1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import org.chipsalliance.cde.config._ 22import xiangshan._ 23import xiangshan.backend.rob.RobPtr 24import xiangshan.cache._ 25import xiangshan.frontend.FtqPtr 26import xiangshan.mem.mdp._ 27import utils._ 28import utility._ 29import xiangshan.backend.Bundles.DynInst 30 31class LoadQueueRAW(implicit p: Parameters) extends XSModule 32 with HasDCacheParameters 33 with HasCircularQueuePtrHelper 34 with HasLoadHelper 35 with HasPerfEvents 36{ 37 val io = IO(new Bundle() { 38 // control 39 val redirect = Flipped(ValidIO(new Redirect)) 40 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 41 42 // violation query 43 val query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) 44 45 // from store unit s1 46 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 47 48 // global rollback flush 49 val rollback = Output(Valid(new Redirect)) 50 51 // to LoadQueueReplay 52 val stAddrReadySqPtr = Input(new SqPtr) 53 val stIssuePtr = Input(new SqPtr) 54 val lqFull = Output(Bool()) 55 }) 56 57 println("LoadQueueRAW: size " + LoadQueueRAWSize) 58 // LoadQueueRAW field 59 // +-------+--------+-------+-------+-----------+ 60 // | Valid | uop |PAddr | Mask | Datavalid | 61 // +-------+--------+-------+-------+-----------+ 62 // 63 // Field descriptions: 64 // Allocated : entry has been allocated already 65 // MicroOp : inst's microOp 66 // PAddr : physical address. 67 // Mask : data mask 68 // Datavalid : data valid 69 // 70 71 val allocated = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) // The control signals need to explicitly indicate the initial value 72 73 74 val uop = Reg(Vec(LoadQueueRAWSize, new DynInst)) 75 val paddrModule = Module(new LqPAddrModule( 76 gen = UInt(PAddrBits.W), 77 numEntries = LoadQueueRAWSize, 78 numRead = LoadPipelineWidth, 79 numWrite = LoadPipelineWidth, 80 numWBank = LoadQueueNWriteBanks, 81 numWDelay = 2, 82 numCamPort = StorePipelineWidth 83 )) 84 paddrModule.io := DontCare 85 val maskModule = Module(new LqMaskModule( 86 gen = UInt((VLEN/8).W), 87 numEntries = LoadQueueRAWSize, 88 numRead = LoadPipelineWidth, 89 numWrite = LoadPipelineWidth, 90 numWBank = LoadQueueNWriteBanks, 91 numWDelay = 2, 92 numCamPort = StorePipelineWidth 93 )) 94 maskModule.io := DontCare 95 val datavalid = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) 96 97 // freeliset: store valid entries index. 98 // +---+---+--------------+-----+-----+ 99 // | 0 | 1 | ...... | n-2 | n-1 | 100 // +---+---+--------------+-----+-----+ 101 val freeList = Module(new FreeList( 102 size = LoadQueueRAWSize, 103 allocWidth = LoadPipelineWidth, 104 freeWidth = 4, 105 enablePreAlloc = true, 106 moduleName = "LoadQueueRAW freelist" 107 )) 108 freeList.io := DontCare 109 110 // LoadQueueRAW enqueue 111 val canEnqueue = io.query.map(_.req.valid) 112 val cancelEnqueue = io.query.map(_.req.bits.uop.robIdx.needFlush(io.redirect)) 113 val allAddrCheck = io.stIssuePtr === io.stAddrReadySqPtr 114 val hasAddrInvalidStore = io.query.map(_.req.bits.uop.sqIdx).map(sqIdx => { 115 Mux(!allAddrCheck, isBefore(io.stAddrReadySqPtr, sqIdx), false.B) 116 }) 117 val needEnqueue = canEnqueue.zip(hasAddrInvalidStore).zip(cancelEnqueue).map { case ((v, r), c) => v && r && !c } 118 119 // Allocate logic 120 val acceptedVec = Wire(Vec(LoadPipelineWidth, Bool())) 121 val enqIndexVec = Wire(Vec(LoadPipelineWidth, UInt())) 122 123 // Enqueue 124 for ((enq, w) <- io.query.map(_.req).zipWithIndex) { 125 acceptedVec(w) := false.B 126 paddrModule.io.wen(w) := false.B 127 maskModule.io.wen(w) := false.B 128 freeList.io.doAllocate(w) := false.B 129 130 freeList.io.allocateReq(w) := true.B 131 132 // Allocate ready 133 val offset = PopCount(needEnqueue.take(w)) 134 val canAccept = freeList.io.canAllocate(offset) 135 val enqIndex = freeList.io.allocateSlot(offset) 136 enq.ready := Mux(needEnqueue(w), canAccept, true.B) 137 138 enqIndexVec(w) := enqIndex 139 when (needEnqueue(w) && enq.ready) { 140 acceptedVec(w) := true.B 141 142 val debug_robIdx = enq.bits.uop.robIdx.asUInt 143 XSError(allocated(enqIndex), p"LoadQueueRAW: You can not write an valid entry! check: ldu $w, robIdx $debug_robIdx") 144 145 freeList.io.doAllocate(w) := true.B 146 147 // Allocate new entry 148 allocated(enqIndex) := true.B 149 150 // Write paddr 151 paddrModule.io.wen(w) := true.B 152 paddrModule.io.waddr(w) := enqIndex 153 paddrModule.io.wdata(w) := enq.bits.paddr 154 155 // Write mask 156 maskModule.io.wen(w) := true.B 157 maskModule.io.waddr(w) := enqIndex 158 maskModule.io.wdata(w) := enq.bits.mask 159 160 // Fill info 161 uop(enqIndex) := enq.bits.uop 162 datavalid(enqIndex) := enq.bits.data_valid 163 } 164 } 165 166 for ((query, w) <- io.query.map(_.resp).zipWithIndex) { 167 query.valid := RegNext(io.query(w).req.valid) 168 query.bits.rep_frm_fetch := RegNext(false.B) 169 } 170 171 // LoadQueueRAW deallocate 172 val freeMaskVec = Wire(Vec(LoadQueueRAWSize, Bool())) 173 174 // init 175 freeMaskVec.map(e => e := false.B) 176 177 // when the stores that "older than" current load address were ready. 178 // current load will be released. 179 val vecLdCanceltmp = Wire(Vec(LoadQueueRAWSize, Vec(VecLoadPipelineWidth, Bool()))) 180 val vecLdCancel = Wire(Vec(LoadQueueRAWSize, Bool())) 181 for (i <- 0 until LoadQueueRAWSize) { 182 val deqNotBlock = Mux(!allAddrCheck, !isBefore(io.stAddrReadySqPtr, uop(i).sqIdx), true.B) 183 val needCancel = uop(i).robIdx.needFlush(io.redirect) 184 val fbk = io.vecFeedback 185 for (j <- 0 until VecLoadPipelineWidth) { 186 vecLdCanceltmp(i)(j) := fbk(j).valid && fbk(j).bits.isFlush && uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx 187 } 188 vecLdCancel(i) := vecLdCanceltmp(i).reduce(_ || _) 189 190 when (allocated(i) && (deqNotBlock || needCancel || vecLdCancel(i))) { 191 allocated(i) := false.B 192 freeMaskVec(i) := true.B 193 } 194 } 195 196 // if need replay deallocate entry 197 val lastCanAccept = GatedValidRegNext(acceptedVec) 198 val lastAllocIndex = GatedRegNext(enqIndexVec) 199 200 for ((revoke, w) <- io.query.map(_.revoke).zipWithIndex) { 201 val revokeValid = revoke && lastCanAccept(w) 202 val revokeIndex = lastAllocIndex(w) 203 204 when (allocated(revokeIndex) && revokeValid) { 205 allocated(revokeIndex) := false.B 206 freeMaskVec(revokeIndex) := true.B 207 } 208 } 209 freeList.io.free := freeMaskVec.asUInt 210 211 io.lqFull := freeList.io.empty 212 213 /** 214 * Store-Load Memory violation detection 215 * Scheme 1(Current scheme): flush the pipeline then re-fetch from the load instruction (like old load queue). 216 * Scheme 2 : re-fetch instructions from the first instruction after the store instruction. 217 * 218 * When store writes back, it searches LoadQueue for younger load instructions 219 * with the same load physical address. They loaded wrong data and need re-execution. 220 * 221 * Cycle 0: Store Writeback 222 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 223 * Cycle 1: Select oldest load from select group. 224 * Cycle x: Redirect Fire 225 * Choose the oldest load from LoadPipelineWidth oldest loads. 226 * Prepare redirect request according to the detected violation. 227 * Fire redirect request (if valid) 228 */ 229 // SelectGroup 0 SelectGroup 1 SelectGroup y 230 // stage 0: lq lq lq ...... lq lq lq ....... lq lq lq 231 // | | | | | | | | | 232 // stage 1: lq lq lq ...... lq lq lq ....... lq lq lq 233 // \ | / ...... \ | / ....... \ | / 234 // stage 2: lq lq lq 235 // \ | / ....... \ | / ........ \ | / 236 // stage 3: lq lq lq 237 // ... 238 // ... 239 // | 240 // stage x: lq 241 // | 242 // rollback req 243 244 // select logic 245 val SelectGroupSize = RollbackGroupSize 246 val lgSelectGroupSize = log2Ceil(SelectGroupSize) 247 val TotalSelectCycles = scala.math.ceil(log2Ceil(LoadQueueRAWSize).toFloat / lgSelectGroupSize).toInt + 1 248 249 def selectPartialOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 250 assert(valid.length == bits.length) 251 if (valid.length == 0 || valid.length == 1) { 252 (valid, bits) 253 } else if (valid.length == 2) { 254 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 255 for (i <- res.indices) { 256 res(i).valid := valid(i) 257 res(i).bits := bits(i) 258 } 259 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 260 (Seq(oldest.valid), Seq(oldest.bits)) 261 } else { 262 val left = selectPartialOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 263 val right = selectPartialOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 264 selectPartialOldest(left._1 ++ right._1, left._2 ++ right._2) 265 } 266 } 267 268 def selectOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 269 assert(valid.length == bits.length) 270 val numSelectGroups = scala.math.ceil(valid.length.toFloat / SelectGroupSize).toInt 271 272 // group info 273 val selectValidGroups = 274 if (valid.length <= SelectGroupSize) { 275 Seq(valid) 276 } else { 277 (0 until numSelectGroups).map(g => { 278 if (valid.length < (g + 1) * SelectGroupSize) { 279 valid.takeRight(valid.length - g * SelectGroupSize) 280 } else { 281 (0 until SelectGroupSize).map(j => valid(g * SelectGroupSize + j)) 282 } 283 }) 284 } 285 val selectBitsGroups = 286 if (bits.length <= SelectGroupSize) { 287 Seq(bits) 288 } else { 289 (0 until numSelectGroups).map(g => { 290 if (bits.length < (g + 1) * SelectGroupSize) { 291 bits.takeRight(bits.length - g * SelectGroupSize) 292 } else { 293 (0 until SelectGroupSize).map(j => bits(g * SelectGroupSize + j)) 294 } 295 }) 296 } 297 298 // select logic 299 if (valid.length <= SelectGroupSize) { 300 val (selValid, selBits) = selectPartialOldest(valid, bits) 301 val selValidNext = GatedValidRegNext(selValid(0)) 302 val selBitsNext = RegEnable(selBits(0), selValid(0)) 303 (Seq(selValidNext && !selBitsNext.uop.robIdx.needFlush(io.redirect) && !selBitsNext.uop.robIdx.needFlush(RegNext(io.redirect))), Seq(selBitsNext)) 304 } else { 305 val select = (0 until numSelectGroups).map(g => { 306 val (selValid, selBits) = selectPartialOldest(selectValidGroups(g), selectBitsGroups(g)) 307 val selValidNext = RegNext(selValid(0)) 308 val selBitsNext = RegEnable(selBits(0), selValid(0)) 309 (selValidNext && !selBitsNext.uop.robIdx.needFlush(io.redirect) && !selBitsNext.uop.robIdx.needFlush(RegNext(io.redirect)), selBitsNext) 310 }) 311 selectOldest(select.map(_._1), select.map(_._2)) 312 } 313 } 314 315 val storeIn = io.storeIn 316 317 def detectRollback(i: Int) = { 318 paddrModule.io.violationMdata(i) := RegNext(storeIn(i).bits.paddr) 319 maskModule.io.violationMdata(i) := RegNext(storeIn(i).bits.mask) 320 321 val addrMaskMatch = paddrModule.io.violationMmask(i).asUInt & maskModule.io.violationMmask(i).asUInt 322 val entryNeedCheck = GatedValidRegNext(VecInit((0 until LoadQueueRAWSize).map(j => { 323 allocated(j) && isAfter(uop(j).robIdx, storeIn(i).bits.uop.robIdx) && datavalid(j) && !uop(j).robIdx.needFlush(io.redirect) 324 }))) 325 val lqViolationSelVec = VecInit((0 until LoadQueueRAWSize).map(j => { 326 addrMaskMatch(j) && entryNeedCheck(j) 327 })) 328 329 val lqViolationSelUopExts = uop.map(uop => { 330 val wrapper = Wire(new XSBundleWithMicroOp) 331 wrapper.uop := uop 332 wrapper 333 }) 334 335 // select logic 336 val lqSelect = selectOldest(lqViolationSelVec, lqViolationSelUopExts) 337 338 // select one inst 339 val lqViolation = lqSelect._1(0) 340 val lqViolationUop = lqSelect._2(0).uop 341 342 XSDebug( 343 lqViolation, 344 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 345 storeIn(i).bits.uop.pc, storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 346 ) 347 348 (lqViolation, lqViolationUop) 349 } 350 351 // select rollback (part1) and generate rollback request 352 // rollback check 353 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 354 val rollbackLqWb = Wire(Vec(StorePipelineWidth, Valid(new DynInst))) 355 val stFtqIdx = Wire(Vec(StorePipelineWidth, new FtqPtr)) 356 val stFtqOffset = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 357 for (w <- 0 until StorePipelineWidth) { 358 val detectedRollback = detectRollback(w) 359 rollbackLqWb(w).valid := detectedRollback._1 && DelayN(storeIn(w).valid && !storeIn(w).bits.miss, TotalSelectCycles) 360 rollbackLqWb(w).bits := detectedRollback._2 361 stFtqIdx(w) := DelayNWithValid(storeIn(w).bits.uop.ftqPtr, storeIn(w).valid, TotalSelectCycles)._2 362 stFtqOffset(w) := DelayNWithValid(storeIn(w).bits.uop.ftqOffset, storeIn(w).valid, TotalSelectCycles)._2 363 } 364 365 // select rollback (part2), generate rollback request, then fire rollback request 366 // Note that we use robIdx - 1.U to flush the load instruction itself. 367 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 368 369 // select uop in parallel 370 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 371 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 372 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 373 (if (j < i) !xs(j).valid || compareVec(i)(j) 374 else if (j == i) xs(i).valid 375 else !xs(j).valid || !compareVec(j)(i)) 376 )).andR)) 377 resultOnehot 378 } 379 val allRedirect = (0 until StorePipelineWidth).map(i => { 380 val redirect = Wire(Valid(new Redirect)) 381 redirect.valid := rollbackLqWb(i).valid 382 redirect.bits := DontCare 383 redirect.bits.isRVC := rollbackLqWb(i).bits.preDecodeInfo.isRVC 384 redirect.bits.robIdx := rollbackLqWb(i).bits.robIdx 385 redirect.bits.ftqIdx := rollbackLqWb(i).bits.ftqPtr 386 redirect.bits.ftqOffset := rollbackLqWb(i).bits.ftqOffset 387 redirect.bits.stFtqIdx := stFtqIdx(i) 388 redirect.bits.stFtqOffset := stFtqOffset(i) 389 redirect.bits.level := RedirectLevel.flush 390 redirect.bits.cfiUpdate.target := rollbackLqWb(i).bits.pc 391 redirect.bits.debug_runahead_checkpoint_id := rollbackLqWb(i).bits.debugInfo.runahead_checkpoint_id 392 redirect 393 }) 394 val oldestOneHot = selectOldestRedirect(allRedirect) 395 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 396 io.rollback := oldestRedirect 397 398 // perf cnt 399 val canEnqCount = PopCount(io.query.map(_.req.fire)) 400 val validCount = freeList.io.validCount 401 val allowEnqueue = validCount <= (LoadQueueRAWSize - LoadPipelineWidth).U 402 403 QueuePerf(LoadQueueRAWSize, validCount, !allowEnqueue) 404 XSPerfAccumulate("enqs", canEnqCount) 405 XSPerfAccumulate("stld_rollback", io.rollback.valid) 406 val perfEvents: Seq[(String, UInt)] = Seq( 407 ("enq ", canEnqCount), 408 ("stld_rollback", io.rollback.valid), 409 ) 410 generatePerfEvent() 411 // end 412}