1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import chipsalliance.rocketchip.config._ 22import xiangshan._ 23import xiangshan.backend.rob.RobPtr 24import xiangshan.cache._ 25import xiangshan.frontend.FtqPtr 26import xiangshan.mem.mdp._ 27import utils._ 28import utility._ 29 30class LoadQueueRAW(implicit p: Parameters) extends XSModule 31 with HasDCacheParameters 32 with HasCircularQueuePtrHelper 33 with HasLoadHelper 34 with HasPerfEvents 35{ 36 val io = IO(new Bundle() { 37 // control 38 val redirect = Flipped(ValidIO(new Redirect)) 39 40 // violation query 41 val query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) 42 43 // from store unit s1 44 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 45 46 // global rollback flush 47 val rollback = Output(Valid(new Redirect)) 48 49 // to LoadQueueReplay 50 val stAddrReadySqPtr = Input(new SqPtr) 51 val stIssuePtr = Input(new SqPtr) 52 val lqFull = Output(Bool()) 53 }) 54 55 println("LoadQueueRAW: size " + LoadQueueRAWSize) 56 // LoadQueueRAW field 57 // +-------+--------+-------+-------+-----------+ 58 // | Valid | uop |PAddr | Mask | Datavalid | 59 // +-------+--------+-------+-------+-----------+ 60 // 61 // Field descriptions: 62 // Allocated : entry has been allocated already 63 // MicroOp : inst's microOp 64 // PAddr : physical address. 65 // Mask : data mask 66 // Datavalid : data valid 67 // 68 val allocated = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) // The control signals need to explicitly indicate the initial value 69 val uop = Reg(Vec(LoadQueueRAWSize, new MicroOp)) 70 val paddrModule = Module(new LqPAddrModule( 71 gen = UInt(PAddrBits.W), 72 numEntries = LoadQueueRAWSize, 73 numRead = LoadPipelineWidth, 74 numWrite = LoadPipelineWidth, 75 numWBank = LoadQueueNWriteBanks, 76 numWDelay = 2, 77 numCamPort = StorePipelineWidth 78 )) 79 paddrModule.io := DontCare 80 val maskModule = Module(new LqMaskModule( 81 gen = UInt((VLEN/8).W), 82 numEntries = LoadQueueRAWSize, 83 numRead = LoadPipelineWidth, 84 numWrite = LoadPipelineWidth, 85 numWBank = LoadQueueNWriteBanks, 86 numWDelay = 2, 87 numCamPort = StorePipelineWidth 88 )) 89 maskModule.io := DontCare 90 val datavalid = RegInit(VecInit(List.fill(LoadQueueRAWSize)(false.B))) 91 92 // freeliset: store valid entries index. 93 // +---+---+--------------+-----+-----+ 94 // | 0 | 1 | ...... | n-2 | n-1 | 95 // +---+---+--------------+-----+-----+ 96 val freeList = Module(new FreeList( 97 size = LoadQueueRAWSize, 98 allocWidth = LoadPipelineWidth, 99 freeWidth = 4, 100 moduleName = "LoadQueueRAW freelist" 101 )) 102 freeList.io := DontCare 103 104 // LoadQueueRAW enqueue 105 val canEnqueue = io.query.map(_.req.valid) 106 val cancelEnqueue = io.query.map(_.req.bits.uop.robIdx.needFlush(io.redirect)) 107 val allAddrCheck = io.stIssuePtr === io.stAddrReadySqPtr 108 val hasAddrInvalidStore = io.query.map(_.req.bits.uop.sqIdx).map(sqIdx => { 109 Mux(!allAddrCheck, isBefore(io.stAddrReadySqPtr, sqIdx), false.B) 110 }) 111 val needEnqueue = canEnqueue.zip(hasAddrInvalidStore).zip(cancelEnqueue).map { case ((v, r), c) => v && r && !c } 112 val bypassPAddr = Reg(Vec(LoadPipelineWidth, UInt(PAddrBits.W))) 113 val bypassMask = Reg(Vec(LoadPipelineWidth, UInt((VLEN/8).W))) 114 115 // Allocate logic 116 val enqValidVec = Wire(Vec(LoadPipelineWidth, Bool())) 117 val enqIndexVec = Wire(Vec(LoadPipelineWidth, UInt())) 118 119 // Enqueue 120 for ((enq, w) <- io.query.map(_.req).zipWithIndex) { 121 paddrModule.io.wen(w) := false.B 122 maskModule.io.wen(w) := false.B 123 freeList.io.doAllocate(w) := false.B 124 125 freeList.io.allocateReq(w) := needEnqueue(w) 126 127 // Allocate ready 128 enqValidVec(w) := freeList.io.canAllocate(w) 129 enqIndexVec(w) := freeList.io.allocateSlot(w) 130 enq.ready := Mux(needEnqueue(w), enqValidVec(w), true.B) 131 132 val enqIndex = enqIndexVec(w) 133 when (needEnqueue(w) && enq.ready) { 134 val debug_robIdx = enq.bits.uop.robIdx.asUInt 135 XSError(allocated(enqIndex), p"LoadQueueRAW: You can not write an valid entry! check: ldu $w, robIdx $debug_robIdx") 136 137 freeList.io.doAllocate(w) := true.B 138 139 // Allocate new entry 140 allocated(enqIndex) := true.B 141 142 // Write paddr 143 paddrModule.io.wen(w) := true.B 144 paddrModule.io.waddr(w) := enqIndex 145 paddrModule.io.wdata(w) := enq.bits.paddr 146 bypassPAddr(w) := enq.bits.paddr 147 148 // Write mask 149 maskModule.io.wen(w) := true.B 150 maskModule.io.waddr(w) := enqIndex 151 maskModule.io.wdata(w) := enq.bits.mask 152 bypassMask(w) := enq.bits.mask 153 154 // Fill info 155 uop(enqIndex) := enq.bits.uop 156 datavalid(enqIndex) := enq.bits.data_valid 157 } 158 } 159 160 for ((query, w) <- io.query.map(_.resp).zipWithIndex) { 161 query.valid := RegNext(io.query(w).req.valid) 162 query.bits.rep_frm_fetch := RegNext(false.B) 163 } 164 165 // LoadQueueRAW deallocate 166 val freeMaskVec = Wire(Vec(LoadQueueRAWSize, Bool())) 167 168 // init 169 freeMaskVec.map(e => e := false.B) 170 171 // when the stores that "older than" current load address were ready. 172 // current load will be released. 173 for (i <- 0 until LoadQueueRAWSize) { 174 val deqNotBlock = Mux(!allAddrCheck, !isBefore(io.stAddrReadySqPtr, uop(i).sqIdx), true.B) 175 val needCancel = uop(i).robIdx.needFlush(io.redirect) 176 177 when (allocated(i) && (deqNotBlock || needCancel)) { 178 allocated(i) := false.B 179 freeMaskVec(i) := true.B 180 } 181 } 182 183 // if need replay deallocate entry 184 val lastCanAccept = RegNext(VecInit(needEnqueue.zip(enqValidVec).map(x => x._1 && x._2))) 185 val lastAllocIndex = RegNext(enqIndexVec) 186 187 for ((revoke, w) <- io.query.map(_.revoke).zipWithIndex) { 188 val revokeValid = revoke && lastCanAccept(w) 189 val revokeIndex = lastAllocIndex(w) 190 191 when (allocated(revokeIndex) && revokeValid) { 192 allocated(revokeIndex) := false.B 193 freeMaskVec(revokeIndex) := true.B 194 } 195 } 196 freeList.io.free := freeMaskVec.asUInt 197 198 io.lqFull := freeList.io.empty 199 200 /** 201 * Store-Load Memory violation detection 202 * Scheme 1(Current scheme): flush the pipeline then re-fetch from the load instruction (like old load queue). 203 * Scheme 2 : re-fetch instructions from the first instruction after the store instruction. 204 * 205 * When store writes back, it searches LoadQueue for younger load instructions 206 * with the same load physical address. They loaded wrong data and need re-execution. 207 * 208 * Cycle 0: Store Writeback 209 * Generate match vector for store address with rangeMask(stPtr, enqPtr). 210 * Cycle 1: Select oldest load from select group. 211 * Cycle x: Redirect Fire 212 * Choose the oldest load from LoadPipelineWidth oldest loads. 213 * Prepare redirect request according to the detected violation. 214 * Fire redirect request (if valid) 215 */ 216 // SelectGroup 0 SelectGroup 1 SelectGroup y 217 // stage 0: lq lq lq ...... lq lq lq ....... lq lq lq 218 // | | | | | | | | | 219 // stage 1: lq lq lq ...... lq lq lq ....... lq lq lq 220 // \ | / ...... \ | / ....... \ | / 221 // stage 2: lq lq lq 222 // \ | / ....... \ | / ........ \ | / 223 // stage 3: lq lq lq 224 // ... 225 // ... 226 // | 227 // stage x: lq 228 // | 229 // rollback req 230 231 // select logic 232 val SelectGroupSize = RollbackGroupSize 233 val lgSelectGroupSize = log2Ceil(SelectGroupSize) 234 val TotalSelectCycles = scala.math.ceil(log2Ceil(LoadQueueRAWSize).toFloat / lgSelectGroupSize).toInt + 1 235 236 def selectPartialOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 237 assert(valid.length == bits.length) 238 if (valid.length == 0 || valid.length == 1) { 239 (valid, bits) 240 } else if (valid.length == 2) { 241 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 242 for (i <- res.indices) { 243 res(i).valid := valid(i) 244 res(i).bits := bits(i) 245 } 246 val oldest = Mux(valid(0) && valid(1), Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx), res(1), res(0)), Mux(valid(0) && !valid(1), res(0), res(1))) 247 (Seq(oldest.valid), Seq(oldest.bits)) 248 } else { 249 val left = selectPartialOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 250 val right = selectPartialOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 251 selectPartialOldest(left._1 ++ right._1, left._2 ++ right._2) 252 } 253 } 254 255 def selectOldest[T <: XSBundleWithMicroOp](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 256 assert(valid.length == bits.length) 257 val numSelectGroups = scala.math.ceil(valid.length.toFloat / SelectGroupSize).toInt 258 259 // group info 260 val selectValidGroups = 261 if (valid.length <= SelectGroupSize) { 262 Seq(valid) 263 } else { 264 (0 until numSelectGroups).map(g => { 265 if (valid.length < (g + 1) * SelectGroupSize) { 266 valid.takeRight(valid.length - g * SelectGroupSize) 267 } else { 268 (0 until SelectGroupSize).map(j => valid(g * SelectGroupSize + j)) 269 } 270 }) 271 } 272 val selectBitsGroups = 273 if (bits.length <= SelectGroupSize) { 274 Seq(bits) 275 } else { 276 (0 until numSelectGroups).map(g => { 277 if (bits.length < (g + 1) * SelectGroupSize) { 278 bits.takeRight(bits.length - g * SelectGroupSize) 279 } else { 280 (0 until SelectGroupSize).map(j => bits(g * SelectGroupSize + j)) 281 } 282 }) 283 } 284 285 // select logic 286 if (valid.length <= SelectGroupSize) { 287 val (selValid, selBits) = selectPartialOldest(valid, bits) 288 (Seq(RegNext(selValid(0) && !selBits(0).uop.robIdx.needFlush(io.redirect))), Seq(RegNext(selBits(0)))) 289 } else { 290 val select = (0 until numSelectGroups).map(g => { 291 val (selValid, selBits) = selectPartialOldest(selectValidGroups(g), selectBitsGroups(g)) 292 (RegNext(selValid(0) && !selBits(0).uop.robIdx.needFlush(io.redirect)), RegNext(selBits(0))) 293 }) 294 selectOldest(select.map(_._1), select.map(_._2)) 295 } 296 } 297 298 def detectRollback(i: Int) = { 299 paddrModule.io.violationMdata(i) := io.storeIn(i).bits.paddr 300 maskModule.io.violationMdata(i) := io.storeIn(i).bits.mask 301 302 val bypassPaddrMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => bypassPAddr(j)(PAddrBits-1, DCacheVWordOffset) === io.storeIn(i).bits.paddr(PAddrBits-1, DCacheVWordOffset)))) 303 val bypassMMask = RegNext(VecInit((0 until LoadPipelineWidth).map(j => (bypassMask(j) & io.storeIn(i).bits.mask).orR))) 304 val bypassMaskUInt = (0 until LoadPipelineWidth).map(j => 305 Fill(LoadQueueRAWSize, RegNext(RegNext(io.query(j).req.fire))) & Mux(bypassPaddrMask(j) && bypassMMask(j), UIntToOH(RegNext(RegNext(enqIndexVec(j)))), 0.U(LoadQueueRAWSize)) 306 ).reduce(_|_) 307 308 val addrMaskMatch = RegNext(paddrModule.io.violationMmask(i).asUInt & maskModule.io.violationMmask(i).asUInt) | bypassMaskUInt 309 val entryNeedCheck = RegNext(VecInit((0 until LoadQueueRAWSize).map(j => { 310 allocated(j) && isAfter(uop(j).robIdx, io.storeIn(i).bits.uop.robIdx) && datavalid(j) && !uop(j).robIdx.needFlush(io.redirect) 311 }))) 312 val lqViolationSelVec = VecInit((0 until LoadQueueRAWSize).map(j => { 313 addrMaskMatch(j) && entryNeedCheck(j) 314 })) 315 316 val lqViolationSelUopExts = uop.map(uop => { 317 val wrapper = Wire(new XSBundleWithMicroOp) 318 wrapper.uop := uop 319 wrapper 320 }) 321 322 // select logic 323 val lqSelect = selectOldest(lqViolationSelVec, lqViolationSelUopExts) 324 325 // select one inst 326 val lqViolation = lqSelect._1(0) 327 val lqViolationUop = lqSelect._2(0).uop 328 329 XSDebug( 330 lqViolation, 331 "need rollback (ld wb before store) pc %x robidx %d target %x\n", 332 io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.robIdx.asUInt, lqViolationUop.robIdx.asUInt 333 ) 334 335 (lqViolation, lqViolationUop) 336 } 337 338 // select rollback (part1) and generate rollback request 339 // rollback check 340 // Lq rollback seq check is done in s3 (next stage), as getting rollbackLq MicroOp is slow 341 val rollbackLqWb = Wire(Vec(StorePipelineWidth, Valid(new MicroOpRbExt))) 342 val stFtqIdx = Wire(Vec(StorePipelineWidth, new FtqPtr)) 343 val stFtqOffset = Wire(Vec(StorePipelineWidth, UInt(log2Up(PredictWidth).W))) 344 for (w <- 0 until StorePipelineWidth) { 345 val detectedRollback = detectRollback(w) 346 rollbackLqWb(w).valid := detectedRollback._1 && DelayN(io.storeIn(w).valid && !io.storeIn(w).bits.miss, TotalSelectCycles) 347 rollbackLqWb(w).bits.uop := detectedRollback._2 348 rollbackLqWb(w).bits.flag := w.U 349 stFtqIdx(w) := DelayN(io.storeIn(w).bits.uop.cf.ftqPtr, TotalSelectCycles) 350 stFtqOffset(w) := DelayN(io.storeIn(w).bits.uop.cf.ftqOffset, TotalSelectCycles) 351 } 352 353 val rollbackLqWbValid = rollbackLqWb.map(x => x.valid && !x.bits.uop.robIdx.needFlush(io.redirect)) 354 val rollbackLqWbBits = rollbackLqWb.map(x => x.bits) 355 356 // select rollback (part2), generate rollback request, then fire rollback request 357 // Note that we use robIdx - 1.U to flush the load instruction itself. 358 // Thus, here if last cycle's robIdx equals to this cycle's robIdx, it still triggers the redirect. 359 360 // select uop in parallel 361 val lqs = selectPartialOldest(rollbackLqWbValid, rollbackLqWbBits) 362 val rollbackUopExt = lqs._2(0) 363 val rollbackUop = rollbackUopExt.uop 364 val rollbackStFtqIdx = stFtqIdx(rollbackUopExt.flag) 365 val rollbackStFtqOffset = stFtqOffset(rollbackUopExt.flag) 366 367 // check if rollback request is still valid in parallel 368 io.rollback.bits := DontCare 369 io.rollback.bits.robIdx := rollbackUop.robIdx 370 io.rollback.bits.ftqIdx := rollbackUop.cf.ftqPtr 371 io.rollback.bits.stFtqIdx := rollbackStFtqIdx 372 io.rollback.bits.ftqOffset := rollbackUop.cf.ftqOffset 373 io.rollback.bits.stFtqOffset := rollbackStFtqOffset 374 io.rollback.bits.level := RedirectLevel.flush 375 io.rollback.bits.interrupt := DontCare 376 io.rollback.bits.cfiUpdate := DontCare 377 io.rollback.bits.cfiUpdate.target := rollbackUop.cf.pc 378 io.rollback.bits.debug_runahead_checkpoint_id := rollbackUop.debugInfo.runahead_checkpoint_id 379 // io.rollback.bits.pc := DontCare 380 381 io.rollback.valid := VecInit(rollbackLqWbValid).asUInt.orR 382 383 // perf cnt 384 val canEnqCount = PopCount(io.query.map(_.req.fire)) 385 val validCount = freeList.io.validCount 386 val allowEnqueue = validCount <= (LoadQueueRAWSize - LoadPipelineWidth).U 387 388 QueuePerf(LoadQueueRAWSize, validCount, !allowEnqueue) 389 XSPerfAccumulate("enqs", canEnqCount) 390 XSPerfAccumulate("stld_rollback", io.rollback.valid) 391 val perfEvents: Seq[(String, UInt)] = Seq( 392 ("enq ", canEnqCount), 393 ("stld_rollback", io.rollback.valid), 394 ) 395 generatePerfEvent() 396 // end 397}