1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import org.chipsalliance.cde.config._ 22import xiangshan._ 23import xiangshan.backend.rob.RobPtr 24import xiangshan.cache._ 25import xiangshan.frontend.FtqPtr 26import xiangshan.mem.mdp._ 27import utils._ 28import utility._ 29import xiangshan.backend.Bundles.DynInst 30 31class LoadQueueRAW(implicit p: Parameters) extends XSModule 32 with HasDCacheParameters 33 with HasCircularQueuePtrHelper 34 with HasLoadHelper 35 with HasPerfEvents 36{ 37 val io = IO(new Bundle() { 38 // control 39 val redirect = Flipped(ValidIO(new Redirect)) 40 41 // violation query 42 val query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) 43 44 // from store unit s1 45 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 46 val vecStoreIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 47 48 // global rollback flush 49 val rollback = Output(Valid(new Redirect)) 50 51 // to LoadQueueReplay 52 val stAddrReadySqPtr = Input(new SqPtr) 53 val stIssuePtr = Input(new SqPtr) 54 val lqFull = Output(Bool()) 55 }) 56 57 println("LoadQueueRAW: size " + LoadQueueRAWSize) 58 // LoadQueueRAW field 59 // +-------+--------+-------+-------+-----------+ 60 // | Valid | uop |PAddr | Mask | Datavalid | 61 // +-------+--------+-------+-------+-----------+ 62 // 63 // Field descriptions: 64 // Allocated : entry has been allocated already 65 // MicroOp : inst's microOp 66 // PAddr : physical address. 67 // Mask : data mask 68 // Datavalid : data valid 69 // 70 val allocated = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) // The control signals need to explicitly indicate the initial value 71 val uop = Reg(Vec(LoadQueueRAWSize, new DynInst)) 72 val paddrModule = Module(new LqPAddrModule( 73 gen = UInt(PAddrBits.W), 74 numEntries = LoadQueueRAWSize, 75 numRead = LoadPipelineWidth, 76 numWrite = LoadPipelineWidth, 77 numWBank = LoadQueueNWriteBanks, 78 numWDelay = 2, 79 numCamPort = StorePipelineWidth 80 )) 81 paddrModule.io := DontCare 82 val maskModule = Module(new LqMaskModule( 83 gen = UInt((VLEN/8).W), 84 numEntries = LoadQueueRAWSize, 85 numRead = LoadPipelineWidth, 86 numWrite = LoadPipelineWidth, 87 numWBank = LoadQueueNWriteBanks, 88 numWDelay = 2, 89 numCamPort = StorePipelineWidth 90 )) 91 maskModule.io := DontCare 92 val datavalid = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) 93 94 // freeliset: store valid entries index. 95 // +---+---+--------------+-----+-----+ 96 // | 0 | 1 | ...... | n-2 | n-1 | 97 // +---+---+--------------+-----+-----+ 98 val freeList = Module(new FreeList( 99 size = LoadQueueRAWSize, 100 allocWidth = LoadPipelineWidth, 101 freeWidth = 4, 102 enablePreAlloc = true, 103 moduleName = "LoadQueueRAW freelist" 104 )) 105 freeList.io := DontCare 106 107 // LoadQueueRAW enqueue 108 val canEnqueue = io.query.map(_.req.valid) 109 val cancelEnqueue = io.query.map(_.req.bits.uop.robIdx.needFlush(io.redirect)) 110 val allAddrCheck = io.stIssuePtr === io.stAddrReadySqPtr 111 val hasAddrInvalidStore = io.query.map(_.req.bits.uop.sqIdx).map(sqIdx => { 112 Mux(!allAddrCheck, isBefore(io.stAddrReadySqPtr, sqIdx), false.B) 113 }) 114 val needEnqueue = canEnqueue.zip(hasAddrInvalidStore).zip(cancelEnqueue).map { case ((v, r), c) => v && r && !c } 115 val bypassPAddr = Reg(Vec(LoadPipelineWidth, UInt(PAddrBits.W))) 116 val bypassMask = Reg(Vec(LoadPipelineWidth, UInt((VLEN/8).W))) 117 118 // Allocate logic 119 val acceptedVec = Wire(Vec(LoadPipelineWidth, Bool())) 120 val enqIndexVec = Wire(Vec(LoadPipelineWidth, UInt())) 121 122 // Enqueue 123 for ((enq, w) <- io.query.map(_.req).zipWithIndex) { 124 acceptedVec(w) := false.B 125 paddrModule.io.wen(w) := false.B 126 maskModule.io.wen(w) := false.B 127 freeList.io.doAllocate(w) := false.B 128 129 freeList.io.allocateReq(w) := true.B 130 131 // Allocate ready 132 val offset = PopCount(needEnqueue.take(w)) 133 val canAccept = freeList.io.canAllocate(offset) 134 val enqIndex = freeList.io.allocateSlot(offset) 135 enq.ready := Mux(needEnqueue(w), canAccept, true.B) 136 137 enqIndexVec(w) := enqIndex 138 when (needEnqueue(w) && enq.ready) { 139 acceptedVec(w) := true.B 140 141 val debug_robIdx = enq.bits.uop.robIdx.asUInt 142 XSError(allocated(enqIndex), p"LoadQueueRAW: You can not write an valid entry! check: ldu $w, robIdx $debug_robIdx") 143 144 freeList.io.doAllocate(w) := true.B 145 146 // Allocate new entry 147 allocated(enqIndex) := true.B 148 149 // Write paddr 150 paddrModule.io.wen(w) := true.B 151 paddrModule.io.waddr(w) := enqIndex 152 paddrModule.io.wdata(w) := enq.bits.paddr 153 bypassPAddr(w) := enq.bits.paddr 154 155 // Write mask 156 maskModule.io.wen(w) := true.B 157 maskModule.io.waddr(w) := enqIndex 158 maskModule.io.wdata(w) := enq.bits.mask 159 bypassMask(w) := enq.bits.mask 160 161 // Fill info 162 uop(enqIndex) := enq.bits.uop 163 datavalid(enqIndex) := enq.bits.data_valid 164 } 165 } 166 167 for ((query, w) <- io.query.map(_.resp).zipWithIndex) { 168 query.valid := RegNext(io.query(w).req.valid) 169 query.bits.rep_frm_fetch := RegNext(false.B) 170 } 171 172 // LoadQueueRAW deallocate 173 val freeMaskVec = Wire(Vec(LoadQueueRAWSize, Bool())) 174 175 // init 176 freeMaskVec.map(e => e := false.B) 177 178 // when the stores that "older than" current load address were ready. 179 // current load will be released. 180 for (i <- 0 until LoadQueueRAWSize) { 181 val deqNotBlock = Mux(!allAddrCheck, !isBefore(io.stAddrReadySqPtr, uop(i).sqIdx), true.B) 182 val needCancel = uop(i).robIdx.needFlush(io.redirect) 183 184 when (allocated(i) && (deqNotBlock || needCancel)) { 185 allocated(i) := false.B 186 freeMaskVec(i) := true.B 187 } 188 } 189 190 // if need replay deallocate entry 191 val lastCanAccept = RegNext(acceptedVec) 192 val lastAllocIndex = RegNext(enqIndexVec) 193 194 for ((revoke, w) <- io.query.map(_.revoke).zipWithIndex) { 195 val revokeValid = revoke && lastCanAccept(w) 196 val revokeIndex = lastAllocIndex(w) 197 198 when (allocated(revokeIndex) && revokeValid) { 199 allocated(revokeIndex) := false.B 200 freeMaskVec(revokeIndex) := true.B 201 } 202 } 203 freeList.io.free := freeMaskVec.asUInt 204 205 io.lqFull := freeList.io.empty 206 207 /** 208 * Store-Load Memory violation detection 209 * Scheme 1(Current scheme): flush the pipeline then re-fetch from the load instruction (like old load queue). 210 * Scheme 2 : re-fetch instructions from the first instruction after the store instruction. 211 * 212 * When store writes back, it searches LoadQueue for younger load instructions 213 * with the same load physical address. They loaded wrong data and need re-execution. 214 * 215 * Cycle 0: Store Writeback 216 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 217 * Cycle 1: Select oldest load from select group. 218 * Cycle x: Redirect Fire 219 * Choose the oldest load from LoadPipelineWidth oldest loads. 220 * Prepare redirect request according to the detected violation. 221 * Fire redirect request (if valid) 222 */ 223 // SelectGroup 0 SelectGroup 1 SelectGroup y 224 // stage 0: lq lq lq ...... lq lq lq ....... lq lq lq 225 // | | | | | | | | | 226 // stage 1: lq lq lq ...... lq lq lq ....... lq lq lq 227 // \ | / ...... \ | / ....... \ | / 228 // stage 2: lq lq lq 229 // \ | / ....... \ | / ........ \ | / 230 // stage 3: lq lq lq 231 // ... 232 // ... 233 // | 234 // stage x: lq 235 // | 236 // rollback req 237 238 // select logic 239 val SelectGroupSize = RollbackGroupSize 240 val lgSelectGroupSize = log2Ceil(SelectGroupSize) 241 val TotalSelectCycles = scala.math.ceil(log2Ceil(LoadQueueRAWSize).toFloat / lgSelectGroupSize).toInt + 1 242 243 def selectPartialOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 244 assert(valid.length == bits.length) 245 if (valid.length == 0 || valid.length == 1) { 246 (valid, bits) 247 } else if (valid.length == 2) { 248 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 249 for (i <- res.indices) { 250 res(i).valid := valid(i) 251 res(i).bits := bits(i) 252 } 253 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 254 (Seq(oldest.valid), Seq(oldest.bits)) 255 } else { 256 val left = selectPartialOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 257 val right = selectPartialOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 258 selectPartialOldest(left._1 ++ right._1, left._2 ++ right._2) 259 } 260 } 261 262 def selectOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 263 assert(valid.length == bits.length) 264 val numSelectGroups = scala.math.ceil(valid.length.toFloat / SelectGroupSize).toInt 265 266 // group info 267 val selectValidGroups = 268 if (valid.length <= SelectGroupSize) { 269 Seq(valid) 270 } else { 271 (0 until numSelectGroups).map(g => { 272 if (valid.length < (g + 1) * SelectGroupSize) { 273 valid.takeRight(valid.length - g * SelectGroupSize) 274 } else { 275 (0 until SelectGroupSize).map(j => valid(g * SelectGroupSize + j)) 276 } 277 }) 278 } 279 val selectBitsGroups = 280 if (bits.length <= SelectGroupSize) { 281 Seq(bits) 282 } else { 283 (0 until numSelectGroups).map(g => { 284 if (bits.length < (g + 1) * SelectGroupSize) { 285 bits.takeRight(bits.length - g * SelectGroupSize) 286 } else { 287 (0 until SelectGroupSize).map(j => bits(g * SelectGroupSize + j)) 288 } 289 }) 290 } 291 292 // select logic 293 if (valid.length <= SelectGroupSize) { 294 val (selValid, selBits) = selectPartialOldest(valid, bits) 295 val selValidNext = RegNext(selValid(0)) 296 val selBitsNext = RegNext(selBits(0)) 297 (Seq(selValidNext && !selBitsNext.uop.robIdx.needFlush(io.redirect) && !selBitsNext.uop.robIdx.needFlush(RegNext(io.redirect))), Seq(selBitsNext)) 298 } else { 299 val select = (0 until numSelectGroups).map(g => { 300 val (selValid, selBits) = selectPartialOldest(selectValidGroups(g), selectBitsGroups(g)) 301 val selValidNext = RegNext(selValid(0)) 302 val selBitsNext = RegNext(selBits(0)) 303 (selValidNext && !selBitsNext.uop.robIdx.needFlush(io.redirect) && !selBitsNext.uop.robIdx.needFlush(RegNext(io.redirect)), selBitsNext) 304 }) 305 selectOldest(select.map(_._1), select.map(_._2)) 306 } 307 } 308 309 val storeIn = (io.storeIn zip io.vecStoreIn).map { case (scalar, vector) => 310 Mux(vector.valid, vector, scalar) 311 } 312 313 def detectRollback(i: Int) = { 314 paddrModule.io.violationMdata(i) := storeIn(i).bits.paddr 315 maskModule.io.violationMdata(i) := storeIn(i).bits.mask 316 317 val bypassPaddrMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => bypassPAddr(j)(PAddrBits-1, DCacheVWordOffset) === storeIn(i).bits.paddr(PAddrBits-1, DCacheVWordOffset)))) 318 val bypassMMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => (bypassMask(j) & storeIn(i).bits.mask).orR))) 319 val bypassMaskUInt = (0 until LoadPipelineWidth).map(j => 320 Fill(LoadQueueRAWSize, RegNext(RegNext(io.query(j).req.fire))) & Mux(bypassPaddrMask(j) && bypassMMask(j), UIntToOH(RegNext(RegNext(enqIndexVec(j)))), 0.U(LoadQueueRAWSize.W)) 321 ).reduce(_|_) 322 323 val addrMaskMatch = RegNext(paddrModule.io.violationMmask(i).asUInt & maskModule.io.violationMmask(i).asUInt) | bypassMaskUInt 324 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueRAWSize).map(j => { 325 allocated(j) && isAfter(uop(j).robIdx, storeIn(i).bits.uop.robIdx) && datavalid(j) && !uop(j).robIdx.needFlush(io.redirect) 326 }))) 327 val lqViolationSelVec = VecInit((0 until LoadQueueRAWSize).map(j => { 328 addrMaskMatch(j) && entryNeedCheck(j) 329 })) 330 331 val lqViolationSelUopExts = uop.map(uop => { 332 val wrapper = Wire(new XSBundleWithMicroOp) 333 wrapper.uop := uop 334 wrapper 335 }) 336 337 // select logic 338 val lqSelect = selectOldest(lqViolationSelVec, lqViolationSelUopExts) 339 340 // select one inst 341 val lqViolation = lqSelect._1(0) 342 val lqViolationUop = lqSelect._2(0).uop 343 344 XSDebug( 345 lqViolation, 346 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 347 storeIn(i).bits.uop.pc, storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 348 ) 349 350 (lqViolation, lqViolationUop) 351 } 352 353 // select rollback (part1) and generate rollback request 354 // rollback check 355 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 356 val rollbackLqWb = Wire(Vec(StorePipelineWidth, Valid(new DynInst))) 357 val stFtqIdx = Wire(Vec(StorePipelineWidth, new FtqPtr)) 358 val stFtqOffset = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 359 for (w <- 0 until StorePipelineWidth) { 360 val detectedRollback = detectRollback(w) 361 rollbackLqWb(w).valid := detectedRollback._1 && DelayN(storeIn(w).valid && !storeIn(w).bits.miss, TotalSelectCycles) 362 rollbackLqWb(w).bits := detectedRollback._2 363 stFtqIdx(w) := DelayN(storeIn(w).bits.uop.ftqPtr, TotalSelectCycles) 364 stFtqOffset(w) := DelayN(storeIn(w).bits.uop.ftqOffset, TotalSelectCycles) 365 } 366 367 // select rollback (part2), generate rollback request, then fire rollback request 368 // Note that we use robIdx - 1.U to flush the load instruction itself. 369 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 370 371 // select uop in parallel 372 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 373 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 374 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 375 (if (j < i) !xs(j).valid || compareVec(i)(j) 376 else if (j == i) xs(i).valid 377 else !xs(j).valid || !compareVec(j)(i)) 378 )).andR)) 379 resultOnehot 380 } 381 val allRedirect = (0 until StorePipelineWidth).map(i => { 382 val redirect = Wire(Valid(new Redirect)) 383 redirect.valid := rollbackLqWb(i).valid 384 redirect.bits := DontCare 385 redirect.bits.isRVC := rollbackLqWb(i).bits.preDecodeInfo.isRVC 386 redirect.bits.robIdx := rollbackLqWb(i).bits.robIdx 387 redirect.bits.ftqIdx := rollbackLqWb(i).bits.ftqPtr 388 redirect.bits.ftqOffset := rollbackLqWb(i).bits.ftqOffset 389 redirect.bits.stFtqIdx := stFtqIdx(i) 390 redirect.bits.stFtqOffset := stFtqOffset(i) 391 redirect.bits.level := RedirectLevel.flush 392 redirect.bits.cfiUpdate.target := rollbackLqWb(i).bits.pc 393 redirect.bits.debug_runahead_checkpoint_id := rollbackLqWb(i).bits.debugInfo.runahead_checkpoint_id 394 redirect 395 }) 396 val oldestOneHot = selectOldestRedirect(allRedirect) 397 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 398 io.rollback := oldestRedirect 399 400 // perf cnt 401 val canEnqCount = PopCount(io.query.map(_.req.fire)) 402 val validCount = freeList.io.validCount 403 val allowEnqueue = validCount <= (LoadQueueRAWSize - LoadPipelineWidth).U 404 405 QueuePerf(LoadQueueRAWSize, validCount, !allowEnqueue) 406 XSPerfAccumulate("enqs", canEnqCount) 407 XSPerfAccumulate("stld_rollback", io.rollback.valid) 408 val perfEvents: Seq[(String, UInt)] = Seq( 409 ("enq ", canEnqCount), 410 ("stld_rollback", io.rollback.valid), 411 ) 412 generatePerfEvent() 413 // end 414}