xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadMisalignBuffer.scala (revision 887862dbb8debde8ab099befc426493834a69ee7)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.backend.fu.FuConfig._
26import xiangshan.backend.fu.fpu.FPU
27import xiangshan.backend.rob.RobLsqIO
28import xiangshan.cache._
29import xiangshan.frontend.FtqPtr
30import xiangshan.ExceptionNO._
31import xiangshan.cache.wpu.ReplayCarry
32import xiangshan.backend.rob.RobPtr
33import xiangshan.backend.Bundles.{MemExuOutput, DynInst}
34
35class LoadMisalignBuffer(implicit p: Parameters) extends XSModule
36  with HasCircularQueuePtrHelper
37  with HasLoadHelper
38{
39  private val enqPortNum = LoadPipelineWidth
40  private val maxSplitNum = 2
41
42  require(maxSplitNum == 2)
43
44  private val LB = "b00".U(2.W)
45  private val LH = "b01".U(2.W)
46  private val LW = "b10".U(2.W)
47  private val LD = "b11".U(2.W)
48
49  // encode of how many bytes to shift or truncate
50  private val BYTE0 = "b000".U(3.W)
51  private val BYTE1 = "b001".U(3.W)
52  private val BYTE2 = "b010".U(3.W)
53  private val BYTE3 = "b011".U(3.W)
54  private val BYTE4 = "b100".U(3.W)
55  private val BYTE5 = "b101".U(3.W)
56  private val BYTE6 = "b110".U(3.W)
57  private val BYTE7 = "b111".U(3.W)
58
59  def getMask(sizeEncode: UInt) = LookupTree(sizeEncode, List(
60    LB -> 0x1.U, // lb
61    LH -> 0x3.U, // lh
62    LW -> 0xf.U, // lw
63    LD -> 0xff.U  // ld
64  ))
65
66  def getShiftAndTruncateData(shiftEncode: UInt, truncateEncode: UInt, data: UInt) = {
67    val shiftData = LookupTree(shiftEncode, List(
68      BYTE0 -> data(63,    0),
69      BYTE1 -> data(63,    8),
70      BYTE2 -> data(63,   16),
71      BYTE3 -> data(63,   24),
72      BYTE4 -> data(63,   32),
73      BYTE5 -> data(63,   40),
74      BYTE6 -> data(63,   48),
75      BYTE7 -> data(63,   56)
76    ))
77    val truncateData = LookupTree(truncateEncode, List(
78      BYTE0 -> 0.U(XLEN.W), // can not truncate with 0 byte width
79      BYTE1 -> shiftData(7,    0),
80      BYTE2 -> shiftData(15,   0),
81      BYTE3 -> shiftData(23,   0),
82      BYTE4 -> shiftData(31,   0),
83      BYTE5 -> shiftData(39,   0),
84      BYTE6 -> shiftData(47,   0),
85      BYTE7 -> shiftData(55,   0)
86    ))
87    truncateData(XLEN - 1, 0)
88  }
89
90  def selectOldest[T <: LqWriteBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
91    assert(valid.length == bits.length)
92    if (valid.length == 0 || valid.length == 1) {
93      (valid, bits)
94    } else if (valid.length == 2) {
95      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
96      for (i <- res.indices) {
97        res(i).valid := valid(i)
98        res(i).bits := bits(i)
99      }
100      val oldest = Mux(valid(0) && valid(1),
101        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
102          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
103        Mux(valid(0) && !valid(1), res(0), res(1)))
104      (Seq(oldest.valid), Seq(oldest.bits))
105    } else {
106      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
107      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
108      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
109    }
110  }
111
112  val io = IO(new Bundle() {
113    val redirect        = Flipped(Valid(new Redirect))
114    val req             = Vec(enqPortNum, Flipped(Valid(new LqWriteBundle)))
115    val rob             = Flipped(new RobLsqIO)
116    val splitLoadReq    = Decoupled(new LsPipelineBundle)
117    val splitLoadResp   = Flipped(Valid(new LqWriteBundle))
118    val writeBack       = Decoupled(new MemExuOutput)
119    val overwriteExpBuf = Output(new XSBundle {
120      val valid = Bool()
121      val vaddr = UInt(VAddrBits.W)
122    })
123    val flushLdExpBuff  = Output(Bool())
124  })
125
126  io.rob.mmio := 0.U.asTypeOf(Vec(LoadPipelineWidth, Bool()))
127  io.rob.uop  := 0.U.asTypeOf(Vec(LoadPipelineWidth, new DynInst))
128
129  val req_valid = RegInit(false.B)
130  val req = Reg(new LqWriteBundle)
131
132  // enqueue
133  // s1:
134  val s1_req = VecInit(io.req.map(_.bits))
135  val s1_valid = VecInit(io.req.map(x => x.valid))
136
137  // s2: delay 1 cycle
138  val s2_req = RegNext(s1_req)
139  val s2_valid = (0 until enqPortNum).map(i =>
140    RegNext(s1_valid(i)) &&
141    !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
142    !s2_req(i).uop.robIdx.needFlush(io.redirect)
143  )
144  val s2_miss_aligned = s2_req.map(x => x.uop.exceptionVec(loadAddrMisaligned))
145
146  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
147  for (w <- 0 until enqPortNum) {
148    s2_enqueue(w) := s2_valid(w) && s2_miss_aligned(w)
149  }
150
151  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
152    req_valid := s2_enqueue.asUInt.orR
153  } .elsewhen (s2_enqueue.asUInt.orR) {
154    req_valid := req_valid || true.B
155  }
156
157  val reqSel = selectOldest(s2_enqueue, s2_req)
158
159  when (req_valid) {
160    req := Mux(
161      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
162      reqSel._2(0),
163      req)
164  } .elsewhen (s2_enqueue.asUInt.orR) {
165    req := reqSel._2(0)
166  }
167
168  val robMatch = req_valid && io.rob.pendingld && (io.rob.pendingPtr === req.uop.robIdx)
169
170  // buffer control:
171  //  - split miss-aligned load into aligned loads
172  //  - send split load to ldu and get result from ldu
173  //  - merge them and write back to rob
174  val s_idle :: s_split :: s_req :: s_resp :: s_comb :: s_wb :: s_wait :: Nil = Enum(7)
175  val bufferState = RegInit(s_idle)
176  val splitLoadReqs = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LsPipelineBundle))))
177  val splitLoadResp = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LqWriteBundle))))
178  val unSentLoads = RegInit(0.U(maxSplitNum.W))
179  val curPtr = RegInit(0.U(log2Ceil(maxSplitNum).W))
180
181  // if there is exception or mmio in split load
182  val globalException = RegInit(false.B)
183  val globalMMIO = RegInit(false.B)
184
185  val hasException = ExceptionNO.selectByFu(io.splitLoadResp.bits.uop.exceptionVec, LduCfg).asUInt.orR
186  val isMMIO = io.splitLoadResp.bits.mmio
187
188  switch(bufferState) {
189    is (s_idle) {
190      when (robMatch) {
191        bufferState := s_split
192      }
193    }
194
195    is (s_split) {
196      bufferState := s_req
197    }
198
199    is (s_req) {
200      when (io.splitLoadReq.fire) {
201        bufferState := s_resp
202      }
203    }
204
205    is (s_resp) {
206      when (io.splitLoadResp.valid) {
207        val clearOh = UIntToOH(curPtr)
208        when (hasException || isMMIO) {
209          // commit directly when exception ocurs
210          // if any split load reaches mmio space, delegate to software loadAddrMisaligned exception
211          bufferState := s_wb
212          globalException := hasException
213          globalMMIO := isMMIO
214        } .elsewhen(io.splitLoadResp.bits.rep_info.need_rep || (unSentLoads & ~clearOh).orR) {
215          // need replay or still has unsent requests
216          bufferState := s_req
217        } .otherwise {
218          // merge the split load results
219          bufferState := s_comb
220        }
221      }
222    }
223
224    is (s_comb) {
225      bufferState := s_wb
226    }
227
228    is (s_wb) {
229      when(io.writeBack.fire) {
230        bufferState := s_wait
231      }
232    }
233
234    is (s_wait) {
235      when(io.rob.lcommit =/= 0.U || req.uop.robIdx.needFlush(io.redirect)) {
236        // rob commits the unaligned load or handled the exception, reset all state
237        bufferState := s_idle
238        req_valid := false.B
239        curPtr := 0.U
240        unSentLoads := 0.U
241        globalException := false.B
242        globalMMIO := false.B
243      }
244    }
245  }
246
247  val highAddress = LookupTree(req.uop.fuOpType(1, 0), List(
248    LB -> 0.U,
249    LH -> 1.U,
250    LW -> 3.U,
251    LD -> 7.U
252  )) + req.vaddr(4, 0)
253  // to see if (vaddr + opSize - 1) and vaddr are in the same 16 bytes region
254  val cross16BytesBoundary = req_valid && (highAddress(4) =/= req.vaddr(4))
255  val aligned16BytesAddr   = (req.vaddr >> 4) << 4// req.vaddr & ~("b1111".U)
256  val aligned16BytesSel    = req.vaddr(3, 0)
257
258  // meta of 128 bit load
259  val new128Load = WireInit(0.U.asTypeOf(new LsPipelineBundle))
260  // meta of split loads
261  val lowAddrLoad  = WireInit(0.U.asTypeOf(new LsPipelineBundle))
262  val highAddrLoad = WireInit(0.U.asTypeOf(new LsPipelineBundle))
263  val lowResultShift = RegInit(0.U(3.W)) // how many bytes should we shift right when got result
264  val lowResultWidth = RegInit(0.U(3.W)) // how many bytes should we take from result
265  val highResultShift = RegInit(0.U(3.W))
266  val highResultWidth = RegInit(0.U(3.W))
267
268  when (bufferState === s_split) {
269    when (!cross16BytesBoundary) {
270      // change this unaligned load into a 128 bits load
271      unSentLoads := 1.U
272      curPtr := 0.U
273      new128Load.vaddr := aligned16BytesAddr
274      // new128Load.mask  := (getMask(req.uop.fuOpType(1, 0)) << aligned16BytesSel).asUInt
275      new128Load.mask  := 0xffff.U
276      new128Load.uop   := req.uop
277      new128Load.uop.exceptionVec(loadAddrMisaligned) := false.B
278      new128Load.is128bit := true.B
279      splitLoadReqs(0) := new128Load
280    } .otherwise {
281      // split this unaligned load into `maxSplitNum` aligned loads
282      unSentLoads := Fill(maxSplitNum, 1.U(1.W))
283      curPtr := 0.U
284      lowAddrLoad.uop := req.uop
285      lowAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
286      highAddrLoad.uop := req.uop
287      highAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
288
289      switch (req.uop.fuOpType(1, 0)) {
290        is (LB) {
291          assert(false.B, "lb should not trigger miss align")
292        }
293
294        is (LH) {
295          lowAddrLoad.uop.fuOpType := LB
296          lowAddrLoad.vaddr := req.vaddr
297          lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
298          lowResultShift    := BYTE0
299          lowResultWidth    := BYTE1
300
301          highAddrLoad.uop.fuOpType := LB
302          highAddrLoad.vaddr := req.vaddr + 1.U
303          highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
304          highResultShift    := BYTE0
305          highResultWidth    := BYTE1
306        }
307
308        is (LW) {
309          switch (req.vaddr(1, 0)) {
310            is ("b00".U) {
311              assert(false.B, "should not trigger miss align")
312            }
313
314            is ("b01".U) {
315              lowAddrLoad.uop.fuOpType := LW
316              lowAddrLoad.vaddr := req.vaddr - 1.U
317              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
318              lowResultShift    := BYTE1
319              lowResultWidth    := BYTE3
320
321              highAddrLoad.uop.fuOpType := LB
322              highAddrLoad.vaddr := req.vaddr + 3.U
323              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
324              highResultShift    := BYTE0
325              highResultWidth    := BYTE1
326            }
327
328            is ("b10".U) {
329              lowAddrLoad.uop.fuOpType := LH
330              lowAddrLoad.vaddr := req.vaddr
331              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
332              lowResultShift    := BYTE0
333              lowResultWidth    := BYTE2
334
335              highAddrLoad.uop.fuOpType := LH
336              highAddrLoad.vaddr := req.vaddr + 2.U
337              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
338              highResultShift    := BYTE0
339              highResultWidth    := BYTE2
340            }
341
342            is ("b11".U) {
343              lowAddrLoad.uop.fuOpType := LB
344              lowAddrLoad.vaddr := req.vaddr
345              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
346              lowResultShift    := BYTE0
347              lowResultWidth    := BYTE1
348
349              highAddrLoad.uop.fuOpType := LW
350              highAddrLoad.vaddr := req.vaddr + 1.U
351              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
352              highResultShift    := BYTE0
353              highResultWidth    := BYTE3
354            }
355          }
356        }
357
358        is (LD) {
359          switch (req.vaddr(2, 0)) {
360            is ("b000".U) {
361              assert(false.B, "should not trigger miss align")
362            }
363
364            is ("b001".U) {
365              lowAddrLoad.uop.fuOpType := LD
366              lowAddrLoad.vaddr := req.vaddr - 1.U
367              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
368              lowResultShift    := BYTE1
369              lowResultWidth    := BYTE7
370
371              highAddrLoad.uop.fuOpType := LB
372              highAddrLoad.vaddr := req.vaddr + 7.U
373              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
374              highResultShift    := BYTE0
375              highResultWidth    := BYTE1
376            }
377
378            is ("b010".U) {
379              lowAddrLoad.uop.fuOpType := LD
380              lowAddrLoad.vaddr := req.vaddr - 2.U
381              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
382              lowResultShift    := BYTE2
383              lowResultWidth    := BYTE6
384
385              highAddrLoad.uop.fuOpType := LH
386              highAddrLoad.vaddr := req.vaddr + 6.U
387              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
388              highResultShift    := BYTE0
389              highResultWidth    := BYTE2
390            }
391
392            is ("b011".U) {
393              lowAddrLoad.uop.fuOpType := LD
394              lowAddrLoad.vaddr := req.vaddr - 3.U
395              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
396              lowResultShift    := BYTE3
397              lowResultWidth    := BYTE5
398
399              highAddrLoad.uop.fuOpType := LW
400              highAddrLoad.vaddr := req.vaddr + 5.U
401              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
402              highResultShift    := BYTE0
403              highResultWidth    := BYTE3
404            }
405
406            is ("b100".U) {
407              lowAddrLoad.uop.fuOpType := LW
408              lowAddrLoad.vaddr := req.vaddr
409              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
410              lowResultShift    := BYTE0
411              lowResultWidth    := BYTE4
412
413              highAddrLoad.uop.fuOpType := LW
414              highAddrLoad.vaddr := req.vaddr + 4.U
415              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
416              highResultShift    := BYTE0
417              highResultWidth    := BYTE4
418            }
419
420            is ("b101".U) {
421              lowAddrLoad.uop.fuOpType := LW
422              lowAddrLoad.vaddr := req.vaddr - 1.U
423              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
424              lowResultShift    := BYTE1
425              lowResultWidth    := BYTE3
426
427              highAddrLoad.uop.fuOpType := LD
428              highAddrLoad.vaddr := req.vaddr + 3.U
429              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
430              highResultShift    := BYTE0
431              highResultWidth    := BYTE5
432            }
433
434            is ("b110".U) {
435              lowAddrLoad.uop.fuOpType := LH
436              lowAddrLoad.vaddr := req.vaddr
437              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
438              lowResultShift    := BYTE0
439              lowResultWidth    := BYTE2
440
441              highAddrLoad.uop.fuOpType := LD
442              highAddrLoad.vaddr := req.vaddr + 2.U
443              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
444              highResultShift    := BYTE0
445              highResultWidth    := BYTE6
446            }
447
448            is ("b111".U) {
449              lowAddrLoad.uop.fuOpType := LB
450              lowAddrLoad.vaddr := req.vaddr
451              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
452              lowResultShift    := BYTE0
453              lowResultWidth    := BYTE1
454
455              highAddrLoad.uop.fuOpType := LD
456              highAddrLoad.vaddr := req.vaddr + 1.U
457              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
458              highResultShift    := BYTE0
459              highResultWidth    := BYTE7
460            }
461          }
462        }
463      }
464
465      splitLoadReqs(0) := lowAddrLoad
466      splitLoadReqs(1) := highAddrLoad
467    }
468  }
469
470  io.splitLoadReq.valid := req_valid && (bufferState === s_req)
471  io.splitLoadReq.bits  := splitLoadReqs(curPtr)
472
473  when (io.splitLoadResp.valid) {
474    splitLoadResp(curPtr) := io.splitLoadResp.bits
475    when (isMMIO) {
476      unSentLoads := 0.U
477      splitLoadResp(curPtr).uop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
478      // delegate to software
479      splitLoadResp(curPtr).uop.exceptionVec(loadAddrMisaligned) := true.B
480    } .elsewhen (hasException) {
481      unSentLoads := 0.U
482    } .elsewhen (!io.splitLoadResp.bits.rep_info.need_rep) {
483      unSentLoads := unSentLoads & ~UIntToOH(curPtr)
484      curPtr := curPtr + 1.U
485    }
486  }
487
488  val combinedData = RegInit(0.U(XLEN.W))
489
490  when (bufferState === s_comb) {
491    when (!cross16BytesBoundary) {
492      val shiftData = LookupTree(aligned16BytesSel, List(
493        "b0000".U -> splitLoadResp(0).data(63,     0),
494        "b0001".U -> splitLoadResp(0).data(71,     8),
495        "b0010".U -> splitLoadResp(0).data(79,    16),
496        "b0011".U -> splitLoadResp(0).data(87,    24),
497        "b0100".U -> splitLoadResp(0).data(95,    32),
498        "b0101".U -> splitLoadResp(0).data(103,   40),
499        "b0110".U -> splitLoadResp(0).data(111,   48),
500        "b0111".U -> splitLoadResp(0).data(119,   56),
501        "b1000".U -> splitLoadResp(0).data(127,   64),
502        "b1001".U -> splitLoadResp(0).data(127,   72),
503        "b1010".U -> splitLoadResp(0).data(127,   80),
504        "b1011".U -> splitLoadResp(0).data(127,   88),
505        "b1100".U -> splitLoadResp(0).data(127,   96),
506        "b1101".U -> splitLoadResp(0).data(127,  104),
507        "b1110".U -> splitLoadResp(0).data(127,  112),
508        "b1111".U -> splitLoadResp(0).data(127,  120)
509      ))
510      val truncateData = LookupTree(req.uop.fuOpType(1, 0), List(
511        LB -> shiftData(7,  0), // lb
512        LH -> shiftData(15, 0), // lh
513        LW -> shiftData(31, 0), // lw
514        LD -> shiftData(63, 0)  // ld
515      ))
516      combinedData := rdataHelper(req.uop, truncateData(XLEN - 1, 0))
517    } .otherwise {
518      val lowAddrResult = getShiftAndTruncateData(lowResultShift, lowResultWidth, splitLoadResp(0).data)
519                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
520      val highAddrResult = getShiftAndTruncateData(highResultShift, highResultWidth, splitLoadResp(1).data)
521                            .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
522      val catResult = Wire(Vec(XLEN / 8, UInt(8.W)))
523      (0 until XLEN / 8) .map {
524        case i => {
525          when (i.U < lowResultWidth) {
526            catResult(i) := lowAddrResult(i)
527          } .otherwise {
528            catResult(i) := highAddrResult(i.U - lowResultWidth)
529          }
530        }
531      }
532      combinedData := rdataHelper(req.uop, (catResult.asUInt)(XLEN - 1, 0))
533    }
534  }
535
536  io.writeBack.valid := req_valid && (bufferState === s_wb)
537  io.writeBack.bits.uop := req.uop
538  io.writeBack.bits.uop.exceptionVec := Mux(
539    globalMMIO || globalException,
540    splitLoadResp(curPtr).uop.exceptionVec,
541    0.U.asTypeOf(ExceptionVec()) // TODO: is this ok?
542  )
543  io.writeBack.bits.uop.flushPipe := Mux(globalMMIO || globalException, false.B, true.B)
544  io.writeBack.bits.uop.replayInst := false.B
545  io.writeBack.bits.data := combinedData
546  io.writeBack.bits.debug.isMMIO := globalMMIO
547  io.writeBack.bits.debug.isPerfCnt := false.B
548  io.writeBack.bits.debug.paddr := req.paddr
549  io.writeBack.bits.debug.vaddr := req.vaddr
550
551  val flush = req_valid && req.uop.robIdx.needFlush(io.redirect)
552
553  when (flush && (bufferState =/= s_idle)) {
554    bufferState := s_idle
555    req_valid := false.B
556    curPtr := 0.U
557    unSentLoads := 0.U
558    globalException := false.B
559    globalMMIO := false.B
560  }
561
562  // NOTE: spectial case (unaligned load cross page, page fault happens in next page)
563  // if exception happens in the higher page address part, overwrite the loadExceptionBuffer vaddr
564  val overwriteExpBuf = GatedValidRegNext(req_valid && cross16BytesBoundary && globalException && (curPtr === 1.U))
565  val overwriteAddr = GatedRegNext(splitLoadResp(curPtr).vaddr)
566
567  io.overwriteExpBuf.valid := overwriteExpBuf
568  io.overwriteExpBuf.vaddr := overwriteAddr
569
570  // when no exception or mmio, flush loadExceptionBuffer at s_wb
571  val flushLdExpBuff = GatedValidRegNext(req_valid && (bufferState === s_wb) && !(globalMMIO || globalException))
572  io.flushLdExpBuff := flushLdExpBuff
573
574  XSPerfAccumulate("alloc",                  RegNext(!req_valid) && req_valid)
575  XSPerfAccumulate("flush",                  flush)
576  XSPerfAccumulate("flush_idle",             flush && (bufferState === s_idle))
577  XSPerfAccumulate("flush_non_idle",         flush && (bufferState =/= s_idle))
578}