xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadMisalignBuffer.scala (revision ad415ae048fdc4bc9928dd381489cc92da3ca4f9)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.backend.fu.FuConfig._
26import xiangshan.backend.fu.fpu.FPU
27import xiangshan.backend.rob.RobLsqIO
28import xiangshan.cache._
29import xiangshan.frontend.FtqPtr
30import xiangshan.ExceptionNO._
31import xiangshan.cache.wpu.ReplayCarry
32import xiangshan.backend.rob.RobPtr
33import xiangshan.backend.Bundles.{MemExuOutput, DynInst}
34
35class LoadMisalignBuffer(implicit p: Parameters) extends XSModule
36  with HasCircularQueuePtrHelper
37  with HasLoadHelper
38{
39  private val enqPortNum = LoadPipelineWidth
40  private val maxSplitNum = 2
41
42  require(maxSplitNum == 2)
43
44  private val LB = "b00".U(2.W)
45  private val LH = "b01".U(2.W)
46  private val LW = "b10".U(2.W)
47  private val LD = "b11".U(2.W)
48
49  // encode of how many bytes to shift or truncate
50  private val BYTE0 = "b000".U(3.W)
51  private val BYTE1 = "b001".U(3.W)
52  private val BYTE2 = "b010".U(3.W)
53  private val BYTE3 = "b011".U(3.W)
54  private val BYTE4 = "b100".U(3.W)
55  private val BYTE5 = "b101".U(3.W)
56  private val BYTE6 = "b110".U(3.W)
57  private val BYTE7 = "b111".U(3.W)
58
59  def getMask(sizeEncode: UInt) = LookupTree(sizeEncode, List(
60    LB -> 0x1.U, // lb
61    LH -> 0x3.U, // lh
62    LW -> 0xf.U, // lw
63    LD -> 0xff.U  // ld
64  ))
65
66  def getShiftAndTruncateData(shiftEncode: UInt, truncateEncode: UInt, data: UInt) = {
67    val shiftData = LookupTree(shiftEncode, List(
68      BYTE0 -> data(63,    0),
69      BYTE1 -> data(63,    8),
70      BYTE2 -> data(63,   16),
71      BYTE3 -> data(63,   24),
72      BYTE4 -> data(63,   32),
73      BYTE5 -> data(63,   40),
74      BYTE6 -> data(63,   48),
75      BYTE7 -> data(63,   56)
76    ))
77    val truncateData = LookupTree(truncateEncode, List(
78      BYTE0 -> 0.U(XLEN.W), // can not truncate with 0 byte width
79      BYTE1 -> shiftData(7,    0),
80      BYTE2 -> shiftData(15,   0),
81      BYTE3 -> shiftData(23,   0),
82      BYTE4 -> shiftData(31,   0),
83      BYTE5 -> shiftData(39,   0),
84      BYTE6 -> shiftData(47,   0),
85      BYTE7 -> shiftData(55,   0)
86    ))
87    truncateData(XLEN - 1, 0)
88  }
89
90  def selectOldest[T <: LqWriteBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
91    assert(valid.length == bits.length)
92    if (valid.length == 0 || valid.length == 1) {
93      (valid, bits)
94    } else if (valid.length == 2) {
95      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
96      for (i <- res.indices) {
97        res(i).valid := valid(i)
98        res(i).bits := bits(i)
99      }
100      val oldest = Mux(valid(0) && valid(1),
101        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
102          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
103        Mux(valid(0) && !valid(1), res(0), res(1)))
104      (Seq(oldest.valid), Seq(oldest.bits))
105    } else {
106      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
107      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
108      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
109    }
110  }
111
112  val io = IO(new Bundle() {
113    val redirect        = Flipped(Valid(new Redirect))
114    val req             = Vec(enqPortNum, Flipped(Valid(new LqWriteBundle)))
115    val rob             = Flipped(new RobLsqIO)
116    val splitLoadReq    = Decoupled(new LsPipelineBundle)
117    val splitLoadResp   = Flipped(Valid(new LqWriteBundle))
118    val writeBack       = Decoupled(new MemExuOutput)
119    val overwriteExpBuf = Output(new XSBundle {
120      val valid  = Bool()
121      val vaddr  = UInt(XLEN.W)
122      val gpaddr = UInt(XLEN.W)
123      val isForVSnonLeafPTE = Bool()
124    })
125    val flushLdExpBuff  = Output(Bool())
126  })
127
128  io.rob.mmio := 0.U.asTypeOf(Vec(LoadPipelineWidth, Bool()))
129  io.rob.uop  := 0.U.asTypeOf(Vec(LoadPipelineWidth, new DynInst))
130
131  val req_valid = RegInit(false.B)
132  val req = Reg(new LqWriteBundle)
133
134  // enqueue
135  // s1:
136  val s1_req = VecInit(io.req.map(_.bits))
137  val s1_valid = VecInit(io.req.map(x => x.valid))
138
139  // s2: delay 1 cycle
140  val s2_req = RegNext(s1_req)
141  val s2_valid = (0 until enqPortNum).map(i =>
142    RegNext(s1_valid(i)) &&
143    !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
144    !s2_req(i).uop.robIdx.needFlush(io.redirect)
145  )
146  val s2_miss_aligned = s2_req.map(x =>
147    x.uop.exceptionVec(loadAddrMisaligned) && !x.uop.exceptionVec(breakPoint) && !TriggerAction.isDmode(x.uop.trigger)
148  )
149
150  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
151  for (w <- 0 until enqPortNum) {
152    s2_enqueue(w) := s2_valid(w) && s2_miss_aligned(w)
153  }
154
155  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
156    req_valid := s2_enqueue.asUInt.orR
157  } .elsewhen (s2_enqueue.asUInt.orR) {
158    req_valid := req_valid || true.B
159  }
160
161  val reqSel = selectOldest(s2_enqueue, s2_req)
162
163  when (req_valid) {
164    req := Mux(
165      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
166      reqSel._2(0),
167      req)
168  } .elsewhen (s2_enqueue.asUInt.orR) {
169    req := reqSel._2(0)
170  }
171
172  val robMatch = req_valid && io.rob.pendingld && (io.rob.pendingPtr === req.uop.robIdx)
173
174  // buffer control:
175  //  - split miss-aligned load into aligned loads
176  //  - send split load to ldu and get result from ldu
177  //  - merge them and write back to rob
178  val s_idle :: s_split :: s_req :: s_resp :: s_comb :: s_wb :: s_wait :: Nil = Enum(7)
179  val bufferState = RegInit(s_idle)
180  val splitLoadReqs = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LsPipelineBundle))))
181  val splitLoadResp = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LqWriteBundle))))
182  val unSentLoads = RegInit(0.U(maxSplitNum.W))
183  val curPtr = RegInit(0.U(log2Ceil(maxSplitNum).W))
184
185  // if there is exception or mmio in split load
186  val globalException = RegInit(false.B)
187  val globalMMIO = RegInit(false.B)
188
189  val hasException = ExceptionNO.selectByFu(io.splitLoadResp.bits.uop.exceptionVec, LduCfg).asUInt.orR
190  val isMMIO = io.splitLoadResp.bits.mmio
191
192  switch(bufferState) {
193    is (s_idle) {
194      when (robMatch) {
195        bufferState := s_split
196      }
197    }
198
199    is (s_split) {
200      bufferState := s_req
201    }
202
203    is (s_req) {
204      when (io.splitLoadReq.fire) {
205        bufferState := s_resp
206      }
207    }
208
209    is (s_resp) {
210      when (io.splitLoadResp.valid) {
211        val clearOh = UIntToOH(curPtr)
212        when (hasException || isMMIO) {
213          // commit directly when exception ocurs
214          // if any split load reaches mmio space, delegate to software loadAddrMisaligned exception
215          bufferState := s_wb
216          globalException := hasException
217          globalMMIO := isMMIO
218        } .elsewhen(io.splitLoadResp.bits.rep_info.need_rep || (unSentLoads & ~clearOh).orR) {
219          // need replay or still has unsent requests
220          bufferState := s_req
221        } .otherwise {
222          // merge the split load results
223          bufferState := s_comb
224        }
225      }
226    }
227
228    is (s_comb) {
229      bufferState := s_wb
230    }
231
232    is (s_wb) {
233      when(io.writeBack.fire) {
234        bufferState := s_wait
235      }
236    }
237
238    is (s_wait) {
239      when(io.rob.lcommit =/= 0.U || req.uop.robIdx.needFlush(io.redirect)) {
240        // rob commits the unaligned load or handled the exception, reset all state
241        bufferState := s_idle
242        req_valid := false.B
243        curPtr := 0.U
244        unSentLoads := 0.U
245        globalException := false.B
246        globalMMIO := false.B
247      }
248    }
249  }
250
251  val highAddress = LookupTree(req.uop.fuOpType(1, 0), List(
252    LB -> 0.U,
253    LH -> 1.U,
254    LW -> 3.U,
255    LD -> 7.U
256  )) + req.vaddr(4, 0)
257  // to see if (vaddr + opSize - 1) and vaddr are in the same 16 bytes region
258  val cross16BytesBoundary = req_valid && (highAddress(4) =/= req.vaddr(4))
259  val aligned16BytesAddr   = (req.vaddr >> 4) << 4// req.vaddr & ~("b1111".U)
260  val aligned16BytesSel    = req.vaddr(3, 0)
261
262  // meta of 128 bit load
263  val new128Load = WireInit(0.U.asTypeOf(new LsPipelineBundle))
264  // meta of split loads
265  val lowAddrLoad  = WireInit(0.U.asTypeOf(new LsPipelineBundle))
266  val highAddrLoad = WireInit(0.U.asTypeOf(new LsPipelineBundle))
267  val lowResultShift = RegInit(0.U(3.W)) // how many bytes should we shift right when got result
268  val lowResultWidth = RegInit(0.U(3.W)) // how many bytes should we take from result
269  val highResultShift = RegInit(0.U(3.W))
270  val highResultWidth = RegInit(0.U(3.W))
271
272  when (bufferState === s_split) {
273    when (!cross16BytesBoundary) {
274      // change this unaligned load into a 128 bits load
275      unSentLoads := 1.U
276      curPtr := 0.U
277      new128Load.vaddr := aligned16BytesAddr
278      // new128Load.mask  := (getMask(req.uop.fuOpType(1, 0)) << aligned16BytesSel).asUInt
279      new128Load.mask  := 0xffff.U
280      new128Load.uop   := req.uop
281      new128Load.uop.exceptionVec(loadAddrMisaligned) := false.B
282      new128Load.is128bit := true.B
283      splitLoadReqs(0) := new128Load
284    } .otherwise {
285      // split this unaligned load into `maxSplitNum` aligned loads
286      unSentLoads := Fill(maxSplitNum, 1.U(1.W))
287      curPtr := 0.U
288      lowAddrLoad.uop := req.uop
289      lowAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
290      highAddrLoad.uop := req.uop
291      highAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
292
293      switch (req.uop.fuOpType(1, 0)) {
294        is (LB) {
295          assert(false.B, "lb should not trigger miss align")
296        }
297
298        is (LH) {
299          lowAddrLoad.uop.fuOpType := LB
300          lowAddrLoad.vaddr := req.vaddr
301          lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
302          lowResultShift    := BYTE0
303          lowResultWidth    := BYTE1
304
305          highAddrLoad.uop.fuOpType := LB
306          highAddrLoad.vaddr := req.vaddr + 1.U
307          highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
308          highResultShift    := BYTE0
309          highResultWidth    := BYTE1
310        }
311
312        is (LW) {
313          switch (req.vaddr(1, 0)) {
314            is ("b00".U) {
315              assert(false.B, "should not trigger miss align")
316            }
317
318            is ("b01".U) {
319              lowAddrLoad.uop.fuOpType := LW
320              lowAddrLoad.vaddr := req.vaddr - 1.U
321              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
322              lowResultShift    := BYTE1
323              lowResultWidth    := BYTE3
324
325              highAddrLoad.uop.fuOpType := LB
326              highAddrLoad.vaddr := req.vaddr + 3.U
327              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
328              highResultShift    := BYTE0
329              highResultWidth    := BYTE1
330            }
331
332            is ("b10".U) {
333              lowAddrLoad.uop.fuOpType := LH
334              lowAddrLoad.vaddr := req.vaddr
335              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
336              lowResultShift    := BYTE0
337              lowResultWidth    := BYTE2
338
339              highAddrLoad.uop.fuOpType := LH
340              highAddrLoad.vaddr := req.vaddr + 2.U
341              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
342              highResultShift    := BYTE0
343              highResultWidth    := BYTE2
344            }
345
346            is ("b11".U) {
347              lowAddrLoad.uop.fuOpType := LB
348              lowAddrLoad.vaddr := req.vaddr
349              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
350              lowResultShift    := BYTE0
351              lowResultWidth    := BYTE1
352
353              highAddrLoad.uop.fuOpType := LW
354              highAddrLoad.vaddr := req.vaddr + 1.U
355              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
356              highResultShift    := BYTE0
357              highResultWidth    := BYTE3
358            }
359          }
360        }
361
362        is (LD) {
363          switch (req.vaddr(2, 0)) {
364            is ("b000".U) {
365              assert(false.B, "should not trigger miss align")
366            }
367
368            is ("b001".U) {
369              lowAddrLoad.uop.fuOpType := LD
370              lowAddrLoad.vaddr := req.vaddr - 1.U
371              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
372              lowResultShift    := BYTE1
373              lowResultWidth    := BYTE7
374
375              highAddrLoad.uop.fuOpType := LB
376              highAddrLoad.vaddr := req.vaddr + 7.U
377              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
378              highResultShift    := BYTE0
379              highResultWidth    := BYTE1
380            }
381
382            is ("b010".U) {
383              lowAddrLoad.uop.fuOpType := LD
384              lowAddrLoad.vaddr := req.vaddr - 2.U
385              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
386              lowResultShift    := BYTE2
387              lowResultWidth    := BYTE6
388
389              highAddrLoad.uop.fuOpType := LH
390              highAddrLoad.vaddr := req.vaddr + 6.U
391              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
392              highResultShift    := BYTE0
393              highResultWidth    := BYTE2
394            }
395
396            is ("b011".U) {
397              lowAddrLoad.uop.fuOpType := LD
398              lowAddrLoad.vaddr := req.vaddr - 3.U
399              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
400              lowResultShift    := BYTE3
401              lowResultWidth    := BYTE5
402
403              highAddrLoad.uop.fuOpType := LW
404              highAddrLoad.vaddr := req.vaddr + 5.U
405              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
406              highResultShift    := BYTE0
407              highResultWidth    := BYTE3
408            }
409
410            is ("b100".U) {
411              lowAddrLoad.uop.fuOpType := LW
412              lowAddrLoad.vaddr := req.vaddr
413              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
414              lowResultShift    := BYTE0
415              lowResultWidth    := BYTE4
416
417              highAddrLoad.uop.fuOpType := LW
418              highAddrLoad.vaddr := req.vaddr + 4.U
419              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
420              highResultShift    := BYTE0
421              highResultWidth    := BYTE4
422            }
423
424            is ("b101".U) {
425              lowAddrLoad.uop.fuOpType := LW
426              lowAddrLoad.vaddr := req.vaddr - 1.U
427              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
428              lowResultShift    := BYTE1
429              lowResultWidth    := BYTE3
430
431              highAddrLoad.uop.fuOpType := LD
432              highAddrLoad.vaddr := req.vaddr + 3.U
433              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
434              highResultShift    := BYTE0
435              highResultWidth    := BYTE5
436            }
437
438            is ("b110".U) {
439              lowAddrLoad.uop.fuOpType := LH
440              lowAddrLoad.vaddr := req.vaddr
441              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
442              lowResultShift    := BYTE0
443              lowResultWidth    := BYTE2
444
445              highAddrLoad.uop.fuOpType := LD
446              highAddrLoad.vaddr := req.vaddr + 2.U
447              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
448              highResultShift    := BYTE0
449              highResultWidth    := BYTE6
450            }
451
452            is ("b111".U) {
453              lowAddrLoad.uop.fuOpType := LB
454              lowAddrLoad.vaddr := req.vaddr
455              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
456              lowResultShift    := BYTE0
457              lowResultWidth    := BYTE1
458
459              highAddrLoad.uop.fuOpType := LD
460              highAddrLoad.vaddr := req.vaddr + 1.U
461              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
462              highResultShift    := BYTE0
463              highResultWidth    := BYTE7
464            }
465          }
466        }
467      }
468
469      splitLoadReqs(0) := lowAddrLoad
470      splitLoadReqs(1) := highAddrLoad
471    }
472  }
473
474  io.splitLoadReq.valid := req_valid && (bufferState === s_req)
475  io.splitLoadReq.bits  := splitLoadReqs(curPtr)
476
477  when (io.splitLoadResp.valid) {
478    splitLoadResp(curPtr) := io.splitLoadResp.bits
479    when (isMMIO) {
480      unSentLoads := 0.U
481      splitLoadResp(curPtr).uop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
482      // delegate to software
483      splitLoadResp(curPtr).uop.exceptionVec(loadAddrMisaligned) := true.B
484    } .elsewhen (hasException) {
485      unSentLoads := 0.U
486    } .elsewhen (!io.splitLoadResp.bits.rep_info.need_rep) {
487      unSentLoads := unSentLoads & ~UIntToOH(curPtr)
488      curPtr := curPtr + 1.U
489    }
490  }
491
492  val combinedData = RegInit(0.U(XLEN.W))
493
494  when (bufferState === s_comb) {
495    when (!cross16BytesBoundary) {
496      val shiftData = LookupTree(aligned16BytesSel, List(
497        "b0000".U -> splitLoadResp(0).data(63,     0),
498        "b0001".U -> splitLoadResp(0).data(71,     8),
499        "b0010".U -> splitLoadResp(0).data(79,    16),
500        "b0011".U -> splitLoadResp(0).data(87,    24),
501        "b0100".U -> splitLoadResp(0).data(95,    32),
502        "b0101".U -> splitLoadResp(0).data(103,   40),
503        "b0110".U -> splitLoadResp(0).data(111,   48),
504        "b0111".U -> splitLoadResp(0).data(119,   56),
505        "b1000".U -> splitLoadResp(0).data(127,   64),
506        "b1001".U -> splitLoadResp(0).data(127,   72),
507        "b1010".U -> splitLoadResp(0).data(127,   80),
508        "b1011".U -> splitLoadResp(0).data(127,   88),
509        "b1100".U -> splitLoadResp(0).data(127,   96),
510        "b1101".U -> splitLoadResp(0).data(127,  104),
511        "b1110".U -> splitLoadResp(0).data(127,  112),
512        "b1111".U -> splitLoadResp(0).data(127,  120)
513      ))
514      val truncateData = LookupTree(req.uop.fuOpType(1, 0), List(
515        LB -> shiftData(7,  0), // lb
516        LH -> shiftData(15, 0), // lh
517        LW -> shiftData(31, 0), // lw
518        LD -> shiftData(63, 0)  // ld
519      ))
520      combinedData := rdataHelper(req.uop, truncateData(XLEN - 1, 0))
521    } .otherwise {
522      val lowAddrResult = getShiftAndTruncateData(lowResultShift, lowResultWidth, splitLoadResp(0).data)
523                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
524      val highAddrResult = getShiftAndTruncateData(highResultShift, highResultWidth, splitLoadResp(1).data)
525                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
526      val catResult = Wire(Vec(XLEN / 8, UInt(8.W)))
527      (0 until XLEN / 8) .map {
528        case i => {
529          when (i.U < lowResultWidth) {
530            catResult(i) := lowAddrResult(i)
531          } .otherwise {
532            catResult(i) := highAddrResult(i.U - lowResultWidth)
533          }
534        }
535      }
536      combinedData := rdataHelper(req.uop, (catResult.asUInt)(XLEN - 1, 0))
537    }
538  }
539
540  io.writeBack.valid := req_valid && (bufferState === s_wb)
541  io.writeBack.bits.uop := req.uop
542  io.writeBack.bits.uop.exceptionVec := Mux(
543    globalMMIO || globalException,
544    splitLoadResp(curPtr).uop.exceptionVec,
545    0.U.asTypeOf(ExceptionVec()) // TODO: is this ok?
546  )
547  io.writeBack.bits.uop.flushPipe := Mux(globalMMIO || globalException, false.B, true.B)
548  io.writeBack.bits.uop.replayInst := false.B
549  io.writeBack.bits.data := combinedData
550  io.writeBack.bits.debug.isMMIO := globalMMIO
551  io.writeBack.bits.debug.isPerfCnt := false.B
552  io.writeBack.bits.debug.paddr := req.paddr
553  io.writeBack.bits.debug.vaddr := req.vaddr
554
555  val flush = req_valid && req.uop.robIdx.needFlush(io.redirect)
556
557  when (flush && (bufferState =/= s_idle)) {
558    bufferState := s_idle
559    req_valid := false.B
560    curPtr := 0.U
561    unSentLoads := 0.U
562    globalException := false.B
563    globalMMIO := false.B
564  }
565
566  // NOTE: spectial case (unaligned load cross page, page fault happens in next page)
567  // if exception happens in the higher page address part, overwrite the loadExceptionBuffer vaddr
568  val overwriteExpBuf = GatedValidRegNext(req_valid && cross16BytesBoundary && globalException && (curPtr === 1.U))
569  val overwriteVaddr = GatedRegNext(splitLoadResp(curPtr).vaddr)
570  val overwriteGpaddr = GatedRegNext(splitLoadResp(curPtr).gpaddr)
571  val overwriteIsForVSnonLeafPTE = GatedRegNext(splitLoadResp(curPtr).isForVSnonLeafPTE)
572
573  io.overwriteExpBuf.valid := overwriteExpBuf
574  io.overwriteExpBuf.vaddr := overwriteVaddr
575  io.overwriteExpBuf.gpaddr := overwriteGpaddr
576  io.overwriteExpBuf.isForVSnonLeafPTE := overwriteIsForVSnonLeafPTE
577
578  // when no exception or mmio, flush loadExceptionBuffer at s_wb
579  val flushLdExpBuff = GatedValidRegNext(req_valid && (bufferState === s_wb) && !(globalMMIO || globalException))
580  io.flushLdExpBuff := flushLdExpBuff
581
582  XSPerfAccumulate("alloc",                  RegNext(!req_valid) && req_valid)
583  XSPerfAccumulate("flush",                  flush)
584  XSPerfAccumulate("flush_idle",             flush && (bufferState === s_idle))
585  XSPerfAccumulate("flush_non_idle",         flush && (bufferState =/= s_idle))
586}