; // no code needed
3885 }
3886
3887 HBasicBlock* block = got->GetBlock();
3888 HInstruction* previous = got->GetPrevious();
3889 HLoopInformation* info = block->GetLoopInformation();
3890
3891 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3892 codegen_->MaybeIncrementHotness(info->GetSuspendCheck(), /* is_frame_entry= */ false);
3893 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3894 return; // `GenerateSuspendCheck()` emitted the jump.
3895 }
3896 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3897 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3898 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3899 }
3900 if (!codegen_->GoesToNextBlock(block, successor)) {
3901 __ B(codegen_->GetLabelOf(successor));
3902 }
3903 }
3904
VisitGoto(HGoto * got)3905 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3906 got->SetLocations(nullptr);
3907 }
3908
VisitGoto(HGoto * got)3909 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3910 HandleGoto(got, got->GetSuccessor());
3911 }
3912
VisitTryBoundary(HTryBoundary * try_boundary)3913 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3914 try_boundary->SetLocations(nullptr);
3915 }
3916
VisitTryBoundary(HTryBoundary * try_boundary)3917 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3918 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3919 if (!successor->IsExitBlock()) {
3920 HandleGoto(try_boundary, successor);
3921 }
3922 }
3923
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3924 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3925 size_t condition_input_index,
3926 vixl::aarch64::Label* true_target,
3927 vixl::aarch64::Label* false_target) {
3928 HInstruction* cond = instruction->InputAt(condition_input_index);
3929
3930 if (true_target == nullptr && false_target == nullptr) {
3931 // Nothing to do. The code always falls through.
3932 return;
3933 } else if (cond->IsIntConstant()) {
3934 // Constant condition, statically compared against "true" (integer value 1).
3935 if (cond->AsIntConstant()->IsTrue()) {
3936 if (true_target != nullptr) {
3937 __ B(true_target);
3938 }
3939 } else {
3940 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3941 if (false_target != nullptr) {
3942 __ B(false_target);
3943 }
3944 }
3945 return;
3946 }
3947
3948 // The following code generates these patterns:
3949 // (1) true_target == nullptr && false_target != nullptr
3950 // - opposite condition true => branch to false_target
3951 // (2) true_target != nullptr && false_target == nullptr
3952 // - condition true => branch to true_target
3953 // (3) true_target != nullptr && false_target != nullptr
3954 // - condition true => branch to true_target
3955 // - branch to false_target
3956 if (IsBooleanValueOrMaterializedCondition(cond)) {
3957 // The condition instruction has been materialized, compare the output to 0.
3958 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3959 DCHECK(cond_val.IsRegister());
3960 if (true_target == nullptr) {
3961 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3962 } else {
3963 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3964 }
3965 } else {
3966 // The condition instruction has not been materialized, use its inputs as
3967 // the comparison and its condition as the branch condition.
3968 HCondition* condition = cond->AsCondition();
3969
3970 DataType::Type type = condition->InputAt(0)->GetType();
3971 if (DataType::IsFloatingPointType(type)) {
3972 GenerateFcmp(condition);
3973 if (true_target == nullptr) {
3974 IfCondition opposite_condition = condition->GetOppositeCondition();
3975 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3976 } else {
3977 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3978 }
3979 } else {
3980 // Integer cases.
3981 Register lhs = InputRegisterAt(condition, 0);
3982 Operand rhs = InputOperandAt(condition, 1);
3983
3984 Condition arm64_cond;
3985 vixl::aarch64::Label* non_fallthrough_target;
3986 if (true_target == nullptr) {
3987 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3988 non_fallthrough_target = false_target;
3989 } else {
3990 arm64_cond = ARM64Condition(condition->GetCondition());
3991 non_fallthrough_target = true_target;
3992 }
3993
3994 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3995 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3996 switch (arm64_cond) {
3997 case eq:
3998 __ Cbz(lhs, non_fallthrough_target);
3999 break;
4000 case ne:
4001 __ Cbnz(lhs, non_fallthrough_target);
4002 break;
4003 case lt:
4004 // Test the sign bit and branch accordingly.
4005 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
4006 break;
4007 case ge:
4008 // Test the sign bit and branch accordingly.
4009 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
4010 break;
4011 default:
4012 // Without the `static_cast` the compiler throws an error for
4013 // `-Werror=sign-promo`.
4014 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
4015 }
4016 } else {
4017 __ Cmp(lhs, rhs);
4018 __ B(arm64_cond, non_fallthrough_target);
4019 }
4020 }
4021 }
4022
4023 // If neither branch falls through (case 3), the conditional branch to `true_target`
4024 // was already emitted (case 2) and we need to emit a jump to `false_target`.
4025 if (true_target != nullptr && false_target != nullptr) {
4026 __ B(false_target);
4027 }
4028 }
4029
VisitIf(HIf * if_instr)4030 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
4031 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
4032 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
4033 locations->SetInAt(0, Location::RequiresRegister());
4034 }
4035 }
4036
VisitIf(HIf * if_instr)4037 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
4038 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
4039 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
4040 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
4041 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
4042 true_target = nullptr;
4043 }
4044 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
4045 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
4046 false_target = nullptr;
4047 }
4048 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
4049 if (GetGraph()->IsCompilingBaseline() &&
4050 codegen_->GetCompilerOptions().ProfileBranches() &&
4051 !Runtime::Current()->IsAotCompiler()) {
4052 DCHECK(if_instr->InputAt(0)->IsCondition());
4053 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4054 DCHECK(info != nullptr);
4055 BranchCache* cache = info->GetBranchCache(if_instr->GetDexPc());
4056 // Currently, not all If branches are profiled.
4057 if (cache != nullptr) {
4058 uint64_t address =
4059 reinterpret_cast64<uint64_t>(cache) + BranchCache::FalseOffset().Int32Value();
4060 static_assert(
4061 BranchCache::TrueOffset().Int32Value() - BranchCache::FalseOffset().Int32Value() == 2,
4062 "Unexpected offsets for BranchCache");
4063 vixl::aarch64::Label done;
4064 UseScratchRegisterScope temps(GetVIXLAssembler());
4065 Register temp = temps.AcquireX();
4066 Register counter = temps.AcquireW();
4067 Register condition = InputRegisterAt(if_instr, 0).X();
4068 __ Mov(temp, address);
4069 __ Ldrh(counter, MemOperand(temp, condition, LSL, 1));
4070 __ Add(counter, counter, 1);
4071 __ Tbnz(counter, 16, &done);
4072 __ Strh(counter, MemOperand(temp, condition, LSL, 1));
4073 __ Bind(&done);
4074 }
4075 }
4076 }
4077 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
4078 }
4079
VisitDeoptimize(HDeoptimize * deoptimize)4080 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
4081 LocationSummary* locations = new (GetGraph()->GetAllocator())
4082 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
4083 InvokeRuntimeCallingConvention calling_convention;
4084 RegisterSet caller_saves = RegisterSet::Empty();
4085 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
4086 locations->SetCustomSlowPathCallerSaves(caller_saves);
4087 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
4088 locations->SetInAt(0, Location::RequiresRegister());
4089 }
4090 }
4091
VisitDeoptimize(HDeoptimize * deoptimize)4092 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
4093 SlowPathCodeARM64* slow_path =
4094 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
4095 GenerateTestAndBranch(deoptimize,
4096 /* condition_input_index= */ 0,
4097 slow_path->GetEntryLabel(),
4098 /* false_target= */ nullptr);
4099 }
4100
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)4101 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
4102 LocationSummary* locations = new (GetGraph()->GetAllocator())
4103 LocationSummary(flag, LocationSummary::kNoCall);
4104 locations->SetOut(Location::RequiresRegister());
4105 }
4106
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)4107 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
4108 __ Ldr(OutputRegister(flag),
4109 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
4110 }
4111
IsConditionOnFloatingPointValues(HInstruction * condition)4112 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
4113 return condition->IsCondition() &&
4114 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
4115 }
4116
GetConditionForSelect(HCondition * condition)4117 static inline Condition GetConditionForSelect(HCondition* condition) {
4118 IfCondition cond = condition->GetCondition();
4119 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
4120 : ARM64Condition(cond);
4121 }
4122
VisitSelect(HSelect * select)4123 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
4124 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
4125 if (DataType::IsFloatingPointType(select->GetType())) {
4126 locations->SetInAt(0, Location::RequiresFpuRegister());
4127 locations->SetInAt(1, Location::RequiresFpuRegister());
4128 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4129 } else {
4130 HConstant* cst_true_value = select->GetTrueValue()->AsConstantOrNull();
4131 HConstant* cst_false_value = select->GetFalseValue()->AsConstantOrNull();
4132 bool is_true_value_constant = cst_true_value != nullptr;
4133 bool is_false_value_constant = cst_false_value != nullptr;
4134 // Ask VIXL whether we should synthesize constants in registers.
4135 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
4136 Operand true_op = is_true_value_constant ?
4137 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
4138 Operand false_op = is_false_value_constant ?
4139 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
4140 bool true_value_in_register = false;
4141 bool false_value_in_register = false;
4142 MacroAssembler::GetCselSynthesisInformation(
4143 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
4144 true_value_in_register |= !is_true_value_constant;
4145 false_value_in_register |= !is_false_value_constant;
4146
4147 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
4148 : Location::ConstantLocation(cst_true_value));
4149 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
4150 : Location::ConstantLocation(cst_false_value));
4151 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4152 }
4153
4154 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
4155 locations->SetInAt(2, Location::RequiresRegister());
4156 }
4157 }
4158
VisitSelect(HSelect * select)4159 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
4160 HInstruction* cond = select->GetCondition();
4161 Condition csel_cond;
4162
4163 if (IsBooleanValueOrMaterializedCondition(cond)) {
4164 if (cond->IsCondition() && cond->GetNext() == select) {
4165 // Use the condition flags set by the previous instruction.
4166 csel_cond = GetConditionForSelect(cond->AsCondition());
4167 } else {
4168 __ Cmp(InputRegisterAt(select, 2), 0);
4169 csel_cond = ne;
4170 }
4171 } else if (IsConditionOnFloatingPointValues(cond)) {
4172 GenerateFcmp(cond);
4173 csel_cond = GetConditionForSelect(cond->AsCondition());
4174 } else {
4175 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
4176 csel_cond = GetConditionForSelect(cond->AsCondition());
4177 }
4178
4179 if (DataType::IsFloatingPointType(select->GetType())) {
4180 __ Fcsel(OutputFPRegister(select),
4181 InputFPRegisterAt(select, 1),
4182 InputFPRegisterAt(select, 0),
4183 csel_cond);
4184 } else {
4185 __ Csel(OutputRegister(select),
4186 InputOperandAt(select, 1),
4187 InputOperandAt(select, 0),
4188 csel_cond);
4189 }
4190 }
4191
VisitNop(HNop * nop)4192 void LocationsBuilderARM64::VisitNop(HNop* nop) {
4193 new (GetGraph()->GetAllocator()) LocationSummary(nop);
4194 }
4195
VisitNop(HNop *)4196 void InstructionCodeGeneratorARM64::VisitNop(HNop*) {
4197 // The environment recording already happened in CodeGenerator::Compile.
4198 }
4199
IncreaseFrame(size_t adjustment)4200 void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
4201 __ Claim(adjustment);
4202 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
4203 }
4204
DecreaseFrame(size_t adjustment)4205 void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
4206 __ Drop(adjustment);
4207 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
4208 }
4209
GenerateNop()4210 void CodeGeneratorARM64::GenerateNop() {
4211 __ Nop();
4212 }
4213
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4214 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4215 HandleFieldGet(instruction, instruction->GetFieldInfo());
4216 }
4217
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4218 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4219 HandleFieldGet(instruction, instruction->GetFieldInfo());
4220 }
4221
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4222 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4223 HandleFieldSet(instruction);
4224 }
4225
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4226 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4227 HandleFieldSet(instruction,
4228 instruction->GetFieldInfo(),
4229 instruction->GetValueCanBeNull(),
4230 instruction->GetWriteBarrierKind());
4231 }
4232
4233 // Temp is used for read barrier.
NumberOfInstanceOfTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)4234 static size_t NumberOfInstanceOfTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
4235 if (emit_read_barrier &&
4236 (kUseBakerReadBarrier ||
4237 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
4238 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
4239 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
4240 return 1;
4241 }
4242 return 0;
4243 }
4244
4245 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
4246 // interface pointer, one for loading the current interface.
4247 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)4248 static size_t NumberOfCheckCastTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
4249 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
4250 return 3;
4251 }
4252 return 1 + NumberOfInstanceOfTemps(emit_read_barrier, type_check_kind);
4253 }
4254
VisitInstanceOf(HInstanceOf * instruction)4255 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
4256 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4257 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4258 bool baker_read_barrier_slow_path = false;
4259 switch (type_check_kind) {
4260 case TypeCheckKind::kExactCheck:
4261 case TypeCheckKind::kAbstractClassCheck:
4262 case TypeCheckKind::kClassHierarchyCheck:
4263 case TypeCheckKind::kArrayObjectCheck:
4264 case TypeCheckKind::kInterfaceCheck: {
4265 bool needs_read_barrier = codegen_->InstanceOfNeedsReadBarrier(instruction);
4266 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
4267 baker_read_barrier_slow_path = (kUseBakerReadBarrier && needs_read_barrier) &&
4268 (type_check_kind != TypeCheckKind::kInterfaceCheck);
4269 break;
4270 }
4271 case TypeCheckKind::kArrayCheck:
4272 case TypeCheckKind::kUnresolvedCheck:
4273 call_kind = LocationSummary::kCallOnSlowPath;
4274 break;
4275 case TypeCheckKind::kBitstringCheck:
4276 break;
4277 }
4278
4279 LocationSummary* locations =
4280 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4281 if (baker_read_barrier_slow_path) {
4282 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
4283 }
4284 locations->SetInAt(0, Location::RequiresRegister());
4285 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4286 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4287 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4288 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4289 } else {
4290 locations->SetInAt(1, Location::RequiresRegister());
4291 }
4292 // The "out" register is used as a temporary, so it overlaps with the inputs.
4293 // Note that TypeCheckSlowPathARM64 uses this register too.
4294 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4295 // Add temps if necessary for read barriers.
4296 locations->AddRegisterTemps(
4297 NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind));
4298 }
4299
VisitInstanceOf(HInstanceOf * instruction)4300 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
4301 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4302 LocationSummary* locations = instruction->GetLocations();
4303 Location obj_loc = locations->InAt(0);
4304 Register obj = InputRegisterAt(instruction, 0);
4305 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4306 ? Register()
4307 : InputRegisterAt(instruction, 1);
4308 Location out_loc = locations->Out();
4309 Register out = OutputRegister(instruction);
4310 const size_t num_temps = NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind);
4311 DCHECK_LE(num_temps, 1u);
4312 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
4313 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4314 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4315 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4316 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4317 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4318 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4319 const uint32_t object_array_data_offset =
4320 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4321
4322 vixl::aarch64::Label done, zero;
4323 SlowPathCodeARM64* slow_path = nullptr;
4324
4325 // Return 0 if `obj` is null.
4326 // Avoid null check if we know `obj` is not null.
4327 if (instruction->MustDoNullCheck()) {
4328 __ Cbz(obj, &zero);
4329 }
4330
4331 switch (type_check_kind) {
4332 case TypeCheckKind::kExactCheck: {
4333 ReadBarrierOption read_barrier_option =
4334 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4335 // /* HeapReference<Class> */ out = obj->klass_
4336 GenerateReferenceLoadTwoRegisters(instruction,
4337 out_loc,
4338 obj_loc,
4339 class_offset,
4340 maybe_temp_loc,
4341 read_barrier_option);
4342 __ Cmp(out, cls);
4343 __ Cset(out, eq);
4344 if (zero.IsLinked()) {
4345 __ B(&done);
4346 }
4347 break;
4348 }
4349
4350 case TypeCheckKind::kAbstractClassCheck: {
4351 ReadBarrierOption read_barrier_option =
4352 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4353 // /* HeapReference<Class> */ out = obj->klass_
4354 GenerateReferenceLoadTwoRegisters(instruction,
4355 out_loc,
4356 obj_loc,
4357 class_offset,
4358 maybe_temp_loc,
4359 read_barrier_option);
4360 // If the class is abstract, we eagerly fetch the super class of the
4361 // object to avoid doing a comparison we know will fail.
4362 vixl::aarch64::Label loop, success;
4363 __ Bind(&loop);
4364 // /* HeapReference<Class> */ out = out->super_class_
4365 GenerateReferenceLoadOneRegister(instruction,
4366 out_loc,
4367 super_offset,
4368 maybe_temp_loc,
4369 read_barrier_option);
4370 // If `out` is null, we use it for the result, and jump to `done`.
4371 __ Cbz(out, &done);
4372 __ Cmp(out, cls);
4373 __ B(ne, &loop);
4374 __ Mov(out, 1);
4375 if (zero.IsLinked()) {
4376 __ B(&done);
4377 }
4378 break;
4379 }
4380
4381 case TypeCheckKind::kClassHierarchyCheck: {
4382 ReadBarrierOption read_barrier_option =
4383 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4384 // /* HeapReference<Class> */ out = obj->klass_
4385 GenerateReferenceLoadTwoRegisters(instruction,
4386 out_loc,
4387 obj_loc,
4388 class_offset,
4389 maybe_temp_loc,
4390 read_barrier_option);
4391 // Walk over the class hierarchy to find a match.
4392 vixl::aarch64::Label loop, success;
4393 __ Bind(&loop);
4394 __ Cmp(out, cls);
4395 __ B(eq, &success);
4396 // /* HeapReference<Class> */ out = out->super_class_
4397 GenerateReferenceLoadOneRegister(instruction,
4398 out_loc,
4399 super_offset,
4400 maybe_temp_loc,
4401 read_barrier_option);
4402 __ Cbnz(out, &loop);
4403 // If `out` is null, we use it for the result, and jump to `done`.
4404 __ B(&done);
4405 __ Bind(&success);
4406 __ Mov(out, 1);
4407 if (zero.IsLinked()) {
4408 __ B(&done);
4409 }
4410 break;
4411 }
4412
4413 case TypeCheckKind::kArrayObjectCheck: {
4414 ReadBarrierOption read_barrier_option =
4415 codegen_->ReadBarrierOptionForInstanceOf(instruction);
4416 // /* HeapReference<Class> */ out = obj->klass_
4417 GenerateReferenceLoadTwoRegisters(instruction,
4418 out_loc,
4419 obj_loc,
4420 class_offset,
4421 maybe_temp_loc,
4422 read_barrier_option);
4423 // Do an exact check.
4424 vixl::aarch64::Label exact_check;
4425 __ Cmp(out, cls);
4426 __ B(eq, &exact_check);
4427 // Otherwise, we need to check that the object's class is a non-primitive array.
4428 // /* HeapReference<Class> */ out = out->component_type_
4429 GenerateReferenceLoadOneRegister(instruction,
4430 out_loc,
4431 component_offset,
4432 maybe_temp_loc,
4433 read_barrier_option);
4434 // If `out` is null, we use it for the result, and jump to `done`.
4435 __ Cbz(out, &done);
4436 __ Ldrh(out, HeapOperand(out, primitive_offset));
4437 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4438 __ Cbnz(out, &zero);
4439 __ Bind(&exact_check);
4440 __ Mov(out, 1);
4441 __ B(&done);
4442 break;
4443 }
4444
4445 case TypeCheckKind::kArrayCheck: {
4446 // No read barrier since the slow path will retry upon failure.
4447 // /* HeapReference<Class> */ out = obj->klass_
4448 GenerateReferenceLoadTwoRegisters(instruction,
4449 out_loc,
4450 obj_loc,
4451 class_offset,
4452 maybe_temp_loc,
4453 kWithoutReadBarrier);
4454 __ Cmp(out, cls);
4455 DCHECK(locations->OnlyCallsOnSlowPath());
4456 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4457 instruction, /* is_fatal= */ false);
4458 codegen_->AddSlowPath(slow_path);
4459 __ B(ne, slow_path->GetEntryLabel());
4460 __ Mov(out, 1);
4461 if (zero.IsLinked()) {
4462 __ B(&done);
4463 }
4464 break;
4465 }
4466
4467 case TypeCheckKind::kInterfaceCheck: {
4468 if (codegen_->InstanceOfNeedsReadBarrier(instruction)) {
4469 DCHECK(locations->OnlyCallsOnSlowPath());
4470 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4471 instruction, /* is_fatal= */ false);
4472 codegen_->AddSlowPath(slow_path);
4473 if (codegen_->EmitNonBakerReadBarrier()) {
4474 __ B(slow_path->GetEntryLabel());
4475 break;
4476 }
4477 // For Baker read barrier, take the slow path while marking.
4478 __ Cbnz(mr, slow_path->GetEntryLabel());
4479 }
4480
4481 // Fast-path without read barriers.
4482 UseScratchRegisterScope temps(GetVIXLAssembler());
4483 Register temp = temps.AcquireW();
4484 Register temp2 = temps.AcquireW();
4485 // /* HeapReference<Class> */ temp = obj->klass_
4486 __ Ldr(temp, HeapOperand(obj, class_offset));
4487 GetAssembler()->MaybeUnpoisonHeapReference(temp);
4488 // /* HeapReference<Class> */ temp = temp->iftable_
4489 __ Ldr(temp, HeapOperand(temp, iftable_offset));
4490 GetAssembler()->MaybeUnpoisonHeapReference(temp);
4491 // Load the size of the `IfTable`. The `Class::iftable_` is never null.
4492 __ Ldr(out, HeapOperand(temp, array_length_offset));
4493 // Loop through the `IfTable` and check if any class matches.
4494 vixl::aarch64::Label loop;
4495 __ Bind(&loop);
4496 __ Cbz(out, &done); // If taken, the result in `out` is already 0 (false).
4497 __ Ldr(temp2, HeapOperand(temp, object_array_data_offset));
4498 GetAssembler()->MaybeUnpoisonHeapReference(temp2);
4499 // Go to next interface.
4500 __ Add(temp, temp, 2 * kHeapReferenceSize);
4501 __ Sub(out, out, 2);
4502 // Compare the classes and continue the loop if they do not match.
4503 __ Cmp(cls, temp2);
4504 __ B(ne, &loop);
4505 __ Mov(out, 1);
4506 if (zero.IsLinked()) {
4507 __ B(&done);
4508 }
4509 break;
4510 }
4511
4512 case TypeCheckKind::kUnresolvedCheck: {
4513 // Note that we indeed only call on slow path, but we always go
4514 // into the slow path for the unresolved check case.
4515 //
4516 // We cannot directly call the InstanceofNonTrivial runtime
4517 // entry point without resorting to a type checking slow path
4518 // here (i.e. by calling InvokeRuntime directly), as it would
4519 // require to assign fixed registers for the inputs of this
4520 // HInstanceOf instruction (following the runtime calling
4521 // convention), which might be cluttered by the potential first
4522 // read barrier emission at the beginning of this method.
4523 //
4524 // TODO: Introduce a new runtime entry point taking the object
4525 // to test (instead of its class) as argument, and let it deal
4526 // with the read barrier issues. This will let us refactor this
4527 // case of the `switch` code as it was previously (with a direct
4528 // call to the runtime not using a type checking slow path).
4529 // This should also be beneficial for the other cases above.
4530 DCHECK(locations->OnlyCallsOnSlowPath());
4531 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4532 instruction, /* is_fatal= */ false);
4533 codegen_->AddSlowPath(slow_path);
4534 __ B(slow_path->GetEntryLabel());
4535 break;
4536 }
4537
4538 case TypeCheckKind::kBitstringCheck: {
4539 // /* HeapReference<Class> */ temp = obj->klass_
4540 GenerateReferenceLoadTwoRegisters(instruction,
4541 out_loc,
4542 obj_loc,
4543 class_offset,
4544 maybe_temp_loc,
4545 kWithoutReadBarrier);
4546
4547 GenerateBitstringTypeCheckCompare(instruction, out);
4548 __ Cset(out, eq);
4549 if (zero.IsLinked()) {
4550 __ B(&done);
4551 }
4552 break;
4553 }
4554 }
4555
4556 if (zero.IsLinked()) {
4557 __ Bind(&zero);
4558 __ Mov(out, 0);
4559 }
4560
4561 if (done.IsLinked()) {
4562 __ Bind(&done);
4563 }
4564
4565 if (slow_path != nullptr) {
4566 __ Bind(slow_path->GetExitLabel());
4567 }
4568 }
4569
VisitCheckCast(HCheckCast * instruction)4570 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
4571 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4572 LocationSummary::CallKind call_kind = codegen_->GetCheckCastCallKind(instruction);
4573 LocationSummary* locations =
4574 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4575 locations->SetInAt(0, Location::RequiresRegister());
4576 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4577 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4578 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4579 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4580 } else {
4581 locations->SetInAt(1, Location::RequiresRegister());
4582 }
4583 locations->AddRegisterTemps(NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind));
4584 }
4585
VisitCheckCast(HCheckCast * instruction)4586 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
4587 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4588 LocationSummary* locations = instruction->GetLocations();
4589 Location obj_loc = locations->InAt(0);
4590 Register obj = InputRegisterAt(instruction, 0);
4591 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4592 ? Register()
4593 : InputRegisterAt(instruction, 1);
4594 const size_t num_temps = NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind);
4595 DCHECK_GE(num_temps, 1u);
4596 DCHECK_LE(num_temps, 3u);
4597 Location temp_loc = locations->GetTemp(0);
4598 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
4599 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
4600 Register temp = WRegisterFrom(temp_loc);
4601 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4602 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4603 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4604 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4605 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4606 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4607 const uint32_t object_array_data_offset =
4608 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4609
4610 bool is_type_check_slow_path_fatal = codegen_->IsTypeCheckSlowPathFatal(instruction);
4611 SlowPathCodeARM64* type_check_slow_path =
4612 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4613 instruction, is_type_check_slow_path_fatal);
4614 codegen_->AddSlowPath(type_check_slow_path);
4615
4616 vixl::aarch64::Label done;
4617 // Avoid null check if we know obj is not null.
4618 if (instruction->MustDoNullCheck()) {
4619 __ Cbz(obj, &done);
4620 }
4621
4622 switch (type_check_kind) {
4623 case TypeCheckKind::kExactCheck:
4624 case TypeCheckKind::kArrayCheck: {
4625 // /* HeapReference<Class> */ temp = obj->klass_
4626 GenerateReferenceLoadTwoRegisters(instruction,
4627 temp_loc,
4628 obj_loc,
4629 class_offset,
4630 maybe_temp2_loc,
4631 kWithoutReadBarrier);
4632
4633 __ Cmp(temp, cls);
4634 // Jump to slow path for throwing the exception or doing a
4635 // more involved array check.
4636 __ B(ne, type_check_slow_path->GetEntryLabel());
4637 break;
4638 }
4639
4640 case TypeCheckKind::kAbstractClassCheck: {
4641 // /* HeapReference<Class> */ temp = obj->klass_
4642 GenerateReferenceLoadTwoRegisters(instruction,
4643 temp_loc,
4644 obj_loc,
4645 class_offset,
4646 maybe_temp2_loc,
4647 kWithoutReadBarrier);
4648
4649 // If the class is abstract, we eagerly fetch the super class of the
4650 // object to avoid doing a comparison we know will fail.
4651 vixl::aarch64::Label loop;
4652 __ Bind(&loop);
4653 // /* HeapReference<Class> */ temp = temp->super_class_
4654 GenerateReferenceLoadOneRegister(instruction,
4655 temp_loc,
4656 super_offset,
4657 maybe_temp2_loc,
4658 kWithoutReadBarrier);
4659
4660 // If the class reference currently in `temp` is null, jump to the slow path to throw the
4661 // exception.
4662 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4663 // Otherwise, compare classes.
4664 __ Cmp(temp, cls);
4665 __ B(ne, &loop);
4666 break;
4667 }
4668
4669 case TypeCheckKind::kClassHierarchyCheck: {
4670 // /* HeapReference<Class> */ temp = obj->klass_
4671 GenerateReferenceLoadTwoRegisters(instruction,
4672 temp_loc,
4673 obj_loc,
4674 class_offset,
4675 maybe_temp2_loc,
4676 kWithoutReadBarrier);
4677
4678 // Walk over the class hierarchy to find a match.
4679 vixl::aarch64::Label loop;
4680 __ Bind(&loop);
4681 __ Cmp(temp, cls);
4682 __ B(eq, &done);
4683
4684 // /* HeapReference<Class> */ temp = temp->super_class_
4685 GenerateReferenceLoadOneRegister(instruction,
4686 temp_loc,
4687 super_offset,
4688 maybe_temp2_loc,
4689 kWithoutReadBarrier);
4690
4691 // If the class reference currently in `temp` is not null, jump
4692 // back at the beginning of the loop.
4693 __ Cbnz(temp, &loop);
4694 // Otherwise, jump to the slow path to throw the exception.
4695 __ B(type_check_slow_path->GetEntryLabel());
4696 break;
4697 }
4698
4699 case TypeCheckKind::kArrayObjectCheck: {
4700 // /* HeapReference<Class> */ temp = obj->klass_
4701 GenerateReferenceLoadTwoRegisters(instruction,
4702 temp_loc,
4703 obj_loc,
4704 class_offset,
4705 maybe_temp2_loc,
4706 kWithoutReadBarrier);
4707
4708 // Do an exact check.
4709 __ Cmp(temp, cls);
4710 __ B(eq, &done);
4711
4712 // Otherwise, we need to check that the object's class is a non-primitive array.
4713 // /* HeapReference<Class> */ temp = temp->component_type_
4714 GenerateReferenceLoadOneRegister(instruction,
4715 temp_loc,
4716 component_offset,
4717 maybe_temp2_loc,
4718 kWithoutReadBarrier);
4719
4720 // If the component type is null, jump to the slow path to throw the exception.
4721 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4722 // Otherwise, the object is indeed an array. Further check that this component type is not a
4723 // primitive type.
4724 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
4725 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4726 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
4727 break;
4728 }
4729
4730 case TypeCheckKind::kUnresolvedCheck:
4731 // We always go into the type check slow path for the unresolved check cases.
4732 //
4733 // We cannot directly call the CheckCast runtime entry point
4734 // without resorting to a type checking slow path here (i.e. by
4735 // calling InvokeRuntime directly), as it would require to
4736 // assign fixed registers for the inputs of this HInstanceOf
4737 // instruction (following the runtime calling convention), which
4738 // might be cluttered by the potential first read barrier
4739 // emission at the beginning of this method.
4740 __ B(type_check_slow_path->GetEntryLabel());
4741 break;
4742 case TypeCheckKind::kInterfaceCheck: {
4743 // /* HeapReference<Class> */ temp = obj->klass_
4744 GenerateReferenceLoadTwoRegisters(instruction,
4745 temp_loc,
4746 obj_loc,
4747 class_offset,
4748 maybe_temp2_loc,
4749 kWithoutReadBarrier);
4750
4751 // /* HeapReference<Class> */ temp = temp->iftable_
4752 GenerateReferenceLoadOneRegister(instruction,
4753 temp_loc,
4754 iftable_offset,
4755 maybe_temp2_loc,
4756 kWithoutReadBarrier);
4757 // Load the size of the `IfTable`. The `Class::iftable_` is never null.
4758 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4759 // Loop through the iftable and check if any class matches.
4760 vixl::aarch64::Label start_loop;
4761 __ Bind(&start_loop);
4762 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4763 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4764 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4765 // Go to next interface.
4766 __ Add(temp, temp, 2 * kHeapReferenceSize);
4767 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4768 // Compare the classes and continue the loop if they do not match.
4769 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4770 __ B(ne, &start_loop);
4771 break;
4772 }
4773
4774 case TypeCheckKind::kBitstringCheck: {
4775 // /* HeapReference<Class> */ temp = obj->klass_
4776 GenerateReferenceLoadTwoRegisters(instruction,
4777 temp_loc,
4778 obj_loc,
4779 class_offset,
4780 maybe_temp2_loc,
4781 kWithoutReadBarrier);
4782
4783 GenerateBitstringTypeCheckCompare(instruction, temp);
4784 __ B(ne, type_check_slow_path->GetEntryLabel());
4785 break;
4786 }
4787 }
4788 __ Bind(&done);
4789
4790 __ Bind(type_check_slow_path->GetExitLabel());
4791 }
4792
VisitIntConstant(HIntConstant * constant)4793 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4794 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4795 locations->SetOut(Location::ConstantLocation(constant));
4796 }
4797
VisitIntConstant(HIntConstant * constant)4798 void InstructionCodeGeneratorARM64::VisitIntConstant([[maybe_unused]] HIntConstant* constant) {
4799 // Will be generated at use site.
4800 }
4801
VisitNullConstant(HNullConstant * constant)4802 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4803 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4804 locations->SetOut(Location::ConstantLocation(constant));
4805 }
4806
VisitNullConstant(HNullConstant * constant)4807 void InstructionCodeGeneratorARM64::VisitNullConstant([[maybe_unused]] HNullConstant* constant) {
4808 // Will be generated at use site.
4809 }
4810
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4811 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4812 // The trampoline uses the same calling convention as dex calling conventions,
4813 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4814 // the method_idx.
4815 HandleInvoke(invoke);
4816 }
4817
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4818 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4819 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4820 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4821 }
4822
HandleInvoke(HInvoke * invoke)4823 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4824 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4825 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4826 }
4827
VisitInvokeInterface(HInvokeInterface * invoke)4828 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4829 HandleInvoke(invoke);
4830 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4831 // We cannot request ip1 as it's blocked by the register allocator.
4832 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
4833 }
4834 }
4835
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4836 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4837 Register klass) {
4838 DCHECK_EQ(klass.GetCode(), 0u);
4839 if (ProfilingInfoBuilder::IsInlineCacheUseful(instruction->AsInvoke(), this)) {
4840 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4841 DCHECK(info != nullptr);
4842 InlineCache* cache = ProfilingInfoBuilder::GetInlineCache(
4843 info, GetCompilerOptions(), instruction->AsInvoke());
4844 if (cache != nullptr) {
4845 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4846 vixl::aarch64::Label done;
4847 __ Mov(x8, address);
4848 __ Ldr(w9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4849 // Fast path for a monomorphic cache.
4850 __ Cmp(klass.W(), w9);
4851 __ B(eq, &done);
4852 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
4853 __ Bind(&done);
4854 } else {
4855 // This is unexpected, but we don't guarantee stable compilation across
4856 // JIT runs so just warn about it.
4857 ScopedObjectAccess soa(Thread::Current());
4858 LOG(WARNING) << "Missing inline cache for " << GetGraph()->GetArtMethod()->PrettyMethod();
4859 }
4860 }
4861 }
4862
VisitInvokeInterface(HInvokeInterface * invoke)4863 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4864 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4865 LocationSummary* locations = invoke->GetLocations();
4866 Register temp = XRegisterFrom(locations->GetTemp(0));
4867 Location receiver = locations->InAt(0);
4868 Offset class_offset = mirror::Object::ClassOffset();
4869 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4870
4871 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4872 if (receiver.IsStackSlot()) {
4873 __ Ldr(temp.W(), StackOperandFrom(receiver));
4874 {
4875 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4876 // /* HeapReference<Class> */ temp = temp->klass_
4877 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4878 codegen_->MaybeRecordImplicitNullCheck(invoke);
4879 }
4880 } else {
4881 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4882 // /* HeapReference<Class> */ temp = receiver->klass_
4883 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4884 codegen_->MaybeRecordImplicitNullCheck(invoke);
4885 }
4886
4887 // Instead of simply (possibly) unpoisoning `temp` here, we should
4888 // emit a read barrier for the previous class reference load.
4889 // However this is not required in practice, as this is an
4890 // intermediate/temporary reference and because the current
4891 // concurrent copying collector keeps the from-space memory
4892 // intact/accessible until the end of the marking phase (the
4893 // concurrent copying collector may not in the future).
4894 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4895
4896 // If we're compiling baseline, update the inline cache.
4897 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4898
4899 // The register ip1 is required to be used for the hidden argument in
4900 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4901 MacroAssembler* masm = GetVIXLAssembler();
4902 UseScratchRegisterScope scratch_scope(masm);
4903 scratch_scope.Exclude(ip1);
4904 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4905 Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
4906 if (interface_method.IsStackSlot()) {
4907 __ Ldr(ip1, StackOperandFrom(interface_method));
4908 } else {
4909 __ Mov(ip1, XRegisterFrom(interface_method));
4910 }
4911 // If the load kind is through a runtime call, we will pass the method we
4912 // fetch the IMT, which will either be a no-op if we don't hit the conflict
4913 // stub, or will make us always go through the trampoline when there is a
4914 // conflict.
4915 } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
4916 codegen_->LoadMethod(
4917 invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke);
4918 }
4919
4920 __ Ldr(temp,
4921 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4922 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4923 invoke->GetImtIndex(), kArm64PointerSize));
4924 // temp = temp->GetImtEntryAt(method_offset);
4925 __ Ldr(temp, MemOperand(temp, method_offset));
4926 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
4927 // We pass the method from the IMT in case of a conflict. This will ensure
4928 // we go into the runtime to resolve the actual method.
4929 __ Mov(ip1, temp);
4930 }
4931 // lr = temp->GetEntryPoint();
4932 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4933
4934 {
4935 // Ensure the pc position is recorded immediately after the `blr` instruction.
4936 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4937
4938 // lr();
4939 __ blr(lr);
4940 DCHECK(!codegen_->IsLeafMethod());
4941 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
4942 }
4943
4944 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4945 }
4946
VisitInvokeVirtual(HInvokeVirtual * invoke)4947 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4948 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4949 if (intrinsic.TryDispatch(invoke)) {
4950 return;
4951 }
4952
4953 HandleInvoke(invoke);
4954 }
4955
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4956 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4957 // Explicit clinit checks triggered by static invokes must have been pruned by
4958 // art::PrepareForRegisterAllocation.
4959 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4960
4961 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4962 if (intrinsic.TryDispatch(invoke)) {
4963 return;
4964 }
4965
4966 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4967 CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
4968 /*for_register_allocation=*/ true);
4969 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4970 } else {
4971 HandleInvoke(invoke);
4972 }
4973 }
4974
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4975 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4976 if (invoke->GetLocations()->Intrinsified()) {
4977 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4978 intrinsic.Dispatch(invoke);
4979 return true;
4980 }
4981 return false;
4982 }
4983
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)4984 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4985 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4986 [[maybe_unused]] ArtMethod* method) {
4987 // On ARM64 we support all dispatch types.
4988 return desired_dispatch_info;
4989 }
4990
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)4991 void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
4992 switch (load_kind) {
4993 case MethodLoadKind::kBootImageLinkTimePcRelative: {
4994 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4995 // Add ADRP with its PC-relative method patch.
4996 vixl::aarch64::Label* adrp_label =
4997 NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
4998 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4999 // Add ADD with its PC-relative method patch.
5000 vixl::aarch64::Label* add_label =
5001 NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
5002 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
5003 break;
5004 }
5005 case MethodLoadKind::kBootImageRelRo: {
5006 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
5007 uint32_t boot_image_offset = GetBootImageOffset(invoke);
5008 LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset);
5009 break;
5010 }
5011 case MethodLoadKind::kAppImageRelRo: {
5012 DCHECK(GetCompilerOptions().IsAppImage());
5013 // Add ADRP with its PC-relative method patch.
5014 vixl::aarch64::Label* adrp_label =
5015 NewAppImageMethodPatch(invoke->GetResolvedMethodReference());
5016 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
5017 // Add LDR with its PC-relative method patch.
5018 // Note: App image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
5019 vixl::aarch64::Label* ldr_label =
5020 NewAppImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
5021 EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp));
5022 break;
5023 }
5024 case MethodLoadKind::kBssEntry: {
5025 // Add ADRP with its PC-relative .bss entry patch.
5026 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference());
5027 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
5028 // Add LDR with its PC-relative .bss entry patch.
5029 vixl::aarch64::Label* ldr_label =
5030 NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label);
5031 // All aligned loads are implicitly atomic consume operations on ARM64.
5032 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
5033 break;
5034 }
5035 case MethodLoadKind::kJitDirectAddress: {
5036 // Load method address from literal pool.
5037 __ Ldr(XRegisterFrom(temp),
5038 jit_patches_.DeduplicateUint64Literal(
5039 reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())));
5040 break;
5041 }
5042 case MethodLoadKind::kRuntimeCall: {
5043 // Test situation, don't do anything.
5044 break;
5045 }
5046 default: {
5047 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
5048 UNREACHABLE();
5049 }
5050 }
5051 }
5052
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)5053 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
5054 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
5055 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
5056 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
5057 switch (invoke->GetMethodLoadKind()) {
5058 case MethodLoadKind::kStringInit: {
5059 uint32_t offset =
5060 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
5061 // temp = thread->string_init_entrypoint
5062 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
5063 break;
5064 }
5065 case MethodLoadKind::kRecursive:
5066 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
5067 break;
5068 case MethodLoadKind::kRuntimeCall:
5069 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
5070 return; // No code pointer retrieval; the runtime performs the call directly.
5071 case MethodLoadKind::kBootImageLinkTimePcRelative:
5072 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5073 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
5074 // Do not materialize the method pointer, load directly the entrypoint.
5075 // Add ADRP with its PC-relative JNI entrypoint patch.
5076 vixl::aarch64::Label* adrp_label =
5077 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
5078 EmitAdrpPlaceholder(adrp_label, lr);
5079 // Add the LDR with its PC-relative method patch.
5080 vixl::aarch64::Label* add_label =
5081 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label);
5082 EmitLdrOffsetPlaceholder(add_label, lr, lr);
5083 break;
5084 }
5085 FALLTHROUGH_INTENDED;
5086 default:
5087 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
5088 break;
5089 }
5090
5091 auto call_lr = [&]() {
5092 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5093 ExactAssemblyScope eas(GetVIXLAssembler(),
5094 kInstructionSize,
5095 CodeBufferCheckScope::kExactSize);
5096 // lr()
5097 __ blr(lr);
5098 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5099 };
5100 switch (invoke->GetCodePtrLocation()) {
5101 case CodePtrLocation::kCallSelf:
5102 {
5103 DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
5104 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5105 ExactAssemblyScope eas(GetVIXLAssembler(),
5106 kInstructionSize,
5107 CodeBufferCheckScope::kExactSize);
5108 __ bl(&frame_entry_label_);
5109 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5110 }
5111 break;
5112 case CodePtrLocation::kCallCriticalNative: {
5113 size_t out_frame_size =
5114 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
5115 kAapcs64StackAlignment,
5116 GetCriticalNativeDirectCallFrameSize>(invoke);
5117 if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
5118 call_lr();
5119 } else {
5120 // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni
5121 MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize);
5122 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
5123 // lr()
5124 call_lr();
5125 }
5126 // Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
5127 switch (invoke->GetType()) {
5128 case DataType::Type::kBool:
5129 __ Ubfx(w0, w0, 0, 8);
5130 break;
5131 case DataType::Type::kInt8:
5132 __ Sbfx(w0, w0, 0, 8);
5133 break;
5134 case DataType::Type::kUint16:
5135 __ Ubfx(w0, w0, 0, 16);
5136 break;
5137 case DataType::Type::kInt16:
5138 __ Sbfx(w0, w0, 0, 16);
5139 break;
5140 case DataType::Type::kInt32:
5141 case DataType::Type::kInt64:
5142 case DataType::Type::kFloat32:
5143 case DataType::Type::kFloat64:
5144 case DataType::Type::kVoid:
5145 break;
5146 default:
5147 DCHECK(false) << invoke->GetType();
5148 break;
5149 }
5150 if (out_frame_size != 0u) {
5151 DecreaseFrame(out_frame_size);
5152 }
5153 break;
5154 }
5155 case CodePtrLocation::kCallArtMethod: {
5156 // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_;
5157 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
5158 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
5159 // lr()
5160 call_lr();
5161 break;
5162 }
5163 }
5164
5165 DCHECK(!IsLeafMethod());
5166 }
5167
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)5168 void CodeGeneratorARM64::GenerateVirtualCall(
5169 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
5170 // Use the calling convention instead of the location of the receiver, as
5171 // intrinsics may have put the receiver in a different register. In the intrinsics
5172 // slow path, the arguments have been moved to the right place, so here we are
5173 // guaranteed that the receiver is the first register of the calling convention.
5174 InvokeDexCallingConvention calling_convention;
5175 Register receiver = calling_convention.GetRegisterAt(0);
5176 Register temp = XRegisterFrom(temp_in);
5177 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5178 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
5179 Offset class_offset = mirror::Object::ClassOffset();
5180 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
5181
5182 DCHECK(receiver.IsRegister());
5183
5184 {
5185 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5186 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5187 // /* HeapReference<Class> */ temp = receiver->klass_
5188 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
5189 MaybeRecordImplicitNullCheck(invoke);
5190 }
5191 // Instead of simply (possibly) unpoisoning `temp` here, we should
5192 // emit a read barrier for the previous class reference load.
5193 // However this is not required in practice, as this is an
5194 // intermediate/temporary reference and because the current
5195 // concurrent copying collector keeps the from-space memory
5196 // intact/accessible until the end of the marking phase (the
5197 // concurrent copying collector may not in the future).
5198 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
5199
5200 // If we're compiling baseline, update the inline cache.
5201 MaybeGenerateInlineCacheCheck(invoke, temp);
5202
5203 // temp = temp->GetMethodAt(method_offset);
5204 __ Ldr(temp, MemOperand(temp, method_offset));
5205 // lr = temp->GetEntryPoint();
5206 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
5207 {
5208 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
5209 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
5210 // lr();
5211 __ blr(lr);
5212 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
5213 }
5214 }
5215
MoveFromReturnRegister(Location trg,DataType::Type type)5216 void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
5217 if (!trg.IsValid()) {
5218 DCHECK(type == DataType::Type::kVoid);
5219 return;
5220 }
5221
5222 DCHECK_NE(type, DataType::Type::kVoid);
5223
5224 if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
5225 Register trg_reg = RegisterFrom(trg, type);
5226 Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
5227 __ Mov(trg_reg, res_reg, kDiscardForSameWReg);
5228 } else {
5229 VRegister trg_reg = FPRegisterFrom(trg, type);
5230 VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
5231 __ Fmov(trg_reg, res_reg);
5232 }
5233 }
5234
VisitInvokePolymorphic(HInvokePolymorphic * invoke)5235 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
5236 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
5237 if (intrinsic.TryDispatch(invoke)) {
5238 return;
5239 }
5240 HandleInvoke(invoke);
5241 }
5242
VisitInvokePolymorphic(HInvokePolymorphic * invoke)5243 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
5244 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5245 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5246 return;
5247 }
5248 codegen_->GenerateInvokePolymorphicCall(invoke);
5249 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5250 }
5251
VisitInvokeCustom(HInvokeCustom * invoke)5252 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
5253 HandleInvoke(invoke);
5254 }
5255
VisitInvokeCustom(HInvokeCustom * invoke)5256 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
5257 codegen_->GenerateInvokeCustomCall(invoke);
5258 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5259 }
5260
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)5261 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
5262 uint32_t intrinsic_data,
5263 vixl::aarch64::Label* adrp_label) {
5264 return NewPcRelativePatch(
5265 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
5266 }
5267
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)5268 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
5269 uint32_t boot_image_offset,
5270 vixl::aarch64::Label* adrp_label) {
5271 return NewPcRelativePatch(
5272 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
5273 }
5274
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5275 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
5276 MethodReference target_method,
5277 vixl::aarch64::Label* adrp_label) {
5278 return NewPcRelativePatch(
5279 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
5280 }
5281
NewAppImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5282 vixl::aarch64::Label* CodeGeneratorARM64::NewAppImageMethodPatch(
5283 MethodReference target_method,
5284 vixl::aarch64::Label* adrp_label) {
5285 return NewPcRelativePatch(
5286 target_method.dex_file, target_method.index, adrp_label, &app_image_method_patches_);
5287 }
5288
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5289 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
5290 MethodReference target_method,
5291 vixl::aarch64::Label* adrp_label) {
5292 return NewPcRelativePatch(
5293 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
5294 }
5295
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)5296 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
5297 const DexFile& dex_file,
5298 dex::TypeIndex type_index,
5299 vixl::aarch64::Label* adrp_label) {
5300 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
5301 }
5302
NewAppImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)5303 vixl::aarch64::Label* CodeGeneratorARM64::NewAppImageTypePatch(
5304 const DexFile& dex_file,
5305 dex::TypeIndex type_index,
5306 vixl::aarch64::Label* adrp_label) {
5307 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &app_image_type_patches_);
5308 }
5309
NewBssEntryTypePatch(HLoadClass * load_class,vixl::aarch64::Label * adrp_label)5310 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
5311 HLoadClass* load_class,
5312 vixl::aarch64::Label* adrp_label) {
5313 const DexFile& dex_file = load_class->GetDexFile();
5314 dex::TypeIndex type_index = load_class->GetTypeIndex();
5315 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
5316 switch (load_class->GetLoadKind()) {
5317 case HLoadClass::LoadKind::kBssEntry:
5318 patches = &type_bss_entry_patches_;
5319 break;
5320 case HLoadClass::LoadKind::kBssEntryPublic:
5321 patches = &public_type_bss_entry_patches_;
5322 break;
5323 case HLoadClass::LoadKind::kBssEntryPackage:
5324 patches = &package_type_bss_entry_patches_;
5325 break;
5326 default:
5327 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
5328 UNREACHABLE();
5329 }
5330 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches);
5331 }
5332
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5333 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
5334 const DexFile& dex_file,
5335 dex::StringIndex string_index,
5336 vixl::aarch64::Label* adrp_label) {
5337 return NewPcRelativePatch(
5338 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
5339 }
5340
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5341 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
5342 const DexFile& dex_file,
5343 dex::StringIndex string_index,
5344 vixl::aarch64::Label* adrp_label) {
5345 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
5346 }
5347
NewMethodTypeBssEntryPatch(HLoadMethodType * load_method_type,vixl::aarch64::Label * adrp_label)5348 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodTypeBssEntryPatch(
5349 HLoadMethodType* load_method_type,
5350 vixl::aarch64::Label* adrp_label) {
5351 return NewPcRelativePatch(&load_method_type->GetDexFile(),
5352 load_method_type->GetProtoIndex().index_,
5353 adrp_label,
5354 &method_type_bss_entry_patches_);
5355 }
5356
NewBootImageJniEntrypointPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5357 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch(
5358 MethodReference target_method,
5359 vixl::aarch64::Label* adrp_label) {
5360 return NewPcRelativePatch(
5361 target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_);
5362 }
5363
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)5364 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
5365 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5366 DCHECK(!GetCompilerOptions().IsJitCompiler());
5367 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
5368 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
5369 __ bind(bl_label);
5370 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5371 }
5372
EmitBakerReadBarrierCbnz(uint32_t custom_data)5373 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
5374 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5375 if (GetCompilerOptions().IsJitCompiler()) {
5376 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
5377 vixl::aarch64::Label* slow_path_entry = &it->second.label;
5378 __ cbnz(mr, slow_path_entry);
5379 } else {
5380 baker_read_barrier_patches_.emplace_back(custom_data);
5381 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
5382 __ bind(cbnz_label);
5383 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5384 }
5385 }
5386
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)5387 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
5388 const DexFile* dex_file,
5389 uint32_t offset_or_index,
5390 vixl::aarch64::Label* adrp_label,
5391 ArenaDeque<PcRelativePatchInfo>* patches) {
5392 // Add a patch entry and return the label.
5393 patches->emplace_back(dex_file, offset_or_index);
5394 PcRelativePatchInfo* info = &patches->back();
5395 vixl::aarch64::Label* label = &info->label;
5396 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
5397 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
5398 return label;
5399 }
5400
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)5401 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
5402 jit_patches_.EmitJitRootPatches(code, roots_data, *GetCodeGenerationData());
5403 }
5404
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)5405 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
5406 vixl::aarch64::Register reg) {
5407 DCHECK(reg.IsX());
5408 SingleEmissionCheckScope guard(GetVIXLAssembler());
5409 __ Bind(fixup_label);
5410 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
5411 }
5412
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5413 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
5414 vixl::aarch64::Register out,
5415 vixl::aarch64::Register base) {
5416 DCHECK(out.IsX());
5417 DCHECK(base.IsX());
5418 SingleEmissionCheckScope guard(GetVIXLAssembler());
5419 __ Bind(fixup_label);
5420 __ add(out, base, Operand(/* offset placeholder */ 0));
5421 }
5422
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5423 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
5424 vixl::aarch64::Register out,
5425 vixl::aarch64::Register base) {
5426 DCHECK(base.IsX());
5427 SingleEmissionCheckScope guard(GetVIXLAssembler());
5428 __ Bind(fixup_label);
5429 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
5430 }
5431
LoadBootImageRelRoEntry(vixl::aarch64::Register reg,uint32_t boot_image_offset)5432 void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg,
5433 uint32_t boot_image_offset) {
5434 DCHECK(reg.IsW());
5435 // Add ADRP with its PC-relative boot image .data.img.rel.ro patch.
5436 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
5437 EmitAdrpPlaceholder(adrp_label, reg.X());
5438 // Add LDR with its PC-relative boot image .data.img.rel.ro patch.
5439 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5440 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
5441 }
5442
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)5443 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
5444 uint32_t boot_image_reference) {
5445 if (GetCompilerOptions().IsBootImage()) {
5446 // Add ADRP with its PC-relative type patch.
5447 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
5448 EmitAdrpPlaceholder(adrp_label, reg.X());
5449 // Add ADD with its PC-relative type patch.
5450 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
5451 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5452 } else if (GetCompilerOptions().GetCompilePic()) {
5453 LoadBootImageRelRoEntry(reg, boot_image_reference);
5454 } else {
5455 DCHECK(GetCompilerOptions().IsJitCompiler());
5456 gc::Heap* heap = Runtime::Current()->GetHeap();
5457 DCHECK(!heap->GetBootImageSpaces().empty());
5458 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
5459 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
5460 }
5461 }
5462
LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,TypeReference target_type)5463 void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,
5464 TypeReference target_type) {
5465 // Load the type the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
5466 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5467 // Add ADRP with its PC-relative type patch.
5468 vixl::aarch64::Label* adrp_label =
5469 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
5470 EmitAdrpPlaceholder(adrp_label, reg.X());
5471 // Add ADD with its PC-relative type patch.
5472 vixl::aarch64::Label* add_label =
5473 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label);
5474 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5475 }
5476
LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg,HInvoke * invoke)5477 void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) {
5478 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
5479 if (GetCompilerOptions().IsBootImage()) {
5480 MethodReference target_method = invoke->GetResolvedMethodReference();
5481 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
5482 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
5483 } else {
5484 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
5485 LoadBootImageAddress(reg, boot_image_offset);
5486 }
5487 }
5488
LoadClassRootForIntrinsic(vixl::aarch64::Register reg,ClassRoot class_root)5489 void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg,
5490 ClassRoot class_root) {
5491 if (GetCompilerOptions().IsBootImage()) {
5492 ScopedObjectAccess soa(Thread::Current());
5493 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
5494 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
5495 LoadTypeForBootImageIntrinsic(reg, target_type);
5496 } else {
5497 uint32_t boot_image_offset = GetBootImageOffset(class_root);
5498 LoadBootImageAddress(reg, boot_image_offset);
5499 }
5500 }
5501
5502 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)5503 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
5504 const ArenaDeque<PcRelativePatchInfo>& infos,
5505 ArenaVector<linker::LinkerPatch>* linker_patches) {
5506 for (const PcRelativePatchInfo& info : infos) {
5507 linker_patches->push_back(Factory(info.label.GetLocation(),
5508 info.target_dex_file,
5509 info.pc_insn_label->GetLocation(),
5510 info.offset_or_index));
5511 }
5512 }
5513
5514 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)5515 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
5516 const DexFile* target_dex_file,
5517 uint32_t pc_insn_offset,
5518 uint32_t boot_image_offset) {
5519 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
5520 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
5521 }
5522
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)5523 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
5524 DCHECK(linker_patches->empty());
5525 size_t size =
5526 boot_image_method_patches_.size() +
5527 app_image_method_patches_.size() +
5528 method_bss_entry_patches_.size() +
5529 boot_image_type_patches_.size() +
5530 app_image_type_patches_.size() +
5531 type_bss_entry_patches_.size() +
5532 public_type_bss_entry_patches_.size() +
5533 package_type_bss_entry_patches_.size() +
5534 boot_image_string_patches_.size() +
5535 string_bss_entry_patches_.size() +
5536 method_type_bss_entry_patches_.size() +
5537 boot_image_jni_entrypoint_patches_.size() +
5538 boot_image_other_patches_.size() +
5539 call_entrypoint_patches_.size() +
5540 baker_read_barrier_patches_.size();
5541 linker_patches->reserve(size);
5542 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
5543 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
5544 boot_image_method_patches_, linker_patches);
5545 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
5546 boot_image_type_patches_, linker_patches);
5547 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
5548 boot_image_string_patches_, linker_patches);
5549 } else {
5550 DCHECK(boot_image_method_patches_.empty());
5551 DCHECK(boot_image_type_patches_.empty());
5552 DCHECK(boot_image_string_patches_.empty());
5553 }
5554 DCHECK_IMPLIES(!GetCompilerOptions().IsAppImage(), app_image_method_patches_.empty());
5555 DCHECK_IMPLIES(!GetCompilerOptions().IsAppImage(), app_image_type_patches_.empty());
5556 if (GetCompilerOptions().IsBootImage()) {
5557 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
5558 boot_image_other_patches_, linker_patches);
5559 } else {
5560 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::BootImageRelRoPatch>>(
5561 boot_image_other_patches_, linker_patches);
5562 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodAppImageRelRoPatch>(
5563 app_image_method_patches_, linker_patches);
5564 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeAppImageRelRoPatch>(
5565 app_image_type_patches_, linker_patches);
5566 }
5567 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
5568 method_bss_entry_patches_, linker_patches);
5569 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
5570 type_bss_entry_patches_, linker_patches);
5571 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
5572 public_type_bss_entry_patches_, linker_patches);
5573 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
5574 package_type_bss_entry_patches_, linker_patches);
5575 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
5576 string_bss_entry_patches_, linker_patches);
5577 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodTypeBssEntryPatch>(
5578 method_type_bss_entry_patches_, linker_patches);
5579 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
5580 boot_image_jni_entrypoint_patches_, linker_patches);
5581 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
5582 DCHECK(info.target_dex_file == nullptr);
5583 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
5584 info.label.GetLocation(), info.offset_or_index));
5585 }
5586 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
5587 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
5588 info.label.GetLocation(), info.custom_data));
5589 }
5590 DCHECK_EQ(size, linker_patches->size());
5591 }
5592
NeedsThunkCode(const linker::LinkerPatch & patch) const5593 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
5594 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
5595 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
5596 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
5597 }
5598
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)5599 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
5600 /*out*/ ArenaVector<uint8_t>* code,
5601 /*out*/ std::string* debug_name) {
5602 Arm64Assembler assembler(GetGraph()->GetAllocator());
5603 switch (patch.GetType()) {
5604 case linker::LinkerPatch::Type::kCallRelative: {
5605 // The thunk just uses the entry point in the ArtMethod. This works even for calls
5606 // to the generic JNI and interpreter trampolines.
5607 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
5608 kArm64PointerSize).Int32Value());
5609 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
5610 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5611 *debug_name = "MethodCallThunk";
5612 }
5613 break;
5614 }
5615 case linker::LinkerPatch::Type::kCallEntrypoint: {
5616 Offset offset(patch.EntrypointOffset());
5617 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
5618 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5619 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
5620 }
5621 break;
5622 }
5623 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
5624 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
5625 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
5626 break;
5627 }
5628 default:
5629 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
5630 UNREACHABLE();
5631 }
5632
5633 // Ensure we emit the literal pool if any.
5634 assembler.FinalizeCode();
5635 code->resize(assembler.CodeSize());
5636 MemoryRegion code_region(code->data(), code->size());
5637 assembler.CopyInstructions(code_region);
5638 }
5639
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)5640 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
5641 // Explicit clinit checks triggered by static invokes must have been pruned by
5642 // art::PrepareForRegisterAllocation.
5643 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
5644
5645 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5646 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5647 return;
5648 }
5649
5650 LocationSummary* locations = invoke->GetLocations();
5651 codegen_->GenerateStaticOrDirectCall(
5652 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
5653
5654 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5655 }
5656
VisitInvokeVirtual(HInvokeVirtual * invoke)5657 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
5658 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5659 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5660 return;
5661 }
5662
5663 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
5664 DCHECK(!codegen_->IsLeafMethod());
5665
5666 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5667 }
5668
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)5669 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
5670 HLoadClass::LoadKind desired_class_load_kind) {
5671 switch (desired_class_load_kind) {
5672 case HLoadClass::LoadKind::kInvalid:
5673 LOG(FATAL) << "UNREACHABLE";
5674 UNREACHABLE();
5675 case HLoadClass::LoadKind::kReferrersClass:
5676 break;
5677 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5678 case HLoadClass::LoadKind::kBootImageRelRo:
5679 case HLoadClass::LoadKind::kAppImageRelRo:
5680 case HLoadClass::LoadKind::kBssEntry:
5681 case HLoadClass::LoadKind::kBssEntryPublic:
5682 case HLoadClass::LoadKind::kBssEntryPackage:
5683 DCHECK(!GetCompilerOptions().IsJitCompiler());
5684 break;
5685 case HLoadClass::LoadKind::kJitBootImageAddress:
5686 case HLoadClass::LoadKind::kJitTableAddress:
5687 DCHECK(GetCompilerOptions().IsJitCompiler());
5688 break;
5689 case HLoadClass::LoadKind::kRuntimeCall:
5690 break;
5691 }
5692 return desired_class_load_kind;
5693 }
5694
VisitLoadClass(HLoadClass * cls)5695 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
5696 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5697 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5698 InvokeRuntimeCallingConvention calling_convention;
5699 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
5700 cls,
5701 LocationFrom(calling_convention.GetRegisterAt(0)),
5702 LocationFrom(vixl::aarch64::x0));
5703 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
5704 return;
5705 }
5706 DCHECK_EQ(cls->NeedsAccessCheck(),
5707 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5708 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5709
5710 const bool requires_read_barrier = !cls->IsInImage() && codegen_->EmitReadBarrier();
5711 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5712 ? LocationSummary::kCallOnSlowPath
5713 : LocationSummary::kNoCall;
5714 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
5715 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5716 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5717 }
5718
5719 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
5720 locations->SetInAt(0, Location::RequiresRegister());
5721 }
5722 locations->SetOut(Location::RequiresRegister());
5723 if (load_kind == HLoadClass::LoadKind::kBssEntry ||
5724 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5725 load_kind == HLoadClass::LoadKind::kBssEntryPackage) {
5726 if (codegen_->EmitNonBakerReadBarrier()) {
5727 // For non-Baker read barrier we have a temp-clobbering call.
5728 } else {
5729 // Rely on the type resolution or initialization and marking to save everything we need.
5730 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5731 }
5732 }
5733 }
5734
5735 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5736 // move.
VisitLoadClass(HLoadClass * cls)5737 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
5738 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5739 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5740 codegen_->GenerateLoadClassRuntimeCall(cls);
5741 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5742 return;
5743 }
5744 DCHECK_EQ(cls->NeedsAccessCheck(),
5745 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5746 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5747
5748 Location out_loc = cls->GetLocations()->Out();
5749 Register out = OutputRegister(cls);
5750
5751 const ReadBarrierOption read_barrier_option =
5752 cls->IsInImage() ? kWithoutReadBarrier : codegen_->GetCompilerReadBarrierOption();
5753 bool generate_null_check = false;
5754 switch (load_kind) {
5755 case HLoadClass::LoadKind::kReferrersClass: {
5756 DCHECK(!cls->CanCallRuntime());
5757 DCHECK(!cls->MustGenerateClinitCheck());
5758 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5759 Register current_method = InputRegisterAt(cls, 0);
5760 codegen_->GenerateGcRootFieldLoad(cls,
5761 out_loc,
5762 current_method,
5763 ArtMethod::DeclaringClassOffset().Int32Value(),
5764 /* fixup_label= */ nullptr,
5765 read_barrier_option);
5766 break;
5767 }
5768 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5769 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5770 codegen_->GetCompilerOptions().IsBootImageExtension());
5771 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5772 // Add ADRP with its PC-relative type patch.
5773 const DexFile& dex_file = cls->GetDexFile();
5774 dex::TypeIndex type_index = cls->GetTypeIndex();
5775 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
5776 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5777 // Add ADD with its PC-relative type patch.
5778 vixl::aarch64::Label* add_label =
5779 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
5780 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5781 break;
5782 }
5783 case HLoadClass::LoadKind::kBootImageRelRo: {
5784 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5785 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
5786 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5787 break;
5788 }
5789 case HLoadClass::LoadKind::kAppImageRelRo: {
5790 DCHECK(codegen_->GetCompilerOptions().IsAppImage());
5791 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5792 // Add ADRP with its PC-relative type patch.
5793 const DexFile& dex_file = cls->GetDexFile();
5794 dex::TypeIndex type_index = cls->GetTypeIndex();
5795 vixl::aarch64::Label* adrp_label = codegen_->NewAppImageTypePatch(dex_file, type_index);
5796 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5797 // Add LDR with its PC-relative type patch.
5798 vixl::aarch64::Label* ldr_label =
5799 codegen_->NewAppImageTypePatch(dex_file, type_index, adrp_label);
5800 codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X());
5801 break;
5802 }
5803 case HLoadClass::LoadKind::kBssEntry:
5804 case HLoadClass::LoadKind::kBssEntryPublic:
5805 case HLoadClass::LoadKind::kBssEntryPackage: {
5806 // Add ADRP with its PC-relative Class .bss entry patch.
5807 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5808 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls);
5809 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5810 // Add LDR with its PC-relative Class .bss entry patch.
5811 vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label);
5812 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
5813 // All aligned loads are implicitly atomic consume operations on ARM64.
5814 codegen_->GenerateGcRootFieldLoad(cls,
5815 out_loc,
5816 temp,
5817 /* offset placeholder */ 0u,
5818 ldr_label,
5819 read_barrier_option);
5820 generate_null_check = true;
5821 break;
5822 }
5823 case HLoadClass::LoadKind::kJitBootImageAddress: {
5824 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5825 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
5826 DCHECK_NE(address, 0u);
5827 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5828 break;
5829 }
5830 case HLoadClass::LoadKind::kJitTableAddress: {
5831 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5832 cls->GetTypeIndex(),
5833 cls->GetClass()));
5834 codegen_->GenerateGcRootFieldLoad(cls,
5835 out_loc,
5836 out.X(),
5837 /* offset= */ 0,
5838 /* fixup_label= */ nullptr,
5839 read_barrier_option);
5840 break;
5841 }
5842 case HLoadClass::LoadKind::kRuntimeCall:
5843 case HLoadClass::LoadKind::kInvalid:
5844 LOG(FATAL) << "UNREACHABLE";
5845 UNREACHABLE();
5846 }
5847
5848 bool do_clinit = cls->MustGenerateClinitCheck();
5849 if (generate_null_check || do_clinit) {
5850 DCHECK(cls->CanCallRuntime());
5851 SlowPathCodeARM64* slow_path =
5852 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
5853 codegen_->AddSlowPath(slow_path);
5854 if (generate_null_check) {
5855 __ Cbz(out, slow_path->GetEntryLabel());
5856 }
5857 if (cls->MustGenerateClinitCheck()) {
5858 GenerateClassInitializationCheck(slow_path, out);
5859 } else {
5860 __ Bind(slow_path->GetExitLabel());
5861 }
5862 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5863 }
5864 }
5865
VisitLoadMethodHandle(HLoadMethodHandle * load)5866 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5867 InvokeRuntimeCallingConvention calling_convention;
5868 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5869 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
5870 }
5871
VisitLoadMethodHandle(HLoadMethodHandle * load)5872 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5873 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
5874 }
5875
VisitLoadMethodType(HLoadMethodType * load)5876 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
5877 if (load->GetLoadKind() == HLoadMethodType::LoadKind::kRuntimeCall) {
5878 InvokeRuntimeCallingConvention calling_convention;
5879 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5880 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
5881 } else {
5882 LocationSummary* locations =
5883 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
5884 locations->SetOut(Location::RequiresRegister());
5885 if (load->GetLoadKind() == HLoadMethodType::LoadKind::kBssEntry) {
5886 if (codegen_->EmitNonBakerReadBarrier()) {
5887 // For non-Baker read barrier we have a temp-clobbering call.
5888 } else {
5889 // Rely on the pResolveMethodType to save everything.
5890 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5891 }
5892 }
5893 }
5894 }
5895
VisitLoadMethodType(HLoadMethodType * load)5896 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
5897 Location out_loc = load->GetLocations()->Out();
5898 Register out = OutputRegister(load);
5899
5900 switch (load->GetLoadKind()) {
5901 case HLoadMethodType::LoadKind::kBssEntry: {
5902 // Add ADRP with its PC-relative Class .bss entry patch.
5903 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5904 vixl::aarch64::Label* adrp_label = codegen_->NewMethodTypeBssEntryPatch(load);
5905 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5906 // Add LDR with its PC-relative MethodType .bss entry patch.
5907 vixl::aarch64::Label* ldr_label = codegen_->NewMethodTypeBssEntryPatch(load, adrp_label);
5908 // /* GcRoot<mirror::MethodType> */ out = *(base_address + offset) /* PC-relative */
5909 // All aligned loads are implicitly atomic consume operations on ARM64.
5910 codegen_->GenerateGcRootFieldLoad(load,
5911 out_loc,
5912 temp,
5913 /* offset placeholder */ 0u,
5914 ldr_label,
5915 codegen_->GetCompilerReadBarrierOption());
5916 SlowPathCodeARM64* slow_path =
5917 new (codegen_->GetScopedAllocator()) LoadMethodTypeSlowPathARM64(load);
5918 codegen_->AddSlowPath(slow_path);
5919 __ Cbz(out, slow_path->GetEntryLabel());
5920 __ Bind(slow_path->GetExitLabel());
5921 codegen_->MaybeGenerateMarkingRegisterCheck(/* code = */ __LINE__);
5922 return;
5923 }
5924 case HLoadMethodType::LoadKind::kJitTableAddress: {
5925 __ Ldr(out, codegen_->DeduplicateJitMethodTypeLiteral(load->GetDexFile(),
5926 load->GetProtoIndex(),
5927 load->GetMethodType()));
5928 codegen_->GenerateGcRootFieldLoad(load,
5929 out_loc,
5930 out.X(),
5931 /* offset= */ 0,
5932 /* fixup_label= */ nullptr,
5933 codegen_->GetCompilerReadBarrierOption());
5934 return;
5935 }
5936 default:
5937 DCHECK_EQ(load->GetLoadKind(), HLoadMethodType::LoadKind::kRuntimeCall);
5938 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
5939 break;
5940 }
5941 }
5942
GetExceptionTlsAddress()5943 static MemOperand GetExceptionTlsAddress() {
5944 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
5945 }
5946
VisitLoadException(HLoadException * load)5947 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
5948 LocationSummary* locations =
5949 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
5950 locations->SetOut(Location::RequiresRegister());
5951 }
5952
VisitLoadException(HLoadException * instruction)5953 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
5954 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
5955 }
5956
VisitClearException(HClearException * clear)5957 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
5958 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
5959 }
5960
VisitClearException(HClearException * clear)5961 void InstructionCodeGeneratorARM64::VisitClearException([[maybe_unused]] HClearException* clear) {
5962 __ Str(wzr, GetExceptionTlsAddress());
5963 }
5964
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5965 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
5966 HLoadString::LoadKind desired_string_load_kind) {
5967 switch (desired_string_load_kind) {
5968 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5969 case HLoadString::LoadKind::kBootImageRelRo:
5970 case HLoadString::LoadKind::kBssEntry:
5971 DCHECK(!GetCompilerOptions().IsJitCompiler());
5972 break;
5973 case HLoadString::LoadKind::kJitBootImageAddress:
5974 case HLoadString::LoadKind::kJitTableAddress:
5975 DCHECK(GetCompilerOptions().IsJitCompiler());
5976 break;
5977 case HLoadString::LoadKind::kRuntimeCall:
5978 break;
5979 }
5980 return desired_string_load_kind;
5981 }
5982
VisitLoadString(HLoadString * load)5983 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
5984 LocationSummary::CallKind call_kind = codegen_->GetLoadStringCallKind(load);
5985 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
5986 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
5987 InvokeRuntimeCallingConvention calling_convention;
5988 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
5989 } else {
5990 locations->SetOut(Location::RequiresRegister());
5991 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
5992 if (codegen_->EmitNonBakerReadBarrier()) {
5993 // For non-Baker read barrier we have a temp-clobbering call.
5994 } else {
5995 // Rely on the pResolveString and marking to save everything we need.
5996 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5997 }
5998 }
5999 }
6000 }
6001
6002 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6003 // move.
VisitLoadString(HLoadString * load)6004 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
6005 Register out = OutputRegister(load);
6006 Location out_loc = load->GetLocations()->Out();
6007
6008 switch (load->GetLoadKind()) {
6009 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6010 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
6011 codegen_->GetCompilerOptions().IsBootImageExtension());
6012 // Add ADRP with its PC-relative String patch.
6013 const DexFile& dex_file = load->GetDexFile();
6014 const dex::StringIndex string_index = load->GetStringIndex();
6015 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
6016 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
6017 // Add ADD with its PC-relative String patch.
6018 vixl::aarch64::Label* add_label =
6019 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
6020 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
6021 return;
6022 }
6023 case HLoadString::LoadKind::kBootImageRelRo: {
6024 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
6025 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
6026 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
6027 return;
6028 }
6029 case HLoadString::LoadKind::kBssEntry: {
6030 // Add ADRP with its PC-relative String .bss entry patch.
6031 const DexFile& dex_file = load->GetDexFile();
6032 const dex::StringIndex string_index = load->GetStringIndex();
6033 Register temp = XRegisterFrom(out_loc);
6034 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
6035 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
6036 // Add LDR with its PC-relative String .bss entry patch.
6037 vixl::aarch64::Label* ldr_label =
6038 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
6039 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
6040 // All aligned loads are implicitly atomic consume operations on ARM64.
6041 codegen_->GenerateGcRootFieldLoad(load,
6042 out_loc,
6043 temp,
6044 /* offset placeholder */ 0u,
6045 ldr_label,
6046 codegen_->GetCompilerReadBarrierOption());
6047 SlowPathCodeARM64* slow_path =
6048 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
6049 codegen_->AddSlowPath(slow_path);
6050 __ Cbz(out.X(), slow_path->GetEntryLabel());
6051 __ Bind(slow_path->GetExitLabel());
6052 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6053 return;
6054 }
6055 case HLoadString::LoadKind::kJitBootImageAddress: {
6056 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
6057 DCHECK_NE(address, 0u);
6058 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
6059 return;
6060 }
6061 case HLoadString::LoadKind::kJitTableAddress: {
6062 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
6063 load->GetStringIndex(),
6064 load->GetString()));
6065 codegen_->GenerateGcRootFieldLoad(load,
6066 out_loc,
6067 out.X(),
6068 /* offset= */ 0,
6069 /* fixup_label= */ nullptr,
6070 codegen_->GetCompilerReadBarrierOption());
6071 return;
6072 }
6073 default:
6074 break;
6075 }
6076
6077 InvokeRuntimeCallingConvention calling_convention;
6078 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
6079 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
6080 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
6081 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
6082 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6083 }
6084
VisitLongConstant(HLongConstant * constant)6085 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
6086 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
6087 locations->SetOut(Location::ConstantLocation(constant));
6088 }
6089
VisitLongConstant(HLongConstant * constant)6090 void InstructionCodeGeneratorARM64::VisitLongConstant([[maybe_unused]] HLongConstant* constant) {
6091 // Will be generated at use site.
6092 }
6093
VisitMonitorOperation(HMonitorOperation * instruction)6094 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
6095 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6096 instruction, LocationSummary::kCallOnMainOnly);
6097 InvokeRuntimeCallingConvention calling_convention;
6098 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6099 }
6100
VisitMonitorOperation(HMonitorOperation * instruction)6101 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
6102 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
6103 instruction,
6104 instruction->GetDexPc());
6105 if (instruction->IsEnter()) {
6106 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6107 } else {
6108 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6109 }
6110 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6111 }
6112
VisitMul(HMul * mul)6113 void LocationsBuilderARM64::VisitMul(HMul* mul) {
6114 LocationSummary* locations =
6115 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
6116 switch (mul->GetResultType()) {
6117 case DataType::Type::kInt32:
6118 case DataType::Type::kInt64:
6119 locations->SetInAt(0, Location::RequiresRegister());
6120 locations->SetInAt(1, Location::RequiresRegister());
6121 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6122 break;
6123
6124 case DataType::Type::kFloat32:
6125 case DataType::Type::kFloat64:
6126 locations->SetInAt(0, Location::RequiresFpuRegister());
6127 locations->SetInAt(1, Location::RequiresFpuRegister());
6128 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6129 break;
6130
6131 default:
6132 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
6133 }
6134 }
6135
VisitMul(HMul * mul)6136 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
6137 switch (mul->GetResultType()) {
6138 case DataType::Type::kInt32:
6139 case DataType::Type::kInt64:
6140 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
6141 break;
6142
6143 case DataType::Type::kFloat32:
6144 case DataType::Type::kFloat64:
6145 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
6146 break;
6147
6148 default:
6149 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
6150 }
6151 }
6152
VisitNeg(HNeg * neg)6153 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
6154 LocationSummary* locations =
6155 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
6156 switch (neg->GetResultType()) {
6157 case DataType::Type::kInt32:
6158 case DataType::Type::kInt64:
6159 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
6160 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6161 break;
6162
6163 case DataType::Type::kFloat32:
6164 case DataType::Type::kFloat64:
6165 locations->SetInAt(0, Location::RequiresFpuRegister());
6166 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6167 break;
6168
6169 default:
6170 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
6171 }
6172 }
6173
VisitNeg(HNeg * neg)6174 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
6175 switch (neg->GetResultType()) {
6176 case DataType::Type::kInt32:
6177 case DataType::Type::kInt64:
6178 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
6179 break;
6180
6181 case DataType::Type::kFloat32:
6182 case DataType::Type::kFloat64:
6183 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
6184 break;
6185
6186 default:
6187 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
6188 }
6189 }
6190
VisitNewArray(HNewArray * instruction)6191 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
6192 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6193 instruction, LocationSummary::kCallOnMainOnly);
6194 InvokeRuntimeCallingConvention calling_convention;
6195 locations->SetOut(LocationFrom(x0));
6196 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6197 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
6198 }
6199
VisitNewArray(HNewArray * instruction)6200 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
6201 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
6202 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
6203 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
6204 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
6205 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6206 }
6207
VisitNewInstance(HNewInstance * instruction)6208 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
6209 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6210 instruction, LocationSummary::kCallOnMainOnly);
6211 InvokeRuntimeCallingConvention calling_convention;
6212 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6213 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
6214 }
6215
VisitNewInstance(HNewInstance * instruction)6216 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
6217 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
6218 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
6219 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6220 }
6221
VisitNot(HNot * instruction)6222 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
6223 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6224 locations->SetInAt(0, Location::RequiresRegister());
6225 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6226 }
6227
VisitNot(HNot * instruction)6228 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
6229 switch (instruction->GetResultType()) {
6230 case DataType::Type::kInt32:
6231 case DataType::Type::kInt64:
6232 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
6233 break;
6234
6235 default:
6236 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
6237 }
6238 }
6239
VisitBooleanNot(HBooleanNot * instruction)6240 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
6241 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6242 locations->SetInAt(0, Location::RequiresRegister());
6243 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6244 }
6245
VisitBooleanNot(HBooleanNot * instruction)6246 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
6247 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
6248 }
6249
VisitNullCheck(HNullCheck * instruction)6250 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
6251 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
6252 locations->SetInAt(0, Location::RequiresRegister());
6253 }
6254
GenerateImplicitNullCheck(HNullCheck * instruction)6255 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
6256 if (CanMoveNullCheckToUser(instruction)) {
6257 return;
6258 }
6259 {
6260 // Ensure that between load and RecordPcInfo there are no pools emitted.
6261 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6262 Location obj = instruction->GetLocations()->InAt(0);
6263 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
6264 RecordPcInfo(instruction, instruction->GetDexPc());
6265 }
6266 }
6267
GenerateExplicitNullCheck(HNullCheck * instruction)6268 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
6269 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
6270 AddSlowPath(slow_path);
6271
6272 LocationSummary* locations = instruction->GetLocations();
6273 Location obj = locations->InAt(0);
6274
6275 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
6276 }
6277
VisitNullCheck(HNullCheck * instruction)6278 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
6279 codegen_->GenerateNullCheck(instruction);
6280 }
6281
VisitOr(HOr * instruction)6282 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
6283 HandleBinaryOp(instruction);
6284 }
6285
VisitOr(HOr * instruction)6286 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
6287 HandleBinaryOp(instruction);
6288 }
6289
VisitParallelMove(HParallelMove * instruction)6290 void LocationsBuilderARM64::VisitParallelMove([[maybe_unused]] HParallelMove* instruction) {
6291 LOG(FATAL) << "Unreachable";
6292 }
6293
VisitParallelMove(HParallelMove * instruction)6294 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
6295 if (instruction->GetNext()->IsSuspendCheck() &&
6296 instruction->GetBlock()->GetLoopInformation() != nullptr) {
6297 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
6298 // The back edge will generate the suspend check.
6299 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
6300 }
6301
6302 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
6303 }
6304
VisitParameterValue(HParameterValue * instruction)6305 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
6306 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6307 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
6308 if (location.IsStackSlot()) {
6309 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
6310 } else if (location.IsDoubleStackSlot()) {
6311 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
6312 }
6313 locations->SetOut(location);
6314 }
6315
VisitParameterValue(HParameterValue * instruction)6316 void InstructionCodeGeneratorARM64::VisitParameterValue(
6317 [[maybe_unused]] HParameterValue* instruction) {
6318 // Nothing to do, the parameter is already at its location.
6319 }
6320
VisitCurrentMethod(HCurrentMethod * instruction)6321 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
6322 LocationSummary* locations =
6323 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6324 locations->SetOut(LocationFrom(kArtMethodRegister));
6325 }
6326
VisitCurrentMethod(HCurrentMethod * instruction)6327 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
6328 [[maybe_unused]] HCurrentMethod* instruction) {
6329 // Nothing to do, the method is already at its location.
6330 }
6331
VisitPhi(HPhi * instruction)6332 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
6333 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6334 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
6335 locations->SetInAt(i, Location::Any());
6336 }
6337 locations->SetOut(Location::Any());
6338 }
6339
VisitPhi(HPhi * instruction)6340 void InstructionCodeGeneratorARM64::VisitPhi([[maybe_unused]] HPhi* instruction) {
6341 LOG(FATAL) << "Unreachable";
6342 }
6343
VisitRem(HRem * rem)6344 void LocationsBuilderARM64::VisitRem(HRem* rem) {
6345 DataType::Type type = rem->GetResultType();
6346 LocationSummary::CallKind call_kind =
6347 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
6348 : LocationSummary::kNoCall;
6349 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
6350
6351 switch (type) {
6352 case DataType::Type::kInt32:
6353 case DataType::Type::kInt64:
6354 locations->SetInAt(0, Location::RequiresRegister());
6355 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
6356 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6357 break;
6358
6359 case DataType::Type::kFloat32:
6360 case DataType::Type::kFloat64: {
6361 InvokeRuntimeCallingConvention calling_convention;
6362 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
6363 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
6364 locations->SetOut(calling_convention.GetReturnLocation(type));
6365
6366 break;
6367 }
6368
6369 default:
6370 LOG(FATAL) << "Unexpected rem type " << type;
6371 }
6372 }
6373
GenerateIntRemForPower2Denom(HRem * instruction)6374 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
6375 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6376 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
6377 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
6378
6379 Register out = OutputRegister(instruction);
6380 Register dividend = InputRegisterAt(instruction, 0);
6381
6382 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
6383 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
6384 // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
6385 // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
6386 // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
6387 // So 'and' always produces zero.
6388 __ And(out, dividend, abs_imm - 1);
6389 } else {
6390 if (abs_imm == 2) {
6391 __ Cmp(dividend, 0);
6392 __ And(out, dividend, 1);
6393 __ Csneg(out, out, out, ge);
6394 } else {
6395 UseScratchRegisterScope temps(GetVIXLAssembler());
6396 Register temp = temps.AcquireSameSizeAs(out);
6397
6398 __ Negs(temp, dividend);
6399 __ And(out, dividend, abs_imm - 1);
6400 __ And(temp, temp, abs_imm - 1);
6401 __ Csneg(out, out, temp, mi);
6402 }
6403 }
6404 }
6405
GenerateIntRemForConstDenom(HRem * instruction)6406 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
6407 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6408
6409 if (imm == 0) {
6410 // Do not generate anything.
6411 // DivZeroCheck would prevent any code to be executed.
6412 return;
6413 }
6414
6415 if (IsPowerOfTwo(AbsOrMin(imm))) {
6416 // Cases imm == -1 or imm == 1 are handled in constant folding by
6417 // InstructionWithAbsorbingInputSimplifier.
6418 // If the cases have survided till code generation they are handled in
6419 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
6420 // The correct code is generated for them, just more instructions.
6421 GenerateIntRemForPower2Denom(instruction);
6422 } else {
6423 DCHECK(imm < -2 || imm > 2) << imm;
6424 GenerateDivRemWithAnyConstant(instruction, imm);
6425 }
6426 }
6427
GenerateIntRem(HRem * instruction)6428 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
6429 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
6430 << instruction->GetResultType();
6431
6432 if (instruction->GetLocations()->InAt(1).IsConstant()) {
6433 GenerateIntRemForConstDenom(instruction);
6434 } else {
6435 Register out = OutputRegister(instruction);
6436 Register dividend = InputRegisterAt(instruction, 0);
6437 Register divisor = InputRegisterAt(instruction, 1);
6438 UseScratchRegisterScope temps(GetVIXLAssembler());
6439 Register temp = temps.AcquireSameSizeAs(out);
6440 __ Sdiv(temp, dividend, divisor);
6441 __ Msub(out, temp, divisor, dividend);
6442 }
6443 }
6444
VisitRem(HRem * rem)6445 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
6446 DataType::Type type = rem->GetResultType();
6447
6448 switch (type) {
6449 case DataType::Type::kInt32:
6450 case DataType::Type::kInt64: {
6451 GenerateIntRem(rem);
6452 break;
6453 }
6454
6455 case DataType::Type::kFloat32:
6456 case DataType::Type::kFloat64: {
6457 QuickEntrypointEnum entrypoint =
6458 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
6459 codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
6460 if (type == DataType::Type::kFloat32) {
6461 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
6462 } else {
6463 CheckEntrypointTypes<kQuickFmod, double, double, double>();
6464 }
6465 break;
6466 }
6467
6468 default:
6469 LOG(FATAL) << "Unexpected rem type " << type;
6470 UNREACHABLE();
6471 }
6472 }
6473
VisitMin(HMin * min)6474 void LocationsBuilderARM64::VisitMin(HMin* min) {
6475 HandleBinaryOp(min);
6476 }
6477
VisitMin(HMin * min)6478 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
6479 HandleBinaryOp(min);
6480 }
6481
VisitMax(HMax * max)6482 void LocationsBuilderARM64::VisitMax(HMax* max) {
6483 HandleBinaryOp(max);
6484 }
6485
VisitMax(HMax * max)6486 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
6487 HandleBinaryOp(max);
6488 }
6489
VisitAbs(HAbs * abs)6490 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
6491 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
6492 switch (abs->GetResultType()) {
6493 case DataType::Type::kInt32:
6494 case DataType::Type::kInt64:
6495 locations->SetInAt(0, Location::RequiresRegister());
6496 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6497 break;
6498 case DataType::Type::kFloat32:
6499 case DataType::Type::kFloat64:
6500 locations->SetInAt(0, Location::RequiresFpuRegister());
6501 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6502 break;
6503 default:
6504 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6505 }
6506 }
6507
VisitAbs(HAbs * abs)6508 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
6509 switch (abs->GetResultType()) {
6510 case DataType::Type::kInt32:
6511 case DataType::Type::kInt64: {
6512 Register in_reg = InputRegisterAt(abs, 0);
6513 Register out_reg = OutputRegister(abs);
6514 __ Cmp(in_reg, Operand(0));
6515 __ Cneg(out_reg, in_reg, lt);
6516 break;
6517 }
6518 case DataType::Type::kFloat32:
6519 case DataType::Type::kFloat64: {
6520 VRegister in_reg = InputFPRegisterAt(abs, 0);
6521 VRegister out_reg = OutputFPRegister(abs);
6522 __ Fabs(out_reg, in_reg);
6523 break;
6524 }
6525 default:
6526 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6527 }
6528 }
6529
VisitConstructorFence(HConstructorFence * constructor_fence)6530 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
6531 constructor_fence->SetLocations(nullptr);
6532 }
6533
VisitConstructorFence(HConstructorFence * constructor_fence)6534 void InstructionCodeGeneratorARM64::VisitConstructorFence(
6535 [[maybe_unused]] HConstructorFence* constructor_fence) {
6536 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
6537 }
6538
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6539 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6540 memory_barrier->SetLocations(nullptr);
6541 }
6542
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6543 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6544 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
6545 }
6546
VisitReturn(HReturn * instruction)6547 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
6548 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6549 DataType::Type return_type = instruction->InputAt(0)->GetType();
6550 locations->SetInAt(0, ARM64ReturnLocation(return_type));
6551 }
6552
VisitReturn(HReturn * ret)6553 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
6554 if (GetGraph()->IsCompilingOsr()) {
6555 // To simplify callers of an OSR method, we put the return value in both
6556 // floating point and core register.
6557 switch (ret->InputAt(0)->GetType()) {
6558 case DataType::Type::kFloat32:
6559 __ Fmov(w0, s0);
6560 break;
6561 case DataType::Type::kFloat64:
6562 __ Fmov(x0, d0);
6563 break;
6564 default:
6565 break;
6566 }
6567 }
6568 codegen_->GenerateFrameExit();
6569 }
6570
VisitReturnVoid(HReturnVoid * instruction)6571 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
6572 instruction->SetLocations(nullptr);
6573 }
6574
VisitReturnVoid(HReturnVoid * instruction)6575 void InstructionCodeGeneratorARM64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) {
6576 codegen_->GenerateFrameExit();
6577 }
6578
VisitRol(HRol * rol)6579 void LocationsBuilderARM64::VisitRol(HRol* rol) {
6580 HandleBinaryOp(rol);
6581 }
6582
VisitRol(HRol * rol)6583 void InstructionCodeGeneratorARM64::VisitRol(HRol* rol) {
6584 HandleBinaryOp(rol);
6585 }
6586
VisitRor(HRor * ror)6587 void LocationsBuilderARM64::VisitRor(HRor* ror) {
6588 HandleBinaryOp(ror);
6589 }
6590
VisitRor(HRor * ror)6591 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
6592 HandleBinaryOp(ror);
6593 }
6594
VisitShl(HShl * shl)6595 void LocationsBuilderARM64::VisitShl(HShl* shl) {
6596 HandleShift(shl);
6597 }
6598
VisitShl(HShl * shl)6599 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
6600 HandleShift(shl);
6601 }
6602
VisitShr(HShr * shr)6603 void LocationsBuilderARM64::VisitShr(HShr* shr) {
6604 HandleShift(shr);
6605 }
6606
VisitShr(HShr * shr)6607 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
6608 HandleShift(shr);
6609 }
6610
VisitSub(HSub * instruction)6611 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
6612 HandleBinaryOp(instruction);
6613 }
6614
VisitSub(HSub * instruction)6615 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
6616 HandleBinaryOp(instruction);
6617 }
6618
VisitStaticFieldGet(HStaticFieldGet * instruction)6619 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6620 HandleFieldGet(instruction, instruction->GetFieldInfo());
6621 }
6622
VisitStaticFieldGet(HStaticFieldGet * instruction)6623 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6624 HandleFieldGet(instruction, instruction->GetFieldInfo());
6625 }
6626
VisitStaticFieldSet(HStaticFieldSet * instruction)6627 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6628 HandleFieldSet(instruction);
6629 }
6630
VisitStaticFieldSet(HStaticFieldSet * instruction)6631 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6632 HandleFieldSet(instruction,
6633 instruction->GetFieldInfo(),
6634 instruction->GetValueCanBeNull(),
6635 instruction->GetWriteBarrierKind());
6636 }
6637
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6638 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6639 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
6640 }
6641
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6642 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6643 __ Mov(w0, instruction->GetFormat()->GetValue());
6644 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6645 }
6646
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6647 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
6648 HUnresolvedInstanceFieldGet* instruction) {
6649 FieldAccessCallingConventionARM64 calling_convention;
6650 codegen_->CreateUnresolvedFieldLocationSummary(
6651 instruction, instruction->GetFieldType(), calling_convention);
6652 }
6653
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6654 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
6655 HUnresolvedInstanceFieldGet* instruction) {
6656 FieldAccessCallingConventionARM64 calling_convention;
6657 codegen_->GenerateUnresolvedFieldAccess(instruction,
6658 instruction->GetFieldType(),
6659 instruction->GetFieldIndex(),
6660 instruction->GetDexPc(),
6661 calling_convention);
6662 }
6663
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6664 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
6665 HUnresolvedInstanceFieldSet* instruction) {
6666 FieldAccessCallingConventionARM64 calling_convention;
6667 codegen_->CreateUnresolvedFieldLocationSummary(
6668 instruction, instruction->GetFieldType(), calling_convention);
6669 }
6670
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6671 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
6672 HUnresolvedInstanceFieldSet* instruction) {
6673 FieldAccessCallingConventionARM64 calling_convention;
6674 codegen_->GenerateUnresolvedFieldAccess(instruction,
6675 instruction->GetFieldType(),
6676 instruction->GetFieldIndex(),
6677 instruction->GetDexPc(),
6678 calling_convention);
6679 }
6680
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6681 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
6682 HUnresolvedStaticFieldGet* instruction) {
6683 FieldAccessCallingConventionARM64 calling_convention;
6684 codegen_->CreateUnresolvedFieldLocationSummary(
6685 instruction, instruction->GetFieldType(), calling_convention);
6686 }
6687
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6688 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
6689 HUnresolvedStaticFieldGet* instruction) {
6690 FieldAccessCallingConventionARM64 calling_convention;
6691 codegen_->GenerateUnresolvedFieldAccess(instruction,
6692 instruction->GetFieldType(),
6693 instruction->GetFieldIndex(),
6694 instruction->GetDexPc(),
6695 calling_convention);
6696 }
6697
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6698 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
6699 HUnresolvedStaticFieldSet* instruction) {
6700 FieldAccessCallingConventionARM64 calling_convention;
6701 codegen_->CreateUnresolvedFieldLocationSummary(
6702 instruction, instruction->GetFieldType(), calling_convention);
6703 }
6704
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6705 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
6706 HUnresolvedStaticFieldSet* instruction) {
6707 FieldAccessCallingConventionARM64 calling_convention;
6708 codegen_->GenerateUnresolvedFieldAccess(instruction,
6709 instruction->GetFieldType(),
6710 instruction->GetFieldIndex(),
6711 instruction->GetDexPc(),
6712 calling_convention);
6713 }
6714
VisitSuspendCheck(HSuspendCheck * instruction)6715 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6716 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6717 instruction, LocationSummary::kCallOnSlowPath);
6718 // In suspend check slow path, usually there are no caller-save registers at all.
6719 // If SIMD instructions are present, however, we force spilling all live SIMD
6720 // registers in full width (since the runtime only saves/restores lower part).
6721 // Note that only a suspend check can see live SIMD registers. In the
6722 // loop optimization, we make sure this does not happen for any other slow
6723 // path.
6724 locations->SetCustomSlowPathCallerSaves(
6725 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
6726 }
6727
VisitSuspendCheck(HSuspendCheck * instruction)6728 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6729 HBasicBlock* block = instruction->GetBlock();
6730 if (block->GetLoopInformation() != nullptr) {
6731 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6732 // The back edge will generate the suspend check.
6733 return;
6734 }
6735 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6736 // The goto will generate the suspend check.
6737 return;
6738 }
6739 GenerateSuspendCheck(instruction, nullptr);
6740 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6741 }
6742
VisitThrow(HThrow * instruction)6743 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
6744 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6745 instruction, LocationSummary::kCallOnMainOnly);
6746 InvokeRuntimeCallingConvention calling_convention;
6747 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6748 }
6749
VisitThrow(HThrow * instruction)6750 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
6751 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6752 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6753 }
6754
VisitTypeConversion(HTypeConversion * conversion)6755 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
6756 LocationSummary* locations =
6757 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
6758 DataType::Type input_type = conversion->GetInputType();
6759 DataType::Type result_type = conversion->GetResultType();
6760 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6761 << input_type << " -> " << result_type;
6762 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
6763 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
6764 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
6765 }
6766
6767 if (DataType::IsFloatingPointType(input_type)) {
6768 locations->SetInAt(0, Location::RequiresFpuRegister());
6769 } else {
6770 locations->SetInAt(0, Location::RequiresRegister());
6771 }
6772
6773 if (DataType::IsFloatingPointType(result_type)) {
6774 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6775 } else {
6776 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6777 }
6778 }
6779
VisitTypeConversion(HTypeConversion * conversion)6780 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
6781 DataType::Type result_type = conversion->GetResultType();
6782 DataType::Type input_type = conversion->GetInputType();
6783
6784 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6785 << input_type << " -> " << result_type;
6786
6787 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
6788 int result_size = DataType::Size(result_type);
6789 int input_size = DataType::Size(input_type);
6790 int min_size = std::min(result_size, input_size);
6791 Register output = OutputRegister(conversion);
6792 Register source = InputRegisterAt(conversion, 0);
6793 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
6794 // 'int' values are used directly as W registers, discarding the top
6795 // bits, so we don't need to sign-extend and can just perform a move.
6796 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
6797 // top 32 bits of the target register. We theoretically could leave those
6798 // bits unchanged, but we would have to make sure that no code uses a
6799 // 32bit input value as a 64bit value assuming that the top 32 bits are
6800 // zero.
6801 __ Mov(output.W(), source.W());
6802 } else if (DataType::IsUnsignedType(result_type) ||
6803 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
6804 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
6805 } else {
6806 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
6807 }
6808 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
6809 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
6810 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
6811 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
6812 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
6813 } else if (DataType::IsFloatingPointType(result_type) &&
6814 DataType::IsFloatingPointType(input_type)) {
6815 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
6816 } else {
6817 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
6818 << " to " << result_type;
6819 }
6820 }
6821
VisitUShr(HUShr * ushr)6822 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
6823 HandleShift(ushr);
6824 }
6825
VisitUShr(HUShr * ushr)6826 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
6827 HandleShift(ushr);
6828 }
6829
VisitXor(HXor * instruction)6830 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
6831 HandleBinaryOp(instruction);
6832 }
6833
VisitXor(HXor * instruction)6834 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
6835 HandleBinaryOp(instruction);
6836 }
6837
VisitBoundType(HBoundType * instruction)6838 void LocationsBuilderARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
6839 // Nothing to do, this should be removed during prepare for register allocator.
6840 LOG(FATAL) << "Unreachable";
6841 }
6842
VisitBoundType(HBoundType * instruction)6843 void InstructionCodeGeneratorARM64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
6844 // Nothing to do, this should be removed during prepare for register allocator.
6845 LOG(FATAL) << "Unreachable";
6846 }
6847
6848 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)6849 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6850 LocationSummary* locations =
6851 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6852 locations->SetInAt(0, Location::RequiresRegister());
6853 }
6854
VisitPackedSwitch(HPackedSwitch * switch_instr)6855 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6856 int32_t lower_bound = switch_instr->GetStartValue();
6857 uint32_t num_entries = switch_instr->GetNumEntries();
6858 Register value_reg = InputRegisterAt(switch_instr, 0);
6859 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6860
6861 if (num_entries <= kPackedSwitchCompareJumpThreshold) {
6862 // Create a series of compare/jumps.
6863 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6864 Register temp = temps.AcquireW();
6865 __ Subs(temp, value_reg, Operand(lower_bound));
6866
6867 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6868 // Jump to successors[0] if value == lower_bound.
6869 __ B(eq, codegen_->GetLabelOf(successors[0]));
6870 int32_t last_index = 0;
6871 for (; num_entries - last_index > 2; last_index += 2) {
6872 __ Subs(temp, temp, Operand(2));
6873 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6874 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
6875 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6876 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
6877 }
6878 if (num_entries - last_index == 2) {
6879 // The last missing case_value.
6880 __ Cmp(temp, Operand(1));
6881 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
6882 }
6883
6884 // And the default for any other value.
6885 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6886 __ B(codegen_->GetLabelOf(default_block));
6887 }
6888 } else {
6889 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
6890
6891 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6892
6893 // Below instructions should use at most one blocked register. Since there are two blocked
6894 // registers, we are free to block one.
6895 Register temp_w = temps.AcquireW();
6896 Register index;
6897 // Remove the bias.
6898 if (lower_bound != 0) {
6899 index = temp_w;
6900 __ Sub(index, value_reg, Operand(lower_bound));
6901 } else {
6902 index = value_reg;
6903 }
6904
6905 // Jump to default block if index is out of the range.
6906 __ Cmp(index, Operand(num_entries));
6907 __ B(hs, codegen_->GetLabelOf(default_block));
6908
6909 // In current VIXL implementation, it won't require any blocked registers to encode the
6910 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
6911 // register pressure.
6912 Register table_base = temps.AcquireX();
6913
6914 const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
6915 ExactAssemblyScope scope(codegen_->GetVIXLAssembler(),
6916 kInstructionSize * 4 + jump_size,
6917 CodeBufferCheckScope::kExactSize);
6918
6919 // Load jump offset from the table.
6920 // Note: the table start address is always in range as the table is emitted immediately
6921 // after these 4 instructions.
6922 __ adr(table_base, jump_table->GetTableStartLabel());
6923 Register jump_offset = temp_w;
6924 __ ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
6925
6926 // Jump to target block by branching to table_base(pc related) + offset.
6927 Register target_address = table_base;
6928 __ add(target_address, table_base, Operand(jump_offset, SXTW));
6929 __ br(target_address);
6930
6931 jump_table->EmitTable(codegen_);
6932 }
6933 }
6934
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6935 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
6936 HInstruction* instruction,
6937 Location out,
6938 uint32_t offset,
6939 Location maybe_temp,
6940 ReadBarrierOption read_barrier_option) {
6941 DataType::Type type = DataType::Type::kReference;
6942 Register out_reg = RegisterFrom(out, type);
6943 if (read_barrier_option == kWithReadBarrier) {
6944 DCHECK(codegen_->EmitReadBarrier());
6945 if (kUseBakerReadBarrier) {
6946 // Load with fast path based Baker's read barrier.
6947 // /* HeapReference<Object> */ out = *(out + offset)
6948 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6949 out,
6950 out_reg,
6951 offset,
6952 maybe_temp,
6953 /* needs_null_check= */ false,
6954 /* use_load_acquire= */ false);
6955 } else {
6956 // Load with slow path based read barrier.
6957 // Save the value of `out` into `maybe_temp` before overwriting it
6958 // in the following move operation, as we will need it for the
6959 // read barrier below.
6960 Register temp_reg = RegisterFrom(maybe_temp, type);
6961 __ Mov(temp_reg, out_reg);
6962 // /* HeapReference<Object> */ out = *(out + offset)
6963 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6964 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6965 }
6966 } else {
6967 // Plain load with no read barrier.
6968 // /* HeapReference<Object> */ out = *(out + offset)
6969 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6970 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6971 }
6972 }
6973
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6974 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
6975 HInstruction* instruction,
6976 Location out,
6977 Location obj,
6978 uint32_t offset,
6979 Location maybe_temp,
6980 ReadBarrierOption read_barrier_option) {
6981 DataType::Type type = DataType::Type::kReference;
6982 Register out_reg = RegisterFrom(out, type);
6983 Register obj_reg = RegisterFrom(obj, type);
6984 if (read_barrier_option == kWithReadBarrier) {
6985 DCHECK(codegen_->EmitReadBarrier());
6986 if (kUseBakerReadBarrier) {
6987 // Load with fast path based Baker's read barrier.
6988 // /* HeapReference<Object> */ out = *(obj + offset)
6989 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6990 out,
6991 obj_reg,
6992 offset,
6993 maybe_temp,
6994 /* needs_null_check= */ false,
6995 /* use_load_acquire= */ false);
6996 } else {
6997 // Load with slow path based read barrier.
6998 // /* HeapReference<Object> */ out = *(obj + offset)
6999 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
7000 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
7001 }
7002 } else {
7003 // Plain load with no read barrier.
7004 // /* HeapReference<Object> */ out = *(obj + offset)
7005 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
7006 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
7007 }
7008 }
7009
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)7010 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
7011 HInstruction* instruction,
7012 Location root,
7013 Register obj,
7014 uint32_t offset,
7015 vixl::aarch64::Label* fixup_label,
7016 ReadBarrierOption read_barrier_option) {
7017 DCHECK(fixup_label == nullptr || offset == 0u);
7018 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
7019 if (read_barrier_option == kWithReadBarrier) {
7020 DCHECK(EmitReadBarrier());
7021 if (kUseBakerReadBarrier) {
7022 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
7023 // Baker's read barrier are used.
7024
7025 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
7026 // the Marking Register) to decide whether we need to enter
7027 // the slow path to mark the GC root.
7028 //
7029 // We use shared thunks for the slow path; shared within the method
7030 // for JIT, across methods for AOT. That thunk checks the reference
7031 // and jumps to the entrypoint if needed.
7032 //
7033 // lr = &return_address;
7034 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
7035 // if (mr) { // Thread::Current()->GetIsGcMarking()
7036 // goto gc_root_thunk<root_reg>(lr)
7037 // }
7038 // return_address:
7039
7040 UseScratchRegisterScope temps(GetVIXLAssembler());
7041 DCHECK(temps.IsAvailable(ip0));
7042 DCHECK(temps.IsAvailable(ip1));
7043 temps.Exclude(ip0, ip1);
7044 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
7045
7046 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
7047 vixl::aarch64::Label return_address;
7048 __ adr(lr, &return_address);
7049 if (fixup_label != nullptr) {
7050 __ bind(fixup_label);
7051 }
7052 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
7053 "GC root LDR must be 2 instructions (8B) before the return address label.");
7054 __ ldr(root_reg, MemOperand(obj.X(), offset));
7055 EmitBakerReadBarrierCbnz(custom_data);
7056 __ bind(&return_address);
7057 } else {
7058 // GC root loaded through a slow path for read barriers other
7059 // than Baker's.
7060 // /* GcRoot<mirror::Object>* */ root = obj + offset
7061 if (fixup_label == nullptr) {
7062 __ Add(root_reg.X(), obj.X(), offset);
7063 } else {
7064 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
7065 }
7066 // /* mirror::Object* */ root = root->Read()
7067 GenerateReadBarrierForRootSlow(instruction, root, root);
7068 }
7069 } else {
7070 // Plain GC root load with no read barrier.
7071 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
7072 if (fixup_label == nullptr) {
7073 __ Ldr(root_reg, MemOperand(obj, offset));
7074 } else {
7075 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
7076 }
7077 // Note that GC roots are not affected by heap poisoning, thus we
7078 // do not have to unpoison `root_reg` here.
7079 }
7080 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
7081 }
7082
GenerateIntrinsicMoveWithBakerReadBarrier(vixl::aarch64::Register marked_old_value,vixl::aarch64::Register old_value)7083 void CodeGeneratorARM64::GenerateIntrinsicMoveWithBakerReadBarrier(
7084 vixl::aarch64::Register marked_old_value,
7085 vixl::aarch64::Register old_value) {
7086 DCHECK(EmitBakerReadBarrier());
7087
7088 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
7089 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode());
7090
7091 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
7092 vixl::aarch64::Label return_address;
7093 __ adr(lr, &return_address);
7094 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
7095 "GC root LDR must be 2 instructions (8B) before the return address label.");
7096 __ mov(marked_old_value, old_value);
7097 EmitBakerReadBarrierCbnz(custom_data);
7098 __ bind(&return_address);
7099 }
7100
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)7101 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7102 Location ref,
7103 vixl::aarch64::Register obj,
7104 const vixl::aarch64::MemOperand& src,
7105 bool needs_null_check,
7106 bool use_load_acquire) {
7107 DCHECK(EmitBakerReadBarrier());
7108
7109 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
7110 // Marking Register) to decide whether we need to enter the slow
7111 // path to mark the reference. Then, in the slow path, check the
7112 // gray bit in the lock word of the reference's holder (`obj`) to
7113 // decide whether to mark `ref` or not.
7114 //
7115 // We use shared thunks for the slow path; shared within the method
7116 // for JIT, across methods for AOT. That thunk checks the holder
7117 // and jumps to the entrypoint if needed. If the holder is not gray,
7118 // it creates a fake dependency and returns to the LDR instruction.
7119 //
7120 // lr = &gray_return_address;
7121 // if (mr) { // Thread::Current()->GetIsGcMarking()
7122 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
7123 // }
7124 // not_gray_return_address:
7125 // // Original reference load. If the offset is too large to fit
7126 // // into LDR, we use an adjusted base register here.
7127 // HeapReference<mirror::Object> reference = *(obj+offset);
7128 // gray_return_address:
7129
7130 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
7131 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
7132
7133 UseScratchRegisterScope temps(GetVIXLAssembler());
7134 DCHECK(temps.IsAvailable(ip0));
7135 DCHECK(temps.IsAvailable(ip1));
7136 temps.Exclude(ip0, ip1);
7137 uint32_t custom_data = use_load_acquire
7138 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
7139 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
7140
7141 {
7142 ExactAssemblyScope guard(GetVIXLAssembler(),
7143 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
7144 vixl::aarch64::Label return_address;
7145 __ adr(lr, &return_address);
7146 EmitBakerReadBarrierCbnz(custom_data);
7147 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7148 "Field LDR must be 1 instruction (4B) before the return address label; "
7149 " 2 instructions (8B) for heap poisoning.");
7150 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
7151 if (use_load_acquire) {
7152 DCHECK_EQ(src.GetOffset(), 0);
7153 __ ldar(ref_reg, src);
7154 } else {
7155 __ ldr(ref_reg, src);
7156 }
7157 if (needs_null_check) {
7158 MaybeRecordImplicitNullCheck(instruction);
7159 }
7160 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
7161 // macro instructions disallowed in ExactAssemblyScope.
7162 if (kPoisonHeapReferences) {
7163 __ neg(ref_reg, Operand(ref_reg));
7164 }
7165 __ bind(&return_address);
7166 }
7167 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
7168 }
7169
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)7170 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7171 Location ref,
7172 Register obj,
7173 uint32_t offset,
7174 Location maybe_temp,
7175 bool needs_null_check,
7176 bool use_load_acquire) {
7177 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
7178 Register base = obj;
7179 if (use_load_acquire) {
7180 DCHECK(maybe_temp.IsRegister());
7181 base = WRegisterFrom(maybe_temp);
7182 __ Add(base, obj, offset);
7183 offset = 0u;
7184 } else if (offset >= kReferenceLoadMinFarOffset) {
7185 DCHECK(maybe_temp.IsRegister());
7186 base = WRegisterFrom(maybe_temp);
7187 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
7188 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
7189 offset &= (kReferenceLoadMinFarOffset - 1u);
7190 }
7191 MemOperand src(base.X(), offset);
7192 GenerateFieldLoadWithBakerReadBarrier(
7193 instruction, ref, obj, src, needs_null_check, use_load_acquire);
7194 }
7195
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)7196 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
7197 Location ref,
7198 Register obj,
7199 uint32_t data_offset,
7200 Location index,
7201 bool needs_null_check) {
7202 DCHECK(EmitBakerReadBarrier());
7203
7204 static_assert(
7205 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
7206 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
7207 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
7208
7209 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
7210 // Marking Register) to decide whether we need to enter the slow
7211 // path to mark the reference. Then, in the slow path, check the
7212 // gray bit in the lock word of the reference's holder (`obj`) to
7213 // decide whether to mark `ref` or not.
7214 //
7215 // We use shared thunks for the slow path; shared within the method
7216 // for JIT, across methods for AOT. That thunk checks the holder
7217 // and jumps to the entrypoint if needed. If the holder is not gray,
7218 // it creates a fake dependency and returns to the LDR instruction.
7219 //
7220 // lr = &gray_return_address;
7221 // if (mr) { // Thread::Current()->GetIsGcMarking()
7222 // goto array_thunk<base_reg>(lr)
7223 // }
7224 // not_gray_return_address:
7225 // // Original reference load. If the offset is too large to fit
7226 // // into LDR, we use an adjusted base register here.
7227 // HeapReference<mirror::Object> reference = data[index];
7228 // gray_return_address:
7229
7230 DCHECK(index.IsValid());
7231 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
7232 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
7233
7234 UseScratchRegisterScope temps(GetVIXLAssembler());
7235 DCHECK(temps.IsAvailable(ip0));
7236 DCHECK(temps.IsAvailable(ip1));
7237 temps.Exclude(ip0, ip1);
7238
7239 Register temp;
7240 if (instruction->GetArray()->IsIntermediateAddress()) {
7241 // We do not need to compute the intermediate address from the array: the
7242 // input instruction has done it already. See the comment in
7243 // `TryExtractArrayAccessAddress()`.
7244 if (kIsDebugBuild) {
7245 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
7246 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
7247 }
7248 temp = obj;
7249 } else {
7250 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
7251 __ Add(temp.X(), obj.X(), Operand(data_offset));
7252 }
7253
7254 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
7255
7256 {
7257 ExactAssemblyScope guard(GetVIXLAssembler(),
7258 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
7259 vixl::aarch64::Label return_address;
7260 __ adr(lr, &return_address);
7261 EmitBakerReadBarrierCbnz(custom_data);
7262 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7263 "Array LDR must be 1 instruction (4B) before the return address label; "
7264 " 2 instructions (8B) for heap poisoning.");
7265 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
7266 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
7267 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
7268 // macro instructions disallowed in ExactAssemblyScope.
7269 if (kPoisonHeapReferences) {
7270 __ neg(ref_reg, Operand(ref_reg));
7271 }
7272 __ bind(&return_address);
7273 }
7274 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
7275 }
7276
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)7277 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
7278 // The following condition is a compile-time one, so it does not have a run-time cost.
7279 if (kIsDebugBuild && EmitBakerReadBarrier()) {
7280 // The following condition is a run-time one; it is executed after the
7281 // previous compile-time test, to avoid penalizing non-debug builds.
7282 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
7283 UseScratchRegisterScope temps(GetVIXLAssembler());
7284 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
7285 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
7286 }
7287 }
7288 }
7289
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7290 SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction,
7291 Location out,
7292 Location ref,
7293 Location obj,
7294 uint32_t offset,
7295 Location index) {
7296 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
7297 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
7298 AddSlowPath(slow_path);
7299 return slow_path;
7300 }
7301
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7302 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
7303 Location out,
7304 Location ref,
7305 Location obj,
7306 uint32_t offset,
7307 Location index) {
7308 DCHECK(EmitReadBarrier());
7309
7310 // Insert a slow path based read barrier *after* the reference load.
7311 //
7312 // If heap poisoning is enabled, the unpoisoning of the loaded
7313 // reference will be carried out by the runtime within the slow
7314 // path.
7315 //
7316 // Note that `ref` currently does not get unpoisoned (when heap
7317 // poisoning is enabled), which is alright as the `ref` argument is
7318 // not used by the artReadBarrierSlow entry point.
7319 //
7320 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7321 SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
7322
7323 __ B(slow_path->GetEntryLabel());
7324 __ Bind(slow_path->GetExitLabel());
7325 }
7326
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7327 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7328 Location out,
7329 Location ref,
7330 Location obj,
7331 uint32_t offset,
7332 Location index) {
7333 if (EmitReadBarrier()) {
7334 // Baker's read barriers shall be handled by the fast path
7335 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
7336 DCHECK(!kUseBakerReadBarrier);
7337 // If heap poisoning is enabled, unpoisoning will be taken care of
7338 // by the runtime within the slow path.
7339 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7340 } else if (kPoisonHeapReferences) {
7341 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
7342 }
7343 }
7344
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)7345 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7346 Location out,
7347 Location root) {
7348 DCHECK(EmitReadBarrier());
7349
7350 // Insert a slow path based read barrier *after* the GC root load.
7351 //
7352 // Note that GC roots are not affected by heap poisoning, so we do
7353 // not need to do anything special for this here.
7354 SlowPathCodeARM64* slow_path =
7355 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
7356 AddSlowPath(slow_path);
7357
7358 __ B(slow_path->GetEntryLabel());
7359 __ Bind(slow_path->GetExitLabel());
7360 }
7361
VisitClassTableGet(HClassTableGet * instruction)7362 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
7363 LocationSummary* locations =
7364 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
7365 locations->SetInAt(0, Location::RequiresRegister());
7366 locations->SetOut(Location::RequiresRegister());
7367 }
7368
VisitClassTableGet(HClassTableGet * instruction)7369 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
7370 LocationSummary* locations = instruction->GetLocations();
7371 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7372 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7373 instruction->GetIndex(), kArm64PointerSize).SizeValue();
7374 __ Ldr(XRegisterFrom(locations->Out()),
7375 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
7376 } else {
7377 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7378 instruction->GetIndex(), kArm64PointerSize));
7379 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
7380 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
7381 __ Ldr(XRegisterFrom(locations->Out()),
7382 MemOperand(XRegisterFrom(locations->Out()), method_offset));
7383 }
7384 }
7385
VecNEONAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7386 MemOperand InstructionCodeGeneratorARM64::VecNEONAddress(
7387 HVecMemoryOperation* instruction,
7388 UseScratchRegisterScope* temps_scope,
7389 size_t size,
7390 bool is_string_char_at,
7391 /*out*/ Register* scratch) {
7392 LocationSummary* locations = instruction->GetLocations();
7393 Register base = InputRegisterAt(instruction, 0);
7394
7395 if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
7396 DCHECK(!is_string_char_at);
7397 return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
7398 }
7399
7400 Location index = locations->InAt(1);
7401 uint32_t offset = is_string_char_at
7402 ? mirror::String::ValueOffset().Uint32Value()
7403 : mirror::Array::DataOffset(size).Uint32Value();
7404 size_t shift = ComponentSizeShiftWidth(size);
7405
7406 // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
7407 DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
7408
7409 if (index.IsConstant()) {
7410 offset += Int64FromLocation(index) << shift;
7411 return HeapOperand(base, offset);
7412 } else {
7413 *scratch = temps_scope->AcquireSameSizeAs(base);
7414 __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
7415 return HeapOperand(*scratch, offset);
7416 }
7417 }
7418
VecSVEAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7419 SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress(
7420 HVecMemoryOperation* instruction,
7421 UseScratchRegisterScope* temps_scope,
7422 size_t size,
7423 bool is_string_char_at,
7424 /*out*/ Register* scratch) {
7425 LocationSummary* locations = instruction->GetLocations();
7426 Register base = InputRegisterAt(instruction, 0);
7427 Location index = locations->InAt(1);
7428
7429 DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex());
7430 DCHECK(!index.IsConstant());
7431
7432 uint32_t offset = is_string_char_at
7433 ? mirror::String::ValueOffset().Uint32Value()
7434 : mirror::Array::DataOffset(size).Uint32Value();
7435 size_t shift = ComponentSizeShiftWidth(size);
7436
7437 if (instruction->InputAt(0)->IsIntermediateAddress()) {
7438 return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift);
7439 }
7440
7441 *scratch = temps_scope->AcquireSameSizeAs(base);
7442 __ Add(*scratch, base, offset);
7443 return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift);
7444 }
7445
7446 #undef __
7447 #undef QUICK_ENTRY_POINT
7448
7449 #define __ assembler.GetVIXLAssembler()->
7450
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)7451 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
7452 vixl::aarch64::Register base_reg,
7453 vixl::aarch64::MemOperand& lock_word,
7454 vixl::aarch64::Label* slow_path,
7455 vixl::aarch64::Label* throw_npe = nullptr) {
7456 vixl::aarch64::Label throw_npe_cont;
7457 // Load the lock word containing the rb_state.
7458 __ Ldr(ip0.W(), lock_word);
7459 // Given the numeric representation, it's enough to check the low bit of the rb_state.
7460 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
7461 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7462 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
7463 static_assert(
7464 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
7465 "Field and array LDR offsets must be the same to reuse the same code.");
7466 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
7467 if (throw_npe != nullptr) {
7468 __ Bind(&throw_npe_cont);
7469 }
7470 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
7471 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7472 "Field LDR must be 1 instruction (4B) before the return address label; "
7473 " 2 instructions (8B) for heap poisoning.");
7474 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7475 // Introduce a dependency on the lock_word including rb_state,
7476 // to prevent load-load reordering, and without using
7477 // a memory barrier (which would be more expensive).
7478 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
7479 __ Br(lr); // And return back to the function.
7480 if (throw_npe != nullptr) {
7481 // Clear IP0 before returning to the fast path.
7482 __ Bind(throw_npe);
7483 __ Mov(ip0.X(), xzr);
7484 __ B(&throw_npe_cont);
7485 }
7486 // Note: The fake dependency is unnecessary for the slow path.
7487 }
7488
7489 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)7490 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
7491 vixl::aarch64::Register entrypoint) {
7492 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
7493 DCHECK_EQ(ip0.GetCode(), 16u);
7494 const int32_t entry_point_offset =
7495 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
7496 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
7497 }
7498
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)7499 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
7500 uint32_t encoded_data,
7501 /*out*/ std::string* debug_name) {
7502 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
7503 switch (kind) {
7504 case BakerReadBarrierKind::kField:
7505 case BakerReadBarrierKind::kAcquire: {
7506 Register base_reg =
7507 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7508 CheckValidReg(base_reg.GetCode());
7509 Register holder_reg =
7510 vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data));
7511 CheckValidReg(holder_reg.GetCode());
7512 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7513 temps.Exclude(ip0, ip1);
7514 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
7515 // `holder_reg`, the offset was too large and we must have emitted (during the construction
7516 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
7517 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
7518 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
7519 // not necessarily do that check before going to the thunk.
7520 //
7521 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
7522 // from `holder_reg`), we also need an explicit null check when implicit null checks are
7523 // allowed, as we do not emit one before going to the thunk.
7524 vixl::aarch64::Label throw_npe_label;
7525 vixl::aarch64::Label* throw_npe = nullptr;
7526 if (GetCompilerOptions().GetImplicitNullChecks() &&
7527 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
7528 throw_npe = &throw_npe_label;
7529 __ Cbz(holder_reg.W(), throw_npe);
7530 }
7531 // Check if the holder is gray and, if not, add fake dependency to the base register
7532 // and return to the LDR instruction to load the reference. Otherwise, use introspection
7533 // to load the reference and call the entrypoint that performs further checks on the
7534 // reference and marks it if needed.
7535 vixl::aarch64::Label slow_path;
7536 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
7537 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
7538 __ Bind(&slow_path);
7539 if (kind == BakerReadBarrierKind::kField) {
7540 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7541 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
7542 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7543 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
7544 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
7545 } else {
7546 DCHECK(kind == BakerReadBarrierKind::kAcquire);
7547 DCHECK(!base_reg.Is(holder_reg));
7548 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7549 __ Ldar(ip0.W(), MemOperand(base_reg));
7550 }
7551 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
7552 __ Br(ip1); // Jump to the entrypoint.
7553 break;
7554 }
7555 case BakerReadBarrierKind::kArray: {
7556 Register base_reg =
7557 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7558 CheckValidReg(base_reg.GetCode());
7559 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7560 BakerReadBarrierSecondRegField::Decode(encoded_data));
7561 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7562 temps.Exclude(ip0, ip1);
7563 vixl::aarch64::Label slow_path;
7564 int32_t data_offset =
7565 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
7566 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
7567 DCHECK_LT(lock_word.GetOffset(), 0);
7568 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
7569 __ Bind(&slow_path);
7570 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
7571 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
7572 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7573 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
7574 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
7575 // a switch case target based on the index register.
7576 __ Mov(ip0, base_reg); // Move the base register to ip0.
7577 __ Br(ip1); // Jump to the entrypoint's array switch case.
7578 break;
7579 }
7580 case BakerReadBarrierKind::kGcRoot: {
7581 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
7582 // and it does not have a forwarding address), call the correct introspection entrypoint;
7583 // otherwise return the reference (or the extracted forwarding address).
7584 // There is no gray bit check for GC roots.
7585 Register root_reg =
7586 vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7587 CheckValidReg(root_reg.GetCode());
7588 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7589 BakerReadBarrierSecondRegField::Decode(encoded_data));
7590 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7591 temps.Exclude(ip0, ip1);
7592 vixl::aarch64::Label return_label, not_marked, forwarding_address;
7593 __ Cbz(root_reg, &return_label);
7594 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
7595 __ Ldr(ip0.W(), lock_word);
7596 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
7597 __ Bind(&return_label);
7598 __ Br(lr);
7599 __ Bind(¬_marked);
7600 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
7601 __ B(&forwarding_address, mi);
7602 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7603 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
7604 // art_quick_read_barrier_mark_introspection_gc_roots.
7605 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
7606 __ Mov(ip0.W(), root_reg);
7607 __ Br(ip1);
7608 __ Bind(&forwarding_address);
7609 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
7610 __ Br(lr);
7611 break;
7612 }
7613 default:
7614 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
7615 UNREACHABLE();
7616 }
7617
7618 // For JIT, the slow path is considered part of the compiled method,
7619 // so JIT should pass null as `debug_name`.
7620 DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
7621 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
7622 std::ostringstream oss;
7623 oss << "BakerReadBarrierThunk";
7624 switch (kind) {
7625 case BakerReadBarrierKind::kField:
7626 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7627 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7628 break;
7629 case BakerReadBarrierKind::kAcquire:
7630 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7631 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7632 break;
7633 case BakerReadBarrierKind::kArray:
7634 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7635 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7636 BakerReadBarrierSecondRegField::Decode(encoded_data));
7637 break;
7638 case BakerReadBarrierKind::kGcRoot:
7639 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7640 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7641 BakerReadBarrierSecondRegField::Decode(encoded_data));
7642 break;
7643 }
7644 *debug_name = oss.str();
7645 }
7646 }
7647
7648 #undef __
7649
7650 } // namespace arm64
7651 } // namespace art
7652