xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadMisalignBuffer.scala (revision 38d0d7c5a34a23dfdb58a3cb2737c3cfddb3ec9d)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.backend.fu.FuConfig._
26import xiangshan.backend.fu.FuType
27import xiangshan.backend.fu.fpu.FPU
28import xiangshan.backend.rob.RobLsqIO
29import xiangshan.cache.mmu.HasTlbConst
30import xiangshan.cache._
31import xiangshan.frontend.FtqPtr
32import xiangshan.ExceptionNO._
33import xiangshan.cache.wpu.ReplayCarry
34import xiangshan.backend.rob.RobPtr
35import xiangshan.backend.Bundles.{MemExuOutput, DynInst}
36import xiangshan.backend.fu.FuConfig.LduCfg
37
38class LoadMisalignBuffer(implicit p: Parameters) extends XSModule
39  with HasCircularQueuePtrHelper
40  with HasLoadHelper
41  with HasTlbConst
42{
43  private val enqPortNum = LoadPipelineWidth
44  private val maxSplitNum = 2
45
46  require(maxSplitNum == 2)
47
48  private val LB = "b00".U(2.W)
49  private val LH = "b01".U(2.W)
50  private val LW = "b10".U(2.W)
51  private val LD = "b11".U(2.W)
52
53  // encode of how many bytes to shift or truncate
54  private val BYTE0 = "b000".U(3.W)
55  private val BYTE1 = "b001".U(3.W)
56  private val BYTE2 = "b010".U(3.W)
57  private val BYTE3 = "b011".U(3.W)
58  private val BYTE4 = "b100".U(3.W)
59  private val BYTE5 = "b101".U(3.W)
60  private val BYTE6 = "b110".U(3.W)
61  private val BYTE7 = "b111".U(3.W)
62
63  def getMask(sizeEncode: UInt) = LookupTree(sizeEncode, List(
64    LB -> 0x1.U, // lb
65    LH -> 0x3.U, // lh
66    LW -> 0xf.U, // lw
67    LD -> 0xff.U  // ld
68  ))
69
70  def getShiftAndTruncateData(shiftEncode: UInt, truncateEncode: UInt, data: UInt) = {
71    val shiftData = LookupTree(shiftEncode, List(
72      BYTE0 -> data(63,    0),
73      BYTE1 -> data(63,    8),
74      BYTE2 -> data(63,   16),
75      BYTE3 -> data(63,   24),
76      BYTE4 -> data(63,   32),
77      BYTE5 -> data(63,   40),
78      BYTE6 -> data(63,   48),
79      BYTE7 -> data(63,   56)
80    ))
81    val truncateData = LookupTree(truncateEncode, List(
82      BYTE0 -> 0.U(XLEN.W), // can not truncate with 0 byte width
83      BYTE1 -> shiftData(7,    0),
84      BYTE2 -> shiftData(15,   0),
85      BYTE3 -> shiftData(23,   0),
86      BYTE4 -> shiftData(31,   0),
87      BYTE5 -> shiftData(39,   0),
88      BYTE6 -> shiftData(47,   0),
89      BYTE7 -> shiftData(55,   0)
90    ))
91    truncateData(XLEN - 1, 0)
92  }
93
94  def selectOldest[T <: LqWriteBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
95    assert(valid.length == bits.length)
96    if (valid.length == 0 || valid.length == 1) {
97      (valid, bits)
98    } else if (valid.length == 2) {
99      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
100      for (i <- res.indices) {
101        res(i).valid := valid(i)
102        res(i).bits := bits(i)
103      }
104      val oldest = Mux(valid(0) && valid(1),
105        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
106          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
107        Mux(valid(0) && !valid(1), res(0), res(1)))
108      (Seq(oldest.valid), Seq(oldest.bits))
109    } else {
110      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
111      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
112      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
113    }
114  }
115
116  val io = IO(new Bundle() {
117    val redirect        = Flipped(Valid(new Redirect))
118    val req             = Vec(enqPortNum, Flipped(Decoupled(new LqWriteBundle)))
119    val rob             = Flipped(new RobLsqIO)
120    val splitLoadReq    = Decoupled(new LsPipelineBundle)
121    val splitLoadResp   = Flipped(Valid(new LqWriteBundle))
122    val writeBack       = Decoupled(new MemExuOutput)
123    val vecWriteBack    = Decoupled(new VecPipelineFeedbackIO(isVStore = false))
124    val loadOutValid    = Input(Bool())
125    val loadVecOutValid = Input(Bool())
126    val overwriteExpBuf = Output(new XSBundle {
127      val valid  = Bool()
128      val vaddr  = UInt(XLEN.W)
129      val isHyper = Bool()
130      val gpaddr = UInt(XLEN.W)
131      val isForVSnonLeafPTE = Bool()
132    })
133    val flushLdExpBuff  = Output(Bool())
134    val loadMisalignFull = Output(Bool())
135  })
136
137  io.rob.mmio := 0.U.asTypeOf(Vec(LoadPipelineWidth, Bool()))
138  io.rob.uop  := 0.U.asTypeOf(Vec(LoadPipelineWidth, new DynInst))
139
140  val req_valid = RegInit(false.B)
141  val req = Reg(new LqWriteBundle)
142
143  io.loadMisalignFull := req_valid
144
145  (0 until io.req.length).map{i =>
146    if (i == 0) {
147      io.req(0).ready := !req_valid && io.req(0).valid
148    }
149    else {
150      io.req(i).ready := !io.req.take(i).map(_.ready).reduce(_ || _) && !req_valid && io.req(i).valid
151    }
152  }
153
154
155  val select_req_bit   = ParallelPriorityMux(io.req.map(_.valid), io.req.map(_.bits))
156  val select_req_valid = io.req.map(_.valid).reduce(_ || _)
157  val canEnqValid = !req_valid && !select_req_bit.uop.robIdx.needFlush(io.redirect) && select_req_valid
158  when(canEnqValid) {
159    req := select_req_bit
160    req_valid := true.B
161  }
162
163  // buffer control:
164  //  - s_idle:   idle
165  //  - s_split:  split misalign laod
166  //  - s_req:    issue a split memory access request
167  //  - s_resp:   Responds to a split load access request
168  //  - s_comb_wakeup_rep: Merge the data and issue a wakeup load
169  //  - s_wb: writeback yo rob/vecMergeBuffer
170  val s_idle :: s_split :: s_req :: s_resp :: s_comb_wakeup_rep :: s_wb :: Nil = Enum(6)
171  val bufferState = RegInit(s_idle)
172  val splitLoadReqs = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LsPipelineBundle))))
173  val splitLoadResp = RegInit(VecInit(List.fill(maxSplitNum)(0.U.asTypeOf(new LqWriteBundle))))
174  val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec()))
175  val unSentLoads = RegInit(0.U(maxSplitNum.W))
176  val curPtr = RegInit(0.U(log2Ceil(maxSplitNum).W))
177  val needWakeUpReqsWire = Wire(Bool())
178  val needWakeUpWB       = RegInit(false.B)
179  val data_select        = RegEnable(genRdataOH(select_req_bit.uop), 0.U(genRdataOH(select_req_bit.uop).getWidth.W), canEnqValid)
180
181  // if there is exception or mmio in split load
182  val globalException = RegInit(false.B)
183  val globalMMIO = RegInit(false.B)
184
185  val hasException = ExceptionNO.selectByFu(io.splitLoadResp.bits.uop.exceptionVec, LduCfg).asUInt.orR
186  val isMMIO = io.splitLoadResp.bits.mmio
187  needWakeUpReqsWire := false.B
188  switch(bufferState) {
189    is (s_idle) {
190      when (req_valid) {
191        bufferState := s_split
192      }
193    }
194
195    is (s_split) {
196      bufferState := s_req
197    }
198
199    is (s_req) {
200      when (io.splitLoadReq.fire) {
201        bufferState := s_resp
202      }
203    }
204
205    is (s_resp) {
206      when (io.splitLoadResp.valid) {
207        val clearOh = UIntToOH(curPtr)
208        when (hasException || isMMIO) {
209          // commit directly when exception ocurs
210          // if any split load reaches mmio space, delegate to software loadAddrMisaligned exception
211          bufferState := s_wb
212          globalException := hasException
213          globalMMIO := isMMIO
214        } .elsewhen(io.splitLoadResp.bits.rep_info.need_rep || (unSentLoads & ~clearOh).orR) {
215          // need replay or still has unsent requests
216          bufferState := s_req
217        } .otherwise {
218          // merge the split load results
219          bufferState := s_comb_wakeup_rep
220          needWakeUpWB := !req.isvec
221        }
222      }
223    }
224
225    is (s_comb_wakeup_rep) {
226      when(!req.isvec) {
227        when(io.splitLoadReq.fire) {
228          bufferState := s_wb
229        }.otherwise {
230          bufferState := s_comb_wakeup_rep
231        }
232        needWakeUpReqsWire := true.B
233      } .otherwise {
234        bufferState := s_wb
235      }
236
237    }
238
239    is (s_wb) {
240      when(req.isvec) {
241        when(io.vecWriteBack.fire) {
242          bufferState := s_idle
243          req_valid := false.B
244          curPtr := 0.U
245          unSentLoads := 0.U
246          globalException := false.B
247          globalMMIO := false.B
248          needWakeUpWB := false.B
249        }
250
251      } .otherwise {
252        when(io.writeBack.fire) {
253          bufferState := s_idle
254          req_valid := false.B
255          curPtr := 0.U
256          unSentLoads := 0.U
257          globalException := false.B
258          globalMMIO := false.B
259          needWakeUpWB := false.B
260        }
261      }
262
263    }
264  }
265
266  val alignedType = Mux(req.isvec, req.alignedType(1,0), req.uop.fuOpType(1, 0))
267  val highAddress = LookupTree(alignedType, List(
268    LB -> 0.U,
269    LH -> 1.U,
270    LW -> 3.U,
271    LD -> 7.U
272  )) + req.vaddr(4, 0)
273  // to see if (vaddr + opSize - 1) and vaddr are in the same 16 bytes region
274  val cross16BytesBoundary = req_valid && (highAddress(4) =/= req.vaddr(4))
275  val aligned16BytesAddr   = (req.vaddr >> 4) << 4// req.vaddr & ~("b1111".U)
276  val aligned16BytesSel    = req.vaddr(3, 0)
277
278  // meta of 128 bit load
279  val new128Load = WireInit(0.U.asTypeOf(new LsPipelineBundle))
280  // meta of split loads
281  val lowAddrLoad  = WireInit(0.U.asTypeOf(new LsPipelineBundle))
282  val highAddrLoad = WireInit(0.U.asTypeOf(new LsPipelineBundle))
283  val lowResultShift = RegInit(0.U(3.W)) // how many bytes should we shift right when got result
284  val lowResultWidth = RegInit(0.U(3.W)) // how many bytes should we take from result
285  val highResultShift = RegInit(0.U(3.W))
286  val highResultWidth = RegInit(0.U(3.W))
287
288  when (bufferState === s_split) {
289    when (!cross16BytesBoundary) {
290      assert(false.B, s"There should be no non-aligned access that does not cross 16Byte boundaries.")
291    } .otherwise {
292      // split this unaligned load into `maxSplitNum` aligned loads
293      unSentLoads := Fill(maxSplitNum, 1.U(1.W))
294      curPtr := 0.U
295      lowAddrLoad.uop := req.uop
296      lowAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
297      lowAddrLoad.fullva := req.fullva
298      highAddrLoad.uop := req.uop
299      highAddrLoad.uop.exceptionVec(loadAddrMisaligned) := false.B
300      highAddrLoad.fullva := req.fullva
301
302      switch (alignedType(1, 0)) {
303        is (LB) {
304          assert(false.B, "lb should not trigger miss align")
305        }
306
307        is (LH) {
308          lowAddrLoad.uop.fuOpType := LB
309          lowAddrLoad.vaddr := req.vaddr
310          lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
311          lowResultShift    := BYTE0
312          lowResultWidth    := BYTE1
313
314          highAddrLoad.uop.fuOpType := LB
315          highAddrLoad.vaddr := req.vaddr + 1.U
316          highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
317          highResultShift    := BYTE0
318          highResultWidth    := BYTE1
319        }
320
321        is (LW) {
322          switch (req.vaddr(1, 0)) {
323            is ("b00".U) {
324              assert(false.B, "should not trigger miss align")
325            }
326
327            is ("b01".U) {
328              lowAddrLoad.uop.fuOpType := LW
329              lowAddrLoad.vaddr := req.vaddr - 1.U
330              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
331              lowResultShift    := BYTE1
332              lowResultWidth    := BYTE3
333
334              highAddrLoad.uop.fuOpType := LB
335              highAddrLoad.vaddr := req.vaddr + 3.U
336              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
337              highResultShift    := BYTE0
338              highResultWidth    := BYTE1
339            }
340
341            is ("b10".U) {
342              lowAddrLoad.uop.fuOpType := LH
343              lowAddrLoad.vaddr := req.vaddr
344              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
345              lowResultShift    := BYTE0
346              lowResultWidth    := BYTE2
347
348              highAddrLoad.uop.fuOpType := LH
349              highAddrLoad.vaddr := req.vaddr + 2.U
350              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
351              highResultShift    := BYTE0
352              highResultWidth    := BYTE2
353            }
354
355            is ("b11".U) {
356              lowAddrLoad.uop.fuOpType := LB
357              lowAddrLoad.vaddr := req.vaddr
358              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
359              lowResultShift    := BYTE0
360              lowResultWidth    := BYTE1
361
362              highAddrLoad.uop.fuOpType := LW
363              highAddrLoad.vaddr := req.vaddr + 1.U
364              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
365              highResultShift    := BYTE0
366              highResultWidth    := BYTE3
367            }
368          }
369        }
370
371        is (LD) {
372          switch (req.vaddr(2, 0)) {
373            is ("b000".U) {
374              assert(false.B, "should not trigger miss align")
375            }
376
377            is ("b001".U) {
378              lowAddrLoad.uop.fuOpType := LD
379              lowAddrLoad.vaddr := req.vaddr - 1.U
380              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
381              lowResultShift    := BYTE1
382              lowResultWidth    := BYTE7
383
384              highAddrLoad.uop.fuOpType := LB
385              highAddrLoad.vaddr := req.vaddr + 7.U
386              highAddrLoad.mask  := 0x1.U << highAddrLoad.vaddr(3, 0)
387              highResultShift    := BYTE0
388              highResultWidth    := BYTE1
389            }
390
391            is ("b010".U) {
392              lowAddrLoad.uop.fuOpType := LD
393              lowAddrLoad.vaddr := req.vaddr - 2.U
394              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
395              lowResultShift    := BYTE2
396              lowResultWidth    := BYTE6
397
398              highAddrLoad.uop.fuOpType := LH
399              highAddrLoad.vaddr := req.vaddr + 6.U
400              highAddrLoad.mask  := 0x3.U << highAddrLoad.vaddr(3, 0)
401              highResultShift    := BYTE0
402              highResultWidth    := BYTE2
403            }
404
405            is ("b011".U) {
406              lowAddrLoad.uop.fuOpType := LD
407              lowAddrLoad.vaddr := req.vaddr - 3.U
408              lowAddrLoad.mask  := 0xff.U << lowAddrLoad.vaddr(3, 0)
409              lowResultShift    := BYTE3
410              lowResultWidth    := BYTE5
411
412              highAddrLoad.uop.fuOpType := LW
413              highAddrLoad.vaddr := req.vaddr + 5.U
414              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
415              highResultShift    := BYTE0
416              highResultWidth    := BYTE3
417            }
418
419            is ("b100".U) {
420              lowAddrLoad.uop.fuOpType := LW
421              lowAddrLoad.vaddr := req.vaddr
422              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
423              lowResultShift    := BYTE0
424              lowResultWidth    := BYTE4
425
426              highAddrLoad.uop.fuOpType := LW
427              highAddrLoad.vaddr := req.vaddr + 4.U
428              highAddrLoad.mask  := 0xf.U << highAddrLoad.vaddr(3, 0)
429              highResultShift    := BYTE0
430              highResultWidth    := BYTE4
431            }
432
433            is ("b101".U) {
434              lowAddrLoad.uop.fuOpType := LW
435              lowAddrLoad.vaddr := req.vaddr - 1.U
436              lowAddrLoad.mask  := 0xf.U << lowAddrLoad.vaddr(3, 0)
437              lowResultShift    := BYTE1
438              lowResultWidth    := BYTE3
439
440              highAddrLoad.uop.fuOpType := LD
441              highAddrLoad.vaddr := req.vaddr + 3.U
442              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
443              highResultShift    := BYTE0
444              highResultWidth    := BYTE5
445            }
446
447            is ("b110".U) {
448              lowAddrLoad.uop.fuOpType := LH
449              lowAddrLoad.vaddr := req.vaddr
450              lowAddrLoad.mask  := 0x3.U << lowAddrLoad.vaddr(3, 0)
451              lowResultShift    := BYTE0
452              lowResultWidth    := BYTE2
453
454              highAddrLoad.uop.fuOpType := LD
455              highAddrLoad.vaddr := req.vaddr + 2.U
456              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
457              highResultShift    := BYTE0
458              highResultWidth    := BYTE6
459            }
460
461            is ("b111".U) {
462              lowAddrLoad.uop.fuOpType := LB
463              lowAddrLoad.vaddr := req.vaddr
464              lowAddrLoad.mask  := 0x1.U << lowAddrLoad.vaddr(3, 0)
465              lowResultShift    := BYTE0
466              lowResultWidth    := BYTE1
467
468              highAddrLoad.uop.fuOpType := LD
469              highAddrLoad.vaddr := req.vaddr + 1.U
470              highAddrLoad.mask  := 0xff.U << highAddrLoad.vaddr(3, 0)
471              highResultShift    := BYTE0
472              highResultWidth    := BYTE7
473            }
474          }
475        }
476      }
477
478      splitLoadReqs(0) := lowAddrLoad
479      splitLoadReqs(1) := highAddrLoad
480    }
481    exceptionVec := 0.U.asTypeOf(exceptionVec.cloneType)
482  }
483
484  io.splitLoadReq.valid := req_valid && (bufferState === s_req || bufferState === s_comb_wakeup_rep && needWakeUpReqsWire && !req.isvec)
485  io.splitLoadReq.bits  := splitLoadReqs(curPtr)
486  io.splitLoadReq.bits.isvec  := req.isvec
487  io.splitLoadReq.bits.misalignNeedWakeUp  := needWakeUpReqsWire
488  io.splitLoadReq.bits.isFinalSplit        := curPtr(0) && !needWakeUpReqsWire
489  // Restore the information of H extension load
490  // bit encoding: | hlv 1 | hlvx 1 | is unsigned(1bit) | size(2bit) |
491  val reqIsHlv  = LSUOpType.isHlv(req.uop.fuOpType)
492  val reqIsHlvx = LSUOpType.isHlvx(req.uop.fuOpType)
493  io.splitLoadReq.bits.uop.fuOpType := Mux(req.isvec, req.uop.fuOpType, Cat(reqIsHlv, reqIsHlvx, 0.U(1.W), splitLoadReqs(curPtr).uop.fuOpType(1, 0)))
494  io.splitLoadReq.bits.alignedType  := Mux(req.isvec, splitLoadReqs(curPtr).uop.fuOpType(1, 0), req.alignedType)
495
496  when (io.splitLoadResp.valid) {
497    val resp = io.splitLoadResp.bits
498    splitLoadResp(curPtr) := io.splitLoadResp.bits
499    when (isMMIO) {
500      unSentLoads := 0.U
501      exceptionVec := ExceptionNO.selectByFu(0.U.asTypeOf(exceptionVec.cloneType), LduCfg)
502      // delegate to software
503      exceptionVec(loadAddrMisaligned) := true.B
504    } .elsewhen (hasException) {
505      unSentLoads := 0.U
506      LduCfg.exceptionOut.map(no => exceptionVec(no) := exceptionVec(no) || resp.uop.exceptionVec(no))
507    } .elsewhen (!io.splitLoadResp.bits.rep_info.need_rep) {
508      unSentLoads := unSentLoads & ~UIntToOH(curPtr)
509      curPtr := curPtr + 1.U
510      exceptionVec := 0.U.asTypeOf(ExceptionVec())
511    }
512  }
513
514  val combinedData = RegInit(0.U(XLEN.W))
515
516  when (bufferState === s_comb_wakeup_rep) {
517    val lowAddrResult = getShiftAndTruncateData(lowResultShift, lowResultWidth, splitLoadResp(0).data)
518                          .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
519    val highAddrResult = getShiftAndTruncateData(highResultShift, highResultWidth, splitLoadResp(1).data)
520                          .asTypeOf(Vec(XLEN / 8, UInt(8.W)))
521    val catResult = Wire(Vec(XLEN / 8, UInt(8.W)))
522    (0 until XLEN / 8) .map {
523      case i => {
524        when (i.U < lowResultWidth) {
525          catResult(i) := lowAddrResult(i)
526        } .otherwise {
527          catResult(i) := highAddrResult(i.U - lowResultWidth)
528        }
529      }
530    }
531    combinedData := Mux(req.isvec, rdataVecHelper(req.alignedType, (catResult.asUInt)(XLEN - 1, 0)), rdataHelper(req.uop, (catResult.asUInt)(XLEN - 1, 0)))
532
533  }
534
535  io.writeBack.valid := req_valid && (bufferState === s_wb) && (io.splitLoadResp.valid && io.splitLoadResp.bits.misalignNeedWakeUp || globalMMIO || globalException) && !io.loadOutValid && !req.isvec
536  io.writeBack.bits.uop := req.uop
537  io.writeBack.bits.uop.exceptionVec := DontCare
538  LduCfg.exceptionOut.map(no => io.writeBack.bits.uop.exceptionVec(no) := (globalMMIO || globalException) && exceptionVec(no))
539  io.writeBack.bits.uop.rfWen := !globalException && !globalMMIO && req.uop.rfWen
540  io.writeBack.bits.uop.fuType := FuType.ldu.U
541  io.writeBack.bits.uop.flushPipe := false.B
542  io.writeBack.bits.uop.replayInst := false.B
543  io.writeBack.bits.data := newRdataHelper(data_select, combinedData)
544  io.writeBack.bits.isFromLoadUnit := needWakeUpWB
545  io.writeBack.bits.debug.isMMIO := globalMMIO
546  // FIXME lyq: temporarily set to false
547  io.writeBack.bits.debug.isNC := false.B
548  io.writeBack.bits.debug.isPerfCnt := false.B
549  io.writeBack.bits.debug.paddr := req.paddr
550  io.writeBack.bits.debug.vaddr := req.vaddr
551
552
553  // vector output
554  io.vecWriteBack.valid := req_valid && (bufferState === s_wb) && !io.loadVecOutValid && req.isvec
555
556  io.vecWriteBack.bits.alignedType          := req.alignedType
557  io.vecWriteBack.bits.vecFeedback          := true.B
558  io.vecWriteBack.bits.vecdata.get          := combinedData
559  io.vecWriteBack.bits.isvec                := req.isvec
560  io.vecWriteBack.bits.elemIdx              := req.elemIdx
561  io.vecWriteBack.bits.elemIdxInsideVd.get  := req.elemIdxInsideVd
562  io.vecWriteBack.bits.mask                 := req.mask
563  io.vecWriteBack.bits.reg_offset.get       := 0.U
564  io.vecWriteBack.bits.usSecondInv          := req.usSecondInv
565  io.vecWriteBack.bits.mBIndex              := req.mbIndex
566  io.vecWriteBack.bits.hit                  := true.B
567  io.vecWriteBack.bits.sourceType           := RSFeedbackType.lrqFull
568  io.vecWriteBack.bits.trigger              := TriggerAction.None
569  io.vecWriteBack.bits.flushState           := DontCare
570  io.vecWriteBack.bits.exceptionVec         := ExceptionNO.selectByFu(exceptionVec, VlduCfg)
571  io.vecWriteBack.bits.vaddr                := req.fullva
572  io.vecWriteBack.bits.vaNeedExt            := req.vaNeedExt
573  io.vecWriteBack.bits.gpaddr               := req.gpaddr
574  io.vecWriteBack.bits.isForVSnonLeafPTE    := req.isForVSnonLeafPTE
575  io.vecWriteBack.bits.mmio                 := DontCare
576  io.vecWriteBack.bits.vstart               := req.uop.vpu.vstart
577  io.vecWriteBack.bits.vecTriggerMask       := req.vecTriggerMask
578  io.vecWriteBack.bits.nc                   := false.B
579
580
581  val flush = req_valid && req.uop.robIdx.needFlush(io.redirect)
582
583  when (flush) {
584    bufferState := s_idle
585    req_valid := false.B
586    curPtr := 0.U
587    unSentLoads := 0.U
588    globalException := false.B
589    globalMMIO := false.B
590  }
591
592  // NOTE: spectial case (unaligned load cross page, page fault happens in next page)
593  // if exception happens in the higher page address part, overwrite the loadExceptionBuffer vaddr
594  val shouldOverwrite = req_valid && globalException
595  val overwriteExpBuf = GatedValidRegNext(shouldOverwrite)
596  val overwriteVaddr = RegEnable(
597    Mux(
598      cross16BytesBoundary && (curPtr === 1.U),
599      splitLoadResp(curPtr).vaddr,
600      splitLoadResp(curPtr).fullva),
601    shouldOverwrite)
602  val overwriteGpaddr = RegEnable(splitLoadResp(curPtr).gpaddr, shouldOverwrite)
603  val overwriteIsHyper = RegEnable(splitLoadResp(curPtr).isHyper, shouldOverwrite)
604  val overwriteIsForVSnonLeafPTE = RegEnable(splitLoadResp(curPtr).isForVSnonLeafPTE, shouldOverwrite)
605
606  //TODO In theory, there is no need to overwrite, but for now, the signal is retained in the code in this way.
607  // and the signal will be removed after sufficient verification.
608  io.overwriteExpBuf.valid := false.B
609  io.overwriteExpBuf.vaddr := overwriteVaddr
610  io.overwriteExpBuf.isHyper := overwriteIsHyper
611  io.overwriteExpBuf.gpaddr := overwriteGpaddr
612  io.overwriteExpBuf.isForVSnonLeafPTE := overwriteIsForVSnonLeafPTE
613
614  // when no exception or mmio, flush loadExceptionBuffer at s_wb
615  val flushLdExpBuff = GatedValidRegNext(req_valid && (bufferState === s_wb) && !(globalMMIO || globalException))
616  io.flushLdExpBuff := flushLdExpBuff
617
618  XSPerfAccumulate("alloc",                  RegNext(!req_valid) && req_valid)
619  XSPerfAccumulate("flush",                  flush)
620  XSPerfAccumulate("flush_idle",             flush && (bufferState === s_idle))
621  XSPerfAccumulate("flush_non_idle",         flush && (bufferState =/= s_idle))
622}