1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.frontend 19 20import chisel3._ 21import chisel3.util._ 22import org.chipsalliance.cde.config.Parameters 23import utility._ 24import utility.ChiselDB 25import xiangshan._ 26import xiangshan.backend.GPAMemEntry 27import xiangshan.cache.mmu._ 28import xiangshan.frontend.icache._ 29 30trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { 31 def mmioBusWidth = 64 32 def mmioBusBytes = mmioBusWidth / 8 33 def maxInstrLen = 32 34} 35 36trait HasIFUConst extends HasXSParameter { 37 def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = 38 Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) 39 def fetchQueueSize = 2 40 41 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { 42 val byteOffset = pc - start 43 (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) 44 } 45} 46 47class IfuToFtqIO(implicit p: Parameters) extends XSBundle { 48 val pdWb = Valid(new PredecodeWritebackBundle) 49} 50 51class IfuToBackendIO(implicit p: Parameters) extends XSBundle { 52 // write to backend gpaddr mem 53 val gpaddrMem_wen = Output(Bool()) 54 val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr 55 // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo 56 // TODO: avoid cross page entry in Ftq 57 val gpaddrMem_wdata = Output(new GPAMemEntry) 58} 59 60class FtqInterface(implicit p: Parameters) extends XSBundle { 61 val fromFtq = Flipped(new FtqToIfuIO) 62 val toFtq = new IfuToFtqIO 63} 64 65class UncacheInterface(implicit p: Parameters) extends XSBundle { 66 val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) 67 val toUncache = DecoupledIO(new InsUncacheReq) 68} 69 70class NewIFUIO(implicit p: Parameters) extends XSBundle { 71 val ftqInter = new FtqInterface 72 val icacheInter = Flipped(new IFUICacheIO) 73 val icacheStop = Output(Bool()) 74 val icachePerfInfo = Input(new ICachePerfInfo) 75 val toIbuffer = Decoupled(new FetchToIBuffer) 76 val toBackend = new IfuToBackendIO 77 val uncacheInter = new UncacheInterface 78 val frontendTrigger = Flipped(new FrontendTdataDistributeIO) 79 val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) 80 val iTLBInter = new TlbRequestIO 81 val pmp = new ICachePMPBundle 82 val mmioCommitRead = new mmioCommitRead 83 val csr_fsIsOff = Input(Bool()) 84} 85 86// record the situation in which fallThruAddr falls into 87// the middle of an RVI inst 88class LastHalfInfo(implicit p: Parameters) extends XSBundle { 89 val valid = Bool() 90 val middlePC = UInt(VAddrBits.W) 91 def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr 92} 93 94class IfuToPreDecode(implicit p: Parameters) extends XSBundle { 95 val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) 96 val frontendTrigger = new FrontendTdataDistributeIO 97 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 98} 99 100class IfuToPredChecker(implicit p: Parameters) extends XSBundle { 101 val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) 102 val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) 103 val target = UInt(VAddrBits.W) 104 val instrRange = Vec(PredictWidth, Bool()) 105 val instrValid = Vec(PredictWidth, Bool()) 106 val pds = Vec(PredictWidth, new PreDecodeInfo) 107 val pc = Vec(PredictWidth, UInt(VAddrBits.W)) 108 val fire_in = Bool() 109} 110 111class FetchToIBufferDB extends Bundle { 112 val start_addr = UInt(39.W) 113 val instr_count = UInt(32.W) 114 val exception = Bool() 115 val is_cache_hit = Bool() 116} 117 118class IfuWbToFtqDB extends Bundle { 119 val start_addr = UInt(39.W) 120 val is_miss_pred = Bool() 121 val miss_pred_offset = UInt(32.W) 122 val checkJalFault = Bool() 123 val checkJalrFault = Bool() 124 val checkRetFault = Bool() 125 val checkTargetFault = Bool() 126 val checkNotCFIFault = Bool() 127 val checkInvalidTaken = Bool() 128} 129 130class NewIFU(implicit p: Parameters) extends XSModule 131 with HasICacheParameters 132 with HasXSParameter 133 with HasIFUConst 134 with HasPdConst 135 with HasCircularQueuePtrHelper 136 with HasPerfEvents 137 with HasTlbConst { 138 val io = IO(new NewIFUIO) 139 val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) 140 val fromICache = io.icacheInter.resp 141 val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) 142 143 def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) 144 145 def numOfStage = 3 146 // equal lower_result overflow bit 147 def PcCutPoint = (VAddrBits / 4) - 1 148 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = 149 Mux( 150 low(PcCutPoint), 151 Cat(high1, low(PcCutPoint - 1, 0)), 152 Cat(high, low(PcCutPoint - 1, 0)) 153 ) 154 def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) 155 require(numOfStage > 1, "BPU numOfStage must be greater than 1") 156 val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) 157 // bubble events in IFU, only happen in stage 1 158 val icacheMissBubble = Wire(Bool()) 159 val itlbMissBubble = Wire(Bool()) 160 161 // only driven by clock, not valid-ready 162 topdown_stages(0) := fromFtq.req.bits.topdown_info 163 for (i <- 1 until numOfStage) { 164 topdown_stages(i) := topdown_stages(i - 1) 165 } 166 when(icacheMissBubble) { 167 topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B 168 } 169 when(itlbMissBubble) { 170 topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B 171 } 172 io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) 173 when(fromFtq.topdown_redirect.valid) { 174 // only redirect from backend, IFU redirect itself is handled elsewhere 175 when(fromFtq.topdown_redirect.bits.debugIsCtrl) { 176 /* 177 for (i <- 0 until numOfStage) { 178 topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 179 } 180 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B 181 */ 182 when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { 183 for (i <- 0 until numOfStage) { 184 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 185 } 186 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B 187 }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { 188 for (i <- 0 until numOfStage) { 189 topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B 190 } 191 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B 192 }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { 193 for (i <- 0 until numOfStage) { 194 topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B 195 } 196 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B 197 }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { 198 for (i <- 0 until numOfStage) { 199 topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 200 } 201 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B 202 }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { 203 for (i <- 0 until numOfStage) { 204 topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B 205 } 206 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B 207 } 208 }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { 209 for (i <- 0 until numOfStage) { 210 topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 211 } 212 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B 213 }.otherwise { 214 for (i <- 0 until numOfStage) { 215 topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 216 } 217 io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B 218 } 219 } 220 221 class TlbExept(implicit p: Parameters) extends XSBundle { 222 val pageFault = Bool() 223 val accessFault = Bool() 224 val mmio = Bool() 225 } 226 227 val preDecoder = Module(new PreDecode) 228 229 val predChecker = Module(new PredChecker) 230 val frontendTrigger = Module(new FrontendTrigger) 231 val (checkerIn, checkerOutStage1, checkerOutStage2) = 232 (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) 233 234 /** 235 ****************************************************************************** 236 * IFU Stage 0 237 * - send cacheline fetch request to ICacheMainPipe 238 ****************************************************************************** 239 */ 240 241 val f0_valid = fromFtq.req.valid 242 val f0_ftq_req = fromFtq.req.bits 243 val f0_doubleLine = fromFtq.req.bits.crossCacheline 244 val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) 245 val f0_fire = fromFtq.req.fire 246 247 val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) 248 249 val f0_flush_from_bpu = fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || 250 fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) 251 252 val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) 253 val f3_wb_not_flush = WireInit(false.B) 254 255 backend_redirect := fromFtq.redirect.valid 256 f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) 257 f2_flush := backend_redirect || mmio_redirect || wb_redirect 258 f1_flush := f2_flush 259 f0_flush := f1_flush || f0_flush_from_bpu 260 261 val f1_ready, f2_ready, f3_ready = WireInit(false.B) 262 263 fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady 264 265 when(wb_redirect) { 266 when(f3_wb_not_flush) { 267 topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B 268 } 269 for (i <- 0 until numOfStage - 1) { 270 topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B 271 } 272 } 273 274 /** <PERF> f0 fetch bubble */ 275 276 XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) 277 // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) 278 // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) 279 // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) 280 XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) 281 XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) 282 XSPerfAccumulate("fetch_flush_f0_flush_from_bpu", f0_flush_from_bpu) 283 284 /** 285 ****************************************************************************** 286 * IFU Stage 1 287 * - calculate pc/half_pc/cut_ptr for every instruction 288 ****************************************************************************** 289 */ 290 291 val f1_valid = RegInit(false.B) 292 val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) 293 // val f1_situation = RegEnable(f0_situation, f0_fire) 294 val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) 295 val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) 296 val f1_fire = f1_valid && f2_ready 297 298 f1_ready := f1_fire || !f1_valid 299 300 assert(!(fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid)) 301 302 when(f1_flush)(f1_valid := false.B) 303 .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) 304 .elsewhen(f1_fire)(f1_valid := false.B) 305 306 val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) 307 val f1_pc_high_plus1 = f1_pc_high + 1.U 308 309 /** 310 * In order to reduce power consumption, avoid calculating the full PC value in the first level. 311 * code of original logic, this code has been deprecated 312 * val f1_pc = VecInit(f1_pc_lower_result.map{ i => 313 * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) 314 */ 315 val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => 316 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U 317 )) // cat with overflow bit 318 319 val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) 320 321 val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => 322 Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U 323 )) // cat with overflow bit 324 val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) 325 326 if (env.FPGAPlatform) { 327 val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) 328 val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) 329 330 XSError( 331 f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 332 "f1_half_snpc adder cut fail" 333 ) 334 XSError( 335 f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), 336 "f1_half_snpc adder cut fail" 337 ) 338 } 339 340 val f1_cut_ptr = if (HasCExtension) 341 VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) 342 else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) 343 344 /** 345 ****************************************************************************** 346 * IFU Stage 2 347 * - icache response data (latched for pipeline stop) 348 * - generate exceprion bits for every instruciton (page fault/access fault/mmio) 349 * - generate predicted instruction range (1 means this instruciton is in this fetch packet) 350 * - cut data from cachlines to packet instruction code 351 * - instruction predecode and RVC expand 352 ****************************************************************************** 353 */ 354 355 val icacheRespAllValid = WireInit(false.B) 356 357 val f2_valid = RegInit(false.B) 358 val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) 359 // val f2_situation = RegEnable(f1_situation, f1_fire) 360 val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) 361 val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) 362 val f2_fire = f2_valid && f3_ready && icacheRespAllValid 363 364 f2_ready := f2_fire || !f2_valid 365 // TODO: addr compare may be timing critical 366 val f2_icache_all_resp_wire = 367 fromICache.valid && 368 fromICache.bits.vaddr(0) === f2_ftq_req.startAddr && 369 (fromICache.bits.doubleline && fromICache.bits.vaddr(1) === f2_ftq_req.nextlineStart || !f2_doubleLine) 370 val f2_icache_all_resp_reg = RegInit(false.B) 371 372 icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire 373 374 icacheMissBubble := io.icacheInter.topdownIcacheMiss 375 itlbMissBubble := io.icacheInter.topdownItlbMiss 376 377 io.icacheStop := !f3_ready 378 379 when(f2_flush)(f2_icache_all_resp_reg := false.B) 380 .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) 381 .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) 382 383 when(f2_flush)(f2_valid := false.B) 384 .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) 385 .elsewhen(f2_fire)(f2_valid := false.B) 386 387 val f2_exception_in = fromICache.bits.exception 388 val f2_backendException = fromICache.bits.backendException 389 // paddr and gpaddr of [startAddr, nextLineAddr] 390 val f2_paddrs = fromICache.bits.paddr 391 val f2_gpaddr = fromICache.bits.gpaddr 392 val f2_isForVSnonLeafPTE = fromICache.bits.isForVSnonLeafPTE 393 394 // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct 395 val f2_mmio_mismatch_exception = VecInit(Seq( 396 ExceptionType.none, // mark the exception only on the second line 397 Mux( 398 // not double-line, skip check 399 !fromICache.bits.doubleline || ( 400 // is double-line, ask for consistent pmp_mmio and itlb_pbmt value 401 fromICache.bits.pmp_mmio(0) === fromICache.bits.pmp_mmio(1) && 402 fromICache.bits.itlb_pbmt(0) === fromICache.bits.itlb_pbmt(1) 403 ), 404 ExceptionType.none, 405 ExceptionType.af 406 ) 407 )) 408 409 // merge exceptions 410 val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception) 411 412 // we need only the first port, as the second is asked to be the same 413 val f2_pmp_mmio = fromICache.bits.pmp_mmio(0) 414 val f2_itlb_pbmt = fromICache.bits.itlb_pbmt(0) 415 416 /** 417 * reduce the number of registers, origin code 418 * f2_pc = RegEnable(f1_pc, f1_fire) 419 */ 420 val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) 421 val f2_pc_high = RegEnable(f1_pc_high, f1_fire) 422 val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) 423 val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) 424 425 val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) 426 val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) 427 428 def isNextLine(pc: UInt, startAddr: UInt) = 429 startAddr(blockOffBits) ^ pc(blockOffBits) 430 431 def isLastInLine(pc: UInt) = 432 pc(blockOffBits - 1, 0) === "b111110".U 433 434 val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) 435 val f2_jump_range = 436 Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits 437 require( 438 isPow2(PredictWidth), 439 "If PredictWidth does not satisfy the power of 2," + 440 "expression: Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits is not right !!" 441 ) 442 val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( 443 f2_ftq_req.nextStartAddr, 444 f2_ftq_req.startAddr 445 ) 446 val f2_instr_range = f2_jump_range & f2_ftr_range 447 val f2_exception_vec = VecInit((0 until PredictWidth).map(i => 448 MuxCase( 449 ExceptionType.none, 450 Seq( 451 !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), 452 (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) 453 ) 454 ) 455 )) 456 val f2_perf_info = io.icachePerfInfo 457 458 def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { 459 require(HasCExtension) 460 // if(HasCExtension){ 461 val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) 462 val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector 463 (0 until PredictWidth + 1).foreach(i => 464 result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 465 ) 466 result 467 // } else { 468 // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) 469 // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) 470 // (0 until PredictWidth).foreach( i => 471 // result(i) := dataVec(cutPtr(i)) 472 // ) 473 // result 474 // } 475 } 476 477 /* NOTE: the following `Cat(_data, _data)` *is* intentional. 478 * Explanation: 479 * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines, 480 * so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here. 481 * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power. 482 * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines, 483 * so IFU only need to receive 40B (5bank * 8B) valid data, and use only one port is enough. 484 * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request): 485 * MSB LSB 486 * cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 || 487 * cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 || 488 * and ICacheDataArray will respond: 489 * fromICache.bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 490 * therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre: 491 * f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || 492 * requested data: ^-----------------------------^ 493 * For another example, pc falls on the 1st bank in cacheline 0, we have: 494 * fromICache.bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 495 * f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || 496 * requested data: ^-----------------------------^ 497 * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y) 498 * Please also refer to: 499 * - DataArray selects data: 500 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381 501 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161 502 * - ICache respond to IFU: 503 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473 504 */ 505 val f2_data_2_cacheline = Cat(fromICache.bits.data, fromICache.bits.data) 506 507 val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) 508 509 /** predecode (include RVC expander) */ 510 // preDecoderRegIn.data := f2_reg_cut_data 511 // preDecoderRegInIn.frontendTrigger := io.frontendTrigger 512 // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable 513 // preDecoderRegIn.pc := f2_pc 514 515 val preDecoderIn = preDecoder.io.in 516 preDecoderIn.valid := f2_valid 517 preDecoderIn.bits.data := f2_cut_data 518 preDecoderIn.bits.frontendTrigger := io.frontendTrigger 519 preDecoderIn.bits.pc := f2_pc 520 val preDecoderOut = preDecoder.io.out 521 522 // val f2_expd_instr = preDecoderOut.expInstr 523 val f2_instr = preDecoderOut.instr 524 val f2_pd = preDecoderOut.pd 525 val f2_jump_offset = preDecoderOut.jumpOffset 526 val f2_hasHalfValid = preDecoderOut.hasHalfValid 527 /* if there is a cross-page RVI instruction, and the former page has no exception, 528 * whether it has exception is actually depends on the latter page 529 */ 530 val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => 531 Mux( 532 isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)), 533 f2_exception(1), 534 ExceptionType.none 535 ) 536 }) 537 XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) 538 539 /** 540 ****************************************************************************** 541 * IFU Stage 3 542 * - handle MMIO instruciton 543 * -send request to Uncache fetch Unit 544 * -every packet include 1 MMIO instruction 545 * -MMIO instructions will stop fetch pipeline until commiting from RoB 546 * -flush to snpc (send ifu_redirect to Ftq) 547 * - Ibuffer enqueue 548 * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) 549 * - handle last half RVI instruction 550 ****************************************************************************** 551 */ 552 553 val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) 554 555 val f3_valid = RegInit(false.B) 556 val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) 557 // val f3_situation = RegEnable(f2_situation, f2_fire) 558 val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) 559 val f3_fire = io.toIbuffer.fire 560 561 val f3_cut_data = RegEnable(f2_cut_data, f2_fire) 562 563 val f3_exception = RegEnable(f2_exception, f2_fire) 564 val f3_pmp_mmio = RegEnable(f2_pmp_mmio, f2_fire) 565 val f3_itlb_pbmt = RegEnable(f2_itlb_pbmt, f2_fire) 566 val f3_backendException = RegEnable(f2_backendException, f2_fire) 567 568 val f3_instr = RegEnable(f2_instr, f2_fire) 569 570 expanders.zipWithIndex.foreach { case (expander, i) => 571 expander.io.in := f3_instr(i) 572 expander.io.fsIsOff := io.csr_fsIsOff 573 } 574 // Use expanded instruction only when input is legal. 575 // Otherwise use origin illegal RVC instruction. 576 val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => 577 Mux(expander.io.ill, expander.io.in, expander.io.out.bits) 578 }) 579 val f3_ill = VecInit(expanders.map(_.io.ill)) 580 581 val f3_pd_wire = RegEnable(f2_pd, f2_fire) 582 val f3_pd = WireInit(f3_pd_wire) 583 val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) 584 val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) 585 val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) 586 587 val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) 588 val f3_pc_high = RegEnable(f2_pc_high, f2_fire) 589 val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) 590 val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) 591 592 val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) 593 val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) 594 // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) 595 596 /** 597 *********************************************************************** 598 * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. 599 *********************************************************************** 600 */ 601 val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) 602 for (i <- 0 until PredictWidth) { 603 if (i == (PredictWidth - 2)) { 604 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) 605 } else if (i == (PredictWidth - 1)) { 606 f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) 607 } else { 608 f3_half_snpc(i) := f3_pc(i + 2) 609 } 610 } 611 612 val f3_instr_range = RegEnable(f2_instr_range, f2_fire) 613 val f3_foldpc = RegEnable(f2_foldpc, f2_fire) 614 val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) 615 val f3_paddrs = RegEnable(f2_paddrs, f2_fire) 616 val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) 617 val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) 618 val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) 619 620 // Expand 1 bit to prevent overflow when assert 621 val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) 622 val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) 623 // brType, isCall and isRet generation is delayed to f3 stage 624 val f3Predecoder = Module(new F3Predecoder) 625 626 f3Predecoder.io.in.instr := f3_instr 627 628 f3_pd.zipWithIndex.map { case (pd, i) => 629 pd.brType := f3Predecoder.io.out.pd(i).brType 630 pd.isCall := f3Predecoder.io.out.pd(i).isCall 631 pd.isRet := f3Predecoder.io.out.pd(i).isRet 632 } 633 634 val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) 635 XSError(f3_valid && f3PdDiff, "f3 pd diff") 636 637 when(f3_valid && !f3_ftq_req.ftqOffset.valid) { 638 assert( 639 f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, 640 s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" 641 ) 642 } 643 644 /*** MMIO State Machine***/ 645 val f3_mmio_data = Reg(Vec(2, UInt(16.W))) 646 val mmio_is_RVC = RegInit(false.B) 647 val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) 648 val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) 649 // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795 650 val mmio_resend_gpaddr = RegInit(0.U(PAddrBitsMax.W)) 651 val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) 652 653 // last instuction finish 654 val is_first_instr = RegInit(true.B) 655 656 /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ 657 io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) 658 659 val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = 660 Enum(11) 661 val mmio_state = RegInit(m_idle) 662 663 // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs 664 /* FIXME: we do not distinguish pbmt is NC or IO now 665 * but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance 666 */ 667 val f3_req_is_mmio = 668 f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception) 669 val mmio_commit = VecInit(io.rob_commits.map { commit => 670 commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U 671 }).asUInt.orR 672 val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited 673 674 val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit 675 val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) 676 val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next 677 678 val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) 679 fromFtqRedirectReg.bits := RegEnable( 680 fromFtq.redirect.bits, 681 0.U.asTypeOf(fromFtq.redirect.bits), 682 fromFtq.redirect.valid 683 ) 684 fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) 685 val mmioF3Flush = RegNext(f3_flush, init = false.B) 686 val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) 687 val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) 688 689 val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older 690 691 /** 692 ********************************************************************************** 693 * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. 694 * This is the exception when the first instruction is an MMIO instruction. 695 ********************************************************************************** 696 */ 697 when(is_first_instr && f3_fire) { 698 is_first_instr := false.B 699 } 700 701 when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) 702 .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) 703 .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) 704 .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) 705 .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) 706 707 val f3_mmio_use_seq_pc = RegInit(false.B) 708 709 val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) 710 val redirect_mmio_req = 711 fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U 712 713 when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) 714 .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) 715 716 f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid 717 718 // mmio state machine 719 switch(mmio_state) { 720 is(m_idle) { 721 when(f3_req_is_mmio) { 722 // in idempotent spaces, we can send request directly (i.e. can do speculative fetch) 723 mmio_state := Mux(f3_itlb_pbmt === Pbmt.nc, m_sendReq, m_waitLastCmt) 724 } 725 } 726 727 is(m_waitLastCmt) { 728 when(is_first_instr) { 729 mmio_state := m_sendReq 730 }.otherwise { 731 mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) 732 } 733 } 734 735 is(m_sendReq) { 736 mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) 737 } 738 739 is(m_waitResp) { 740 when(fromUncache.fire) { 741 val isRVC = fromUncache.bits.data(1, 0) =/= 3.U 742 val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U 743 mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) 744 mmio_is_RVC := isRVC 745 f3_mmio_data(0) := fromUncache.bits.data(15, 0) 746 f3_mmio_data(1) := fromUncache.bits.data(31, 16) 747 } 748 } 749 750 is(m_sendTLB) { 751 mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) 752 } 753 754 is(m_tlbResp) { 755 when(io.iTLBInter.resp.fire) { 756 // we are using a blocked tlb, so resp.fire must have !resp.bits.miss 757 assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") 758 val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) 759 // if itlb re-check respond pbmt mismatch with previous check, must be access fault 760 val pbmt_mismatch_exception = Mux( 761 io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt, 762 ExceptionType.af, 763 ExceptionType.none 764 ) 765 val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception) 766 // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit 767 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP) 768 // also save itlb response 769 mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) 770 mmio_resend_exception := exception 771 mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) 772 mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) 773 } 774 } 775 776 is(m_sendPMP) { 777 val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp) 778 // if pmp re-check respond mismatch with previous check, must be access fault 779 val mmio_mismatch_exception = Mux( 780 io.pmp.resp.mmio =/= f3_pmp_mmio, 781 ExceptionType.af, 782 ExceptionType.none 783 ) 784 val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception) 785 // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit 786 mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq) 787 // also save pmp response 788 mmio_resend_exception := exception 789 } 790 791 is(m_resendReq) { 792 mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) 793 } 794 795 is(m_waitResendResp) { 796 when(fromUncache.fire) { 797 mmio_state := m_waitCommit 798 f3_mmio_data(1) := fromUncache.bits.data(15, 0) 799 } 800 } 801 802 is(m_waitCommit) { 803 // in idempotent spaces, we can skip waiting for commit (i.e. can do speculative fetch) 804 // but we do not skip m_waitCommit state, as other signals (e.g. f3_mmio_can_go relies on this) 805 mmio_state := Mux(mmio_commit || f3_itlb_pbmt === Pbmt.nc, m_commited, m_waitCommit) 806 } 807 808 // normal mmio instruction 809 is(m_commited) { 810 mmio_state := m_idle 811 mmio_is_RVC := false.B 812 mmio_resend_addr := 0.U 813 mmio_resend_exception := ExceptionType.none 814 mmio_resend_gpaddr := 0.U 815 mmio_resend_isForVSnonLeafPTE := false.B 816 } 817 } 818 819 // Exception or flush by older branch prediction 820 // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect 821 when(f3_ftq_flush_self || f3_ftq_flush_by_older) { 822 mmio_state := m_idle 823 mmio_is_RVC := false.B 824 mmio_resend_addr := 0.U 825 mmio_resend_exception := ExceptionType.none 826 mmio_resend_gpaddr := 0.U 827 mmio_resend_isForVSnonLeafPTE := false.B 828 f3_mmio_data.map(_ := 0.U) 829 } 830 831 toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio 832 toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) 833 fromUncache.ready := true.B 834 835 // send itlb request in m_sendTLB state 836 io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio 837 io.iTLBInter.req.bits.size := 3.U 838 io.iTLBInter.req.bits.vaddr := f3_resend_vaddr 839 io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr 840 io.iTLBInter.req.bits.cmd := TlbCmd.exec 841 io.iTLBInter.req.bits.isPrefetch := false.B 842 io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false 843 io.iTLBInter.req.bits.no_translate := false.B 844 io.iTLBInter.req.bits.fullva := 0.U 845 io.iTLBInter.req.bits.checkfullva := false.B 846 io.iTLBInter.req.bits.hyperinst := DontCare 847 io.iTLBInter.req.bits.hlvx := DontCare 848 io.iTLBInter.req.bits.memidx := DontCare 849 io.iTLBInter.req.bits.debug.robIdx := DontCare 850 io.iTLBInter.req.bits.debug.isFirstIssue := DontCare 851 io.iTLBInter.req.bits.pmp_addr := DontCare 852 // whats the difference between req_kill and req.bits.kill? 853 io.iTLBInter.req_kill := false.B 854 // wait for itlb response in m_tlbResp state 855 io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio 856 857 io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio 858 io.pmp.req.bits.addr := mmio_resend_addr 859 io.pmp.req.bits.size := 3.U 860 io.pmp.req.bits.cmd := TlbCmd.exec 861 862 val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) 863 864 val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt 865 val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) 866 val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) 867 868 /*** prediction result check ***/ 869 checkerIn.ftqOffset := f3_ftq_req.ftqOffset 870 checkerIn.jumpOffset := f3_jump_offset 871 checkerIn.target := f3_ftq_req.nextStartAddr 872 checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 873 checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) 874 checkerIn.pds := f3_pd 875 checkerIn.pc := f3_pc 876 checkerIn.fire_in := RegNext(f2_fire, init = false.B) 877 878 /*** handle half RVI in the last 2 Bytes ***/ 879 880 def hasLastHalf(idx: UInt) = 881 // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio 882 !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( 883 idx 884 ) && !f3_req_is_mmio 885 886 val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) 887 888 val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) 889 val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) 890 val f3_false_snpc = f3_half_snpc(f3_last_validIdx) 891 892 val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt 893 val f3_lastHalf_disable = RegInit(false.B) 894 895 when(f3_flush || (f3_fire && f3_lastHalf_disable)) { 896 f3_lastHalf_disable := false.B 897 } 898 899 when(f3_flush) { 900 f3_lastHalf.valid := false.B 901 }.elsewhen(f3_fire) { 902 f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable 903 f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr 904 } 905 906 f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) 907 908 /*** frontend Trigger ***/ 909 frontendTrigger.io.pds := f3_pd 910 frontendTrigger.io.pc := f3_pc 911 frontendTrigger.io.data := f3_cut_data 912 913 frontendTrigger.io.frontendTrigger := io.frontendTrigger 914 915 val f3_triggered = frontendTrigger.io.triggered 916 val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush 917 918 /*** send to Ibuffer ***/ 919 io.toIbuffer.valid := f3_toIbuffer_valid 920 io.toIbuffer.bits.instrs := f3_expd_instr 921 io.toIbuffer.bits.valid := f3_instr_valid.asUInt 922 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt 923 io.toIbuffer.bits.pd := f3_pd 924 io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx 925 io.toIbuffer.bits.pc := f3_pc 926 // Find last using PriorityMux 927 io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools 928 io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => 929 a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio 930 } 931 io.toIbuffer.bits.foldpc := f3_foldpc 932 io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) 933 // backendException only needs to be set for the first instruction. 934 // Other instructions in the same block may have pf or af set, 935 // which is a side effect of the first instruction and actually not necessary. 936 io.toIbuffer.bits.backendException := (0 until PredictWidth).map { 937 case 0 => f3_backendException 938 case _ => false.B 939 } 940 io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException) 941 io.toIbuffer.bits.illegalInstr := f3_ill 942 io.toIbuffer.bits.triggered := f3_triggered 943 944 when(f3_lastHalf.valid) { 945 io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask 946 io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt 947 } 948 949 /** to backend */ 950 // f3_gpaddr is valid iff gpf is detected 951 io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( 952 f3_req_is_mmio, 953 mmio_resend_exception === ExceptionType.gpf, 954 f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) 955 ) 956 io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value 957 io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) 958 io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( 959 f3_req_is_mmio, 960 mmio_resend_isForVSnonLeafPTE, 961 f3_isForVSnonLeafPTE 962 ) 963 964 // Write back to Ftq 965 val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) 966 val finishFetchMaskReg = RegNext(f3_cache_fetch) 967 968 val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 969 val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) 970 f3_mmio_missOffset.valid := f3_req_is_mmio 971 f3_mmio_missOffset.bits := 0.U 972 973 // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return 974 // When backend redirect, mmio_state reset after 1 cycle. 975 // In this case, mask .valid to avoid overriding backend redirect 976 mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && 977 f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) 978 mmioFlushWb.bits.pc := f3_pc 979 mmioFlushWb.bits.pd := f3_pd 980 mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } 981 mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx 982 mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits 983 mmioFlushWb.bits.misOffset := f3_mmio_missOffset 984 mmioFlushWb.bits.cfiOffset := DontCare 985 mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) 986 mmioFlushWb.bits.jalTarget := DontCare 987 mmioFlushWb.bits.instrRange := f3_mmio_range 988 989 val mmioRVCExpander = Module(new RVCExpander) 990 mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) 991 mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff 992 993 /** external predecode for MMIO instruction */ 994 when(f3_req_is_mmio) { 995 val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) 996 val currentIsRVC = isRVC(inst) 997 998 val brType :: isCall :: isRet :: Nil = brInfo(inst) 999 val jalOffset = jal_offset(inst, currentIsRVC) 1000 val brOffset = br_offset(inst, currentIsRVC) 1001 1002 io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) 1003 1004 io.toIbuffer.bits.pd(0).valid := true.B 1005 io.toIbuffer.bits.pd(0).isRVC := currentIsRVC 1006 io.toIbuffer.bits.pd(0).brType := brType 1007 io.toIbuffer.bits.pd(0).isCall := isCall 1008 io.toIbuffer.bits.pd(0).isRet := isRet 1009 1010 io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception 1011 io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception) 1012 io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill 1013 1014 io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt 1015 1016 mmioFlushWb.bits.pd(0).valid := true.B 1017 mmioFlushWb.bits.pd(0).isRVC := currentIsRVC 1018 mmioFlushWb.bits.pd(0).brType := brType 1019 mmioFlushWb.bits.pd(0).isCall := isCall 1020 mmioFlushWb.bits.pd(0).isRet := isRet 1021 } 1022 1023 mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) 1024 1025 XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) 1026 1027 /** 1028 ****************************************************************************** 1029 * IFU Write Back Stage 1030 * - write back predecode information to Ftq to update 1031 * - redirect if found fault prediction 1032 * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) 1033 ****************************************************************************** 1034 */ 1035 val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush 1036 val wb_valid = RegNext(wb_enable, init = false.B) 1037 val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) 1038 1039 val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) 1040 val wb_check_result_stage2 = checkerOutStage2 1041 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) 1042 1043 val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) 1044 val wb_pc_high = RegEnable(f3_pc_high, wb_enable) 1045 val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) 1046 val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) 1047 1048 // val wb_pc = RegEnable(f3_pc, wb_enable) 1049 val wb_pd = RegEnable(f3_pd, wb_enable) 1050 val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) 1051 1052 /* false hit lastHalf */ 1053 val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) 1054 val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U 1055 val wb_false_target = RegEnable(f3_false_snpc, wb_enable) 1056 1057 val wb_half_flush = wb_false_lastHalf 1058 val wb_half_target = wb_false_target 1059 1060 /* false oversize */ 1061 val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC 1062 val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC 1063 val lastTaken = wb_check_result_stage1.fixedTaken.last 1064 1065 f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid 1066 1067 /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, 1068 * we set a flag to notify f3 that the last half flag need not to be set. 1069 */ 1070 // f3_fire is after wb_valid 1071 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1072 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( 1073 f3_fire, 1074 init = false.B 1075 ) && !f3_flush) { 1076 f3_lastHalf_disable := true.B 1077 } 1078 1079 // wb_valid and f3_fire are in same cycle 1080 when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) 1081 && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { 1082 f3_lastHalf.valid := false.B 1083 } 1084 1085 val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) 1086 val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => 1087 v && pd.isJal 1088 })) 1089 val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1090 checkFlushWb.valid := wb_valid 1091 checkFlushWb.bits.pc := wb_pc 1092 checkFlushWb.bits.pd := wb_pd 1093 checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } 1094 checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx 1095 checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits 1096 checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush 1097 checkFlushWb.bits.misOffset.bits := Mux( 1098 wb_half_flush, 1099 wb_lastIdx, 1100 ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) 1101 ) 1102 checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) 1103 checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) 1104 checkFlushWb.bits.target := Mux( 1105 wb_half_flush, 1106 wb_half_target, 1107 wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) 1108 ) 1109 checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) 1110 checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) 1111 1112 toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) 1113 1114 wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid 1115 1116 /*write back flush type*/ 1117 val checkFaultType = wb_check_result_stage2.faultType 1118 val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) 1119 val checkJalrFault = wb_valid && checkFaultType.map(_.isjalrFault).reduce(_ || _) 1120 val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) 1121 val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) 1122 val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) 1123 val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) 1124 1125 XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) 1126 XSPerfAccumulate("predecode_flush_jalrFault", checkJalrFault) 1127 XSPerfAccumulate("predecode_flush_retFault", checkRetFault) 1128 XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) 1129 XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) 1130 XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) 1131 1132 XSDebug( 1133 checkRetFault, 1134 "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", 1135 wb_ftq_req.startAddr, 1136 wb_ftq_req.nextStartAddr, 1137 wb_ftq_req.ftqOffset.valid, 1138 wb_ftq_req.ftqOffset.bits 1139 ) 1140 1141 /** performance counter */ 1142 val f3_perf_info = RegEnable(f2_perf_info, f2_fire) 1143 val f3_req_0 = io.toIbuffer.fire 1144 val f3_req_1 = io.toIbuffer.fire && f3_doubleLine 1145 val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) 1146 val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) 1147 val f3_hit = f3_perf_info.hit 1148 val perfEvents = Seq( 1149 ("frontendFlush ", wb_redirect), 1150 ("ifu_req ", io.toIbuffer.fire), 1151 ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), 1152 ("ifu_req_cacheline_0 ", f3_req_0), 1153 ("ifu_req_cacheline_1 ", f3_req_1), 1154 ("ifu_req_cacheline_0_hit ", f3_hit_1), 1155 ("ifu_req_cacheline_1_hit ", f3_hit_1), 1156 ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), 1157 ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), 1158 ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), 1159 ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), 1160 ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), 1161 ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1162 ) 1163 generatePerfEvent() 1164 1165 XSPerfAccumulate("ifu_req", io.toIbuffer.fire) 1166 XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) 1167 XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) 1168 XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) 1169 XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) 1170 XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) 1171 XSPerfAccumulate("frontendFlush", wb_redirect) 1172 XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) 1173 XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) 1174 XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) 1175 XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) 1176 XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) 1177 XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) 1178 XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) 1179 XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1180 XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) 1181 XSPerfHistogram( 1182 "ifu2ibuffer_validCnt", 1183 PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), 1184 io.toIbuffer.fire, 1185 0, 1186 PredictWidth + 1, 1187 1 1188 ) 1189 1190 val hartId = p(XSCoreParamsKey).HartId 1191 val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") 1192 val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") 1193 val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) 1194 val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) 1195 1196 val fetchIBufferDumpData = Wire(new FetchToIBufferDB) 1197 fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr 1198 fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) 1199 fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) 1200 fetchIBufferDumpData.is_cache_hit := f3_hit 1201 1202 val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) 1203 ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr 1204 ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid 1205 ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits 1206 ifuWbToFtqDumpData.checkJalFault := checkJalFault 1207 ifuWbToFtqDumpData.checkJalrFault := checkJalrFault 1208 ifuWbToFtqDumpData.checkRetFault := checkRetFault 1209 ifuWbToFtqDumpData.checkTargetFault := checkTargetFault 1210 ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault 1211 ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken 1212 1213 fetchToIBufferTable.log( 1214 data = fetchIBufferDumpData, 1215 en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, 1216 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1217 clock = clock, 1218 reset = reset 1219 ) 1220 ifuWbToFtqTable.log( 1221 data = ifuWbToFtqDumpData, 1222 en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, 1223 site = "IFU" + p(XSCoreParamsKey).HartId.toString, 1224 clock = clock, 1225 reset = reset 1226 ) 1227 1228} 1229