1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import chipsalliance.rocketchip.config._ 22import xiangshan._ 23import xiangshan.backend.rob.RobPtr 24import xiangshan.cache._ 25import xiangshan.frontend.FtqPtr 26import xiangshan.mem.mdp._ 27import utils._ 28import utility._ 29 30class LoadQueueRAW(implicit p: Parameters) extends XSModule 31 with HasDCacheParameters 32 with HasCircularQueuePtrHelper 33 with HasLoadHelper 34 with HasPerfEvents 35{ 36 val io = IO(new Bundle() { 37 val redirect = Flipped(ValidIO(new Redirect)) 38 val query = Vec(LoadPipelineWidth, Flipped(new LoadViolationQueryIO)) 39 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 40 val rollback = Output(Valid(new Redirect)) 41 val stAddrReadySqPtr = Input(new SqPtr) 42 val stIssuePtr = Input(new SqPtr) 43 val lqFull = Output(Bool()) 44 }) 45 46 println("LoadQueueRAW: size " + LoadQueueRAWSize) 47 // LoadQueueRAW field 48 // +-------+--------+-------+-------+-----------+ 49 // | Valid | uop |PAddr | Mask | Datavalid | 50 // +-------+--------+-------+-------+-----------+ 51 // 52 // Field descriptions: 53 // Allocated : entry has been allocated already 54 // MicroOp : inst's microOp 55 // PAddr : physical address. 56 // Mask : data mask 57 // Datavalid : data valid 58 // 59 val allocated = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) // The control signals need to explicitly indicate the initial value 60 val uop = Reg(Vec(LoadQueueRAWSize, new MicroOp)) 61 val paddrModule = Module(new LqPAddrModule( 62 gen = UInt(PAddrBits.W), 63 numEntries = LoadQueueRAWSize, 64 numRead = LoadPipelineWidth, 65 numWrite = LoadPipelineWidth, 66 numWBank = LoadQueueNWriteBanks, 67 numWDelay = 2, 68 numCamPort = StorePipelineWidth 69 )) 70 paddrModule.io := DontCare 71 val maskModule = Module(new LqMaskModule( 72 gen = UInt(8.W), 73 numEntries = LoadQueueRAWSize, 74 numRead = LoadPipelineWidth, 75 numWrite = LoadPipelineWidth, 76 numWBank = LoadQueueNWriteBanks, 77 numWDelay = 2, 78 numCamPort = StorePipelineWidth 79 )) 80 maskModule.io := DontCare 81 val datavalid = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) 82 83 // freeliset: store valid entries index. 84 // +---+---+--------------+-----+-----+ 85 // | 0 | 1 | ...... | n-2 | n-1 | 86 // +---+---+--------------+-----+-----+ 87 val freeList = Module(new FreeList( 88 size = LoadQueueRAWSize, 89 allocWidth = LoadPipelineWidth, 90 freeWidth = 4, 91 moduleName = "LoadQueueRAW freelist" 92 )) 93 freeList.io := DontCare 94 95 // LoadQueueRAW enqueue 96 val canEnqueue = io.query.map(_.req.valid) 97 val cancelEnqueue = io.query.map(_.req.bits.uop.robIdx.needFlush(io.redirect)) 98 val allAddrCheck = io.stIssuePtr === io.stAddrReadySqPtr 99 val hasAddrInvalidStore = io.query.map(_.req.bits.uop.sqIdx).map(sqIdx => { 100 Mux(!allAddrCheck, isBefore(io.stAddrReadySqPtr, sqIdx), false.B) 101 }) 102 val needEnqueue = canEnqueue.zip(hasAddrInvalidStore).zip(cancelEnqueue).map { case ((v, r), c) => v && r && !c } 103 val bypassPAddr = Reg(Vec(LoadPipelineWidth, UInt(PAddrBits.W))) 104 val bypassMask = Reg(Vec(LoadPipelineWidth, UInt(8.W))) 105 106 // Allocate logic 107 val enqValidVec = Wire(Vec(LoadPipelineWidth, Bool())) 108 val enqIndexVec = Wire(Vec(LoadPipelineWidth, UInt())) 109 110 // Enqueue 111 for ((enq, w) <- io.query.map(_.req).zipWithIndex) { 112 paddrModule.io.wen(w) := false.B 113 maskModule.io.wen(w) := false.B 114 freeList.io.doAllocate(w) := false.B 115 116 freeList.io.allocateReq(w) := needEnqueue(w) 117 118 // Allocate ready 119 enqValidVec(w) := freeList.io.canAllocate(w) 120 enqIndexVec(w) := freeList.io.allocateSlot(w) 121 enq.ready := Mux(needEnqueue(w), enqValidVec(w), true.B) 122 123 val enqIndex = enqIndexVec(w) 124 when (needEnqueue(w) && enq.ready) { 125 val debug_robIdx = enq.bits.uop.robIdx.asUInt 126 XSError(allocated(enqIndex), p"LoadQueueRAW: You can not write an valid entry! check: ldu $w, robIdx $debug_robIdx") 127 128 freeList.io.doAllocate(w) := true.B 129 130 // Allocate new entry 131 allocated(enqIndex) := true.B 132 133 // Write paddr 134 paddrModule.io.wen(w) := true.B 135 paddrModule.io.waddr(w) := enqIndex 136 paddrModule.io.wdata(w) := enq.bits.paddr 137 bypassPAddr(w) := enq.bits.paddr 138 139 // Write mask 140 maskModule.io.wen(w) := true.B 141 maskModule.io.waddr(w) := enqIndex 142 maskModule.io.wdata(w) := enq.bits.mask 143 bypassMask(w) := enq.bits.mask 144 145 // Fill info 146 uop(enqIndex) := enq.bits.uop 147 datavalid(enqIndex) := enq.bits.datavalid 148 } 149 } 150 151 for ((query, w) <- io.query.map(_.resp).zipWithIndex) { 152 query.valid := RegNext(io.query(w).req.valid) 153 query.bits.replayFromFetch := RegNext(false.B) 154 } 155 156 // LoadQueueRAW deallocate 157 val freeMaskVec = Wire(Vec(LoadQueueRAWSize, Bool())) 158 159 // init 160 freeMaskVec.map(e => e := false.B) 161 162 // when the stores that "older than" current load address were ready. 163 // current load will be released. 164 for (i <- 0 until LoadQueueRAWSize) { 165 val deqNotBlock = Mux(!allAddrCheck, !isBefore(io.stAddrReadySqPtr, uop(i).sqIdx), true.B) 166 val needCancel = uop(i).robIdx.needFlush(io.redirect) 167 168 when (allocated(i) && (deqNotBlock || needCancel)) { 169 allocated(i) := false.B 170 freeMaskVec(i) := true.B 171 } 172 } 173 174 // if need replay deallocate entry 175 val lastCanAccept = RegNext(VecInit(needEnqueue.zip(enqValidVec).map(x => x._1 && x._2))) 176 val lastAllocIndex = RegNext(enqIndexVec) 177 178 for ((release, w) <- io.query.map(_.release).zipWithIndex) { 179 val releaseValid = release && lastCanAccept(w) 180 val releaseIndex = lastAllocIndex(w) 181 182 when (allocated(releaseIndex) && releaseValid) { 183 allocated(releaseIndex) := false.B 184 freeMaskVec(releaseIndex) := true.B 185 } 186 } 187 freeList.io.free := freeMaskVec.asUInt 188 189 io.lqFull := freeList.io.empty 190 191 /** 192 * Store-Load Memory violation detection 193 * Scheme 1(Current scheme): flush the pipeline then re-fetch from the load instruction (like old load queue). 194 * Scheme 2 : re-fetch instructions from the first instruction after the store instruction. 195 * 196 * When store writes back, it searches LoadQueue for younger load instructions 197 * with the same load physical address. They loaded wrong data and need re-execution. 198 * 199 * Cycle 0: Store Writeback 200 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 201 * Cycle 1: Select oldest load from select group. 202 * Cycle x: Redirect Fire 203 * Choose the oldest load from LoadPipelineWidth oldest loads. 204 * Prepare redirect request according to the detected violation. 205 * Fire redirect request (if valid) 206 */ 207 // SelectGroup 0 SelectGroup 1 SelectGroup y 208 // stage 0: lq lq lq ...... lq lq lq ....... lq lq lq 209 // | | | | | | | | | 210 // stage 1: lq lq lq ...... lq lq lq ....... lq lq lq 211 // \ | / ...... \ | / ....... \ | / 212 // stage 2: lq lq lq 213 // \ | / ....... \ | / ........ \ | / 214 // stage 3: lq lq lq 215 // ... 216 // ... 217 // | 218 // stage x: lq 219 // | 220 // rollback req 221 222 // select logic 223 val SelectGroupSize = RollbackGroupSize 224 val lgSelectGroupSize = log2Ceil(SelectGroupSize) 225 val TotalSelectCycles = scala.math.ceil(log2Ceil(LoadQueueRAWSize).toFloat / lgSelectGroupSize).toInt + 1 226 227 def selectPartialOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 228 assert(valid.length == bits.length) 229 if (valid.length == 0 || valid.length == 1) { 230 (valid, bits) 231 } else if (valid.length == 2) { 232 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 233 for (i <- res.indices) { 234 res(i).valid := valid(i) 235 res(i).bits := bits(i) 236 } 237 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 238 (Seq(oldest.valid), Seq(oldest.bits)) 239 } else { 240 val left = selectPartialOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 241 val right = selectPartialOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 242 selectPartialOldest(left._1 ++ right._1, left._2 ++ right._2) 243 } 244 } 245 246 def selectOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 247 assert(valid.length == bits.length) 248 val numSelectGroups = scala.math.ceil(valid.length.toFloat / SelectGroupSize).toInt 249 250 // group info 251 val selectValidGroups = 252 if (valid.length <= SelectGroupSize) { 253 Seq(valid) 254 } else { 255 (0 until numSelectGroups).map(g => { 256 if (valid.length < (g + 1) * SelectGroupSize) { 257 valid.takeRight(valid.length - g * SelectGroupSize) 258 } else { 259 (0 until SelectGroupSize).map(j => valid(g * SelectGroupSize + j)) 260 } 261 }) 262 } 263 val selectBitsGroups = 264 if (bits.length <= SelectGroupSize) { 265 Seq(bits) 266 } else { 267 (0 until numSelectGroups).map(g => { 268 if (bits.length < (g + 1) * SelectGroupSize) { 269 bits.takeRight(bits.length - g * SelectGroupSize) 270 } else { 271 (0 until SelectGroupSize).map(j => bits(g * SelectGroupSize + j)) 272 } 273 }) 274 } 275 276 // select logic 277 if (valid.length <= SelectGroupSize) { 278 val (selValid, selBits) = selectPartialOldest(valid, bits) 279 (Seq(RegNext(selValid(0) && !selBits(0).uop.robIdx.needFlush(io.redirect))), Seq(RegNext(selBits(0)))) 280 } else { 281 val select = (0 until numSelectGroups).map(g => { 282 val (selValid, selBits) = selectPartialOldest(selectValidGroups(g), selectBitsGroups(g)) 283 (RegNext(selValid(0) && !selBits(0).uop.robIdx.needFlush(io.redirect)), RegNext(selBits(0))) 284 }) 285 selectOldest(select.map(_._1), select.map(_._2)) 286 } 287 } 288 289 def detectRollback(i: Int) = { 290 paddrModule.io.violationMdata(i) := io.storeIn(i).bits.paddr 291 maskModule.io.violationMdata(i) := io.storeIn(i).bits.mask 292 293 val bypassPaddrMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => bypassPAddr(j)(PAddrBits-1, 3) === io.storeIn(i).bits.paddr(PAddrBits-1, 3)))) 294 val bypassMMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => (bypassMask(j) & io.storeIn(i).bits.mask).orR))) 295 val bypassMaskUInt = (0 until LoadPipelineWidth).map(j => 296 Fill(LoadQueueRAWSize, RegNext(RegNext(io.query(j).req.fire))) & Mux(bypassPaddrMask(j) && bypassMMask(j), UIntToOH(RegNext(RegNext(enqIndexVec(j)))), 0.U(LoadQueueRAWSize)) 297 ).reduce(_|_) 298 299 val addrMaskMatch = RegNext(paddrModule.io.violationMmask(i).asUInt & maskModule.io.violationMmask(i).asUInt) | bypassMaskUInt 300 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueRAWSize).map(j => { 301 allocated(j) && isAfter(uop(j).robIdx, io.storeIn(i).bits.uop.robIdx) && datavalid(j) && !uop(j).robIdx.needFlush(io.redirect) 302 }))) 303 val lqViolationSelVec = VecInit((0 until LoadQueueRAWSize).map(j => { 304 addrMaskMatch(j) && entryNeedCheck(j) 305 })) 306 307 val lqViolationSelUopExts = uop.map(uop => { 308 val wrapper = Wire(new XSBundleWithMicroOp) 309 wrapper.uop := uop 310 wrapper 311 }) 312 313 // select logic 314 val lqSelect = selectOldest(lqViolationSelVec, lqViolationSelUopExts) 315 316 // select one inst 317 val lqViolation = lqSelect._1(0) 318 val lqViolationUop = lqSelect._2(0).uop 319 320 XSDebug( 321 lqViolation, 322 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 323 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 324 ) 325 326 (lqViolation, lqViolationUop) 327 } 328 329 // select rollback (part1) and generate rollback request 330 // rollback check 331 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 332 val rollbackLqWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 333 val stFtqIdx = Wire(Vec(StorePipelineWidth, new FtqPtr)) 334 val stFtqOffset = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 335 for (w <- 0 until StorePipelineWidth) { 336 val detectedRollback = detectRollback(w) 337 rollbackLqWb(w).valid := detectedRollback._1 && DelayN(io.storeIn(w).valid && !io.storeIn(w).bits.miss, TotalSelectCycles) 338 rollbackLqWb(w).bits.uop := detectedRollback._2 339 rollbackLqWb(w).bits.flag := w.U 340 stFtqIdx(w) := DelayN(io.storeIn(w).bits.uop.cf.ftqPtr, TotalSelectCycles) 341 stFtqOffset(w) := DelayN(io.storeIn(w).bits.uop.cf.ftqOffset, TotalSelectCycles) 342 } 343 344 val rollbackLqWbValid = rollbackLqWb.map(x => x.valid && !x.bits.uop.robIdx.needFlush(io.redirect)) 345 val rollbackLqWbBits = rollbackLqWb.map(x => x.bits) 346 347 // select rollback (part2), generate rollback request, then fire rollback request 348 // Note that we use robIdx - 1.U to flush the load instruction itself. 349 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 350 351 // select uop in parallel 352 val lqs = selectPartialOldest(rollbackLqWbValid, rollbackLqWbBits) 353 val rollbackUopExt = lqs._2(0) 354 val rollbackUop = rollbackUopExt.uop 355 val rollbackStFtqIdx = stFtqIdx(rollbackUopExt.flag) 356 val rollbackStFtqOffset = stFtqOffset(rollbackUopExt.flag) 357 358 // check if rollback request is still valid in parallel 359 io.rollback.bits := DontCare 360 io.rollback.bits.robIdx := rollbackUop.robIdx 361 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 362 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 363 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 364 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 365 io.rollback.bits.level := RedirectLevel.flush 366 io.rollback.bits.interrupt := DontCare 367 io.rollback.bits.cfiUpdate := DontCare 368 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 369 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 370 // io.rollback.bits.pc := DontCare 371 372 io.rollback.valid := VecInit(rollbackLqWbValid).asUInt.orR 373 374 // perf cnt 375 val canEnqCount = PopCount(io.query.map(_.req.fire)) 376 val validCount = freeList.io.validCount 377 val allowEnqueue = validCount <= (LoadQueueRAWSize - LoadPipelineWidth).U 378 379 QueuePerf(LoadQueueRAWSize, validCount, !allowEnqueue) 380 XSPerfAccumulate("enqs", canEnqCount) 381 XSPerfAccumulate("stld_rollback", io.rollback.valid) 382 val perfEvents: Seq[(String, UInt)] = Seq( 383 ("enq ", canEnqCount), 384 ("stld_rollback", io.rollback.valid), 385 ) 386 generatePerfEvent() 387 // end 388}