/*************************************************************************************** * Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) * Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend import chisel3._ import chisel3.util._ import org.chipsalliance.cde.config.Parameters import utility._ import utility.ChiselDB import xiangshan._ import xiangshan.backend.GPAMemEntry import xiangshan.cache.mmu._ import xiangshan.frontend.icache._ trait HasInstrMMIOConst extends HasXSParameter with HasIFUConst { def mmioBusWidth = 64 def mmioBusBytes = mmioBusWidth / 8 def maxInstrLen = 32 } trait HasIFUConst extends HasXSParameter { def addrAlign(addr: UInt, bytes: Int, highest: Int): UInt = Cat(addr(highest - 1, log2Ceil(bytes)), 0.U(log2Ceil(bytes).W)) def fetchQueueSize = 2 def getBasicBlockIdx(pc: UInt, start: UInt): UInt = { val byteOffset = pc - start (byteOffset - instBytes.U)(log2Ceil(PredictWidth), instOffsetBits) } } class IfuToFtqIO(implicit p: Parameters) extends XSBundle { val pdWb = Valid(new PredecodeWritebackBundle) } class IfuToBackendIO(implicit p: Parameters) extends XSBundle { // write to backend gpaddr mem val gpaddrMem_wen = Output(Bool()) val gpaddrMem_waddr = Output(UInt(log2Ceil(FtqSize).W)) // Ftq Ptr // 2 gpaddrs, correspond to startAddr & nextLineAddr in bundle FtqICacheInfo // TODO: avoid cross page entry in Ftq val gpaddrMem_wdata = Output(new GPAMemEntry) } class FtqInterface(implicit p: Parameters) extends XSBundle { val fromFtq = Flipped(new FtqToIfuIO) val toFtq = new IfuToFtqIO } class UncacheInterface(implicit p: Parameters) extends XSBundle { val fromUncache = Flipped(DecoupledIO(new InsUncacheResp)) val toUncache = DecoupledIO(new InsUncacheReq) } class NewIFUIO(implicit p: Parameters) extends XSBundle { val ftqInter = new FtqInterface val icacheInter = Flipped(new IFUICacheIO) val icacheStop = Output(Bool()) val icachePerfInfo = Input(new ICachePerfInfo) val toIbuffer = Decoupled(new FetchToIBuffer) val toBackend = new IfuToBackendIO val uncacheInter = new UncacheInterface val frontendTrigger = Flipped(new FrontendTdataDistributeIO) val rob_commits = Flipped(Vec(CommitWidth, Valid(new RobCommitInfo))) val iTLBInter = new TlbRequestIO val pmp = new ICachePMPBundle val mmioCommitRead = new mmioCommitRead val csr_fsIsOff = Input(Bool()) } // record the situation in which fallThruAddr falls into // the middle of an RVI inst class LastHalfInfo(implicit p: Parameters) extends XSBundle { val valid = Bool() val middlePC = UInt(VAddrBits.W) def matchThisBlock(startAddr: UInt) = valid && middlePC === startAddr } class IfuToPreDecode(implicit p: Parameters) extends XSBundle { val data = if (HasCExtension) Vec(PredictWidth + 1, UInt(16.W)) else Vec(PredictWidth, UInt(32.W)) val frontendTrigger = new FrontendTdataDistributeIO val pc = Vec(PredictWidth, UInt(VAddrBits.W)) } class IfuToPredChecker(implicit p: Parameters) extends XSBundle { val ftqOffset = Valid(UInt(log2Ceil(PredictWidth).W)) val jumpOffset = Vec(PredictWidth, UInt(XLEN.W)) val target = UInt(VAddrBits.W) val instrRange = Vec(PredictWidth, Bool()) val instrValid = Vec(PredictWidth, Bool()) val pds = Vec(PredictWidth, new PreDecodeInfo) val pc = Vec(PredictWidth, UInt(VAddrBits.W)) val fire_in = Bool() } class FetchToIBufferDB extends Bundle { val start_addr = UInt(39.W) val instr_count = UInt(32.W) val exception = Bool() val is_cache_hit = Bool() } class IfuWbToFtqDB extends Bundle { val start_addr = UInt(39.W) val is_miss_pred = Bool() val miss_pred_offset = UInt(32.W) val checkJalFault = Bool() val checkJalrFault = Bool() val checkRetFault = Bool() val checkTargetFault = Bool() val checkNotCFIFault = Bool() val checkInvalidTaken = Bool() } class NewIFU(implicit p: Parameters) extends XSModule with HasICacheParameters with HasXSParameter with HasIFUConst with HasPdConst with HasCircularQueuePtrHelper with HasPerfEvents with HasTlbConst { val io = IO(new NewIFUIO) val (toFtq, fromFtq) = (io.ftqInter.toFtq, io.ftqInter.fromFtq) val fromICache = io.icacheInter.resp val (toUncache, fromUncache) = (io.uncacheInter.toUncache, io.uncacheInter.fromUncache) def isCrossLineReq(start: UInt, end: UInt): Bool = start(blockOffBits) ^ end(blockOffBits) def numOfStage = 3 // equal lower_result overflow bit def PcCutPoint = (VAddrBits / 4) - 1 def CatPC(low: UInt, high: UInt, high1: UInt): UInt = Mux( low(PcCutPoint), Cat(high1, low(PcCutPoint - 1, 0)), Cat(high, low(PcCutPoint - 1, 0)) ) def CatPC(lowVec: Vec[UInt], high: UInt, high1: UInt): Vec[UInt] = VecInit(lowVec.map(CatPC(_, high, high1))) require(numOfStage > 1, "BPU numOfStage must be greater than 1") val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) // bubble events in IFU, only happen in stage 1 val icacheMissBubble = Wire(Bool()) val itlbMissBubble = Wire(Bool()) // only driven by clock, not valid-ready topdown_stages(0) := fromFtq.req.bits.topdown_info for (i <- 1 until numOfStage) { topdown_stages(i) := topdown_stages(i - 1) } when(icacheMissBubble) { topdown_stages(1).reasons(TopDownCounters.ICacheMissBubble.id) := true.B } when(itlbMissBubble) { topdown_stages(1).reasons(TopDownCounters.ITLBMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info := topdown_stages(numOfStage - 1) when(fromFtq.topdown_redirect.valid) { // only redirect from backend, IFU redirect itself is handled elsewhere when(fromFtq.topdown_redirect.bits.debugIsCtrl) { /* for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B */ when(fromFtq.topdown_redirect.bits.ControlBTBMissBubble) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B }.elsewhen(fromFtq.topdown_redirect.bits.TAGEMissBubble) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B }.elsewhen(fromFtq.topdown_redirect.bits.SCMissBubble) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B }.elsewhen(fromFtq.topdown_redirect.bits.ITTAGEMissBubble) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B }.elsewhen(fromFtq.topdown_redirect.bits.RASMissBubble) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B } }.elsewhen(fromFtq.topdown_redirect.bits.debugIsMemVio) { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B }.otherwise { for (i <- 0 until numOfStage) { topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B } io.toIbuffer.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B } } class TlbExept(implicit p: Parameters) extends XSBundle { val pageFault = Bool() val accessFault = Bool() val mmio = Bool() } val preDecoder = Module(new PreDecode) val predChecker = Module(new PredChecker) val frontendTrigger = Module(new FrontendTrigger) val (checkerIn, checkerOutStage1, checkerOutStage2) = (predChecker.io.in, predChecker.io.out.stage1Out, predChecker.io.out.stage2Out) /** ****************************************************************************** * IFU Stage 0 * - send cacheline fetch request to ICacheMainPipe ****************************************************************************** */ val f0_valid = fromFtq.req.valid val f0_ftq_req = fromFtq.req.bits val f0_doubleLine = fromFtq.req.bits.crossCacheline val f0_vSetIdx = VecInit(get_idx(f0_ftq_req.startAddr), get_idx(f0_ftq_req.nextlineStart)) val f0_fire = fromFtq.req.fire val f0_flush, f1_flush, f2_flush, f3_flush = WireInit(false.B) val f0_flush_from_bpu = fromFtq.flushFromBpu.shouldFlushByStage2(f0_ftq_req.ftqIdx) || fromFtq.flushFromBpu.shouldFlushByStage3(f0_ftq_req.ftqIdx) val wb_redirect, mmio_redirect, backend_redirect = WireInit(false.B) val f3_wb_not_flush = WireInit(false.B) backend_redirect := fromFtq.redirect.valid f3_flush := backend_redirect || (wb_redirect && !f3_wb_not_flush) f2_flush := backend_redirect || mmio_redirect || wb_redirect f1_flush := f2_flush f0_flush := f1_flush || f0_flush_from_bpu val f1_ready, f2_ready, f3_ready = WireInit(false.B) fromFtq.req.ready := f1_ready && io.icacheInter.icacheReady when(wb_redirect) { when(f3_wb_not_flush) { topdown_stages(2).reasons(TopDownCounters.BTBMissBubble.id) := true.B } for (i <- 0 until numOfStage - 1) { topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B } } /** f0 fetch bubble */ XSPerfAccumulate("fetch_bubble_ftq_not_valid", !fromFtq.req.valid && fromFtq.req.ready) // XSPerfAccumulate("fetch_bubble_pipe_stall", f0_valid && toICache(0).ready && toICache(1).ready && !f1_ready ) // XSPerfAccumulate("fetch_bubble_icache_0_busy", f0_valid && !toICache(0).ready ) // XSPerfAccumulate("fetch_bubble_icache_1_busy", f0_valid && !toICache(1).ready ) XSPerfAccumulate("fetch_flush_backend_redirect", backend_redirect) XSPerfAccumulate("fetch_flush_wb_redirect", wb_redirect) XSPerfAccumulate("fetch_flush_f0_flush_from_bpu", f0_flush_from_bpu) /** ****************************************************************************** * IFU Stage 1 * - calculate pc/half_pc/cut_ptr for every instruction ****************************************************************************** */ val f1_valid = RegInit(false.B) val f1_ftq_req = RegEnable(f0_ftq_req, f0_fire) // val f1_situation = RegEnable(f0_situation, f0_fire) val f1_doubleLine = RegEnable(f0_doubleLine, f0_fire) val f1_vSetIdx = RegEnable(f0_vSetIdx, f0_fire) val f1_fire = f1_valid && f2_ready f1_ready := f1_fire || !f1_valid assert(!(fromFtq.flushFromBpu.shouldFlushByStage3(f1_ftq_req.ftqIdx) && f1_valid)) when(f1_flush)(f1_valid := false.B) .elsewhen(f0_fire && !f0_flush)(f1_valid := true.B) .elsewhen(f1_fire)(f1_valid := false.B) val f1_pc_high = f1_ftq_req.startAddr(VAddrBits - 1, PcCutPoint) val f1_pc_high_plus1 = f1_pc_high + 1.U /** * In order to reduce power consumption, avoid calculating the full PC value in the first level. * code of original logic, this code has been deprecated * val f1_pc = VecInit(f1_pc_lower_result.map{ i => * Mux(i(f1_pc_adder_cut_point), Cat(f1_pc_high_plus1,i(f1_pc_adder_cut_point-1,0)), Cat(f1_pc_high,i(f1_pc_adder_cut_point-1,0)))}) */ val f1_pc_lower_result = VecInit((0 until PredictWidth).map(i => Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + (i * 2).U )) // cat with overflow bit val f1_pc = CatPC(f1_pc_lower_result, f1_pc_high, f1_pc_high_plus1) val f1_half_snpc_lower_result = VecInit((0 until PredictWidth).map(i => Cat(0.U(1.W), f1_ftq_req.startAddr(PcCutPoint - 1, 0)) + ((i + 2) * 2).U )) // cat with overflow bit val f1_half_snpc = CatPC(f1_half_snpc_lower_result, f1_pc_high, f1_pc_high_plus1) if (env.FPGAPlatform) { val f1_pc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + (i * 2).U)) val f1_half_snpc_diff = VecInit((0 until PredictWidth).map(i => f1_ftq_req.startAddr + ((i + 2) * 2).U)) XSError( f1_pc.zip(f1_pc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), "f1_half_snpc adder cut fail" ) XSError( f1_half_snpc.zip(f1_half_snpc_diff).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _), "f1_half_snpc adder cut fail" ) } val f1_cut_ptr = if (HasCExtension) VecInit((0 until PredictWidth + 1).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 1)) + i.U)) else VecInit((0 until PredictWidth).map(i => Cat(0.U(2.W), f1_ftq_req.startAddr(blockOffBits - 1, 2)) + i.U)) /** ****************************************************************************** * IFU Stage 2 * - icache response data (latched for pipeline stop) * - generate exceprion bits for every instruciton (page fault/access fault/mmio) * - generate predicted instruction range (1 means this instruciton is in this fetch packet) * - cut data from cachlines to packet instruction code * - instruction predecode and RVC expand ****************************************************************************** */ val icacheRespAllValid = WireInit(false.B) val f2_valid = RegInit(false.B) val f2_ftq_req = RegEnable(f1_ftq_req, f1_fire) // val f2_situation = RegEnable(f1_situation, f1_fire) val f2_doubleLine = RegEnable(f1_doubleLine, f1_fire) val f2_vSetIdx = RegEnable(f1_vSetIdx, f1_fire) val f2_fire = f2_valid && f3_ready && icacheRespAllValid f2_ready := f2_fire || !f2_valid // TODO: addr compare may be timing critical val f2_icache_all_resp_wire = fromICache.valid && fromICache.bits.vaddr(0) === f2_ftq_req.startAddr && (fromICache.bits.doubleline && fromICache.bits.vaddr(1) === f2_ftq_req.nextlineStart || !f2_doubleLine) val f2_icache_all_resp_reg = RegInit(false.B) icacheRespAllValid := f2_icache_all_resp_reg || f2_icache_all_resp_wire icacheMissBubble := io.icacheInter.topdownIcacheMiss itlbMissBubble := io.icacheInter.topdownItlbMiss io.icacheStop := !f3_ready when(f2_flush)(f2_icache_all_resp_reg := false.B) .elsewhen(f2_valid && f2_icache_all_resp_wire && !f3_ready)(f2_icache_all_resp_reg := true.B) .elsewhen(f2_fire && f2_icache_all_resp_reg)(f2_icache_all_resp_reg := false.B) when(f2_flush)(f2_valid := false.B) .elsewhen(f1_fire && !f1_flush)(f2_valid := true.B) .elsewhen(f2_fire)(f2_valid := false.B) val f2_exception_in = fromICache.bits.exception val f2_backendException = fromICache.bits.backendException // paddr and gpaddr of [startAddr, nextLineAddr] val f2_paddrs = fromICache.bits.paddr val f2_gpaddr = fromICache.bits.gpaddr val f2_isForVSnonLeafPTE = fromICache.bits.isForVSnonLeafPTE // FIXME: raise af if one fetch block crosses the cacheable-noncacheable boundary, might not correct val f2_mmio_mismatch_exception = VecInit(Seq( ExceptionType.none, // mark the exception only on the second line Mux( // not double-line, skip check !fromICache.bits.doubleline || ( // is double-line, ask for consistent pmp_mmio and itlb_pbmt value fromICache.bits.pmp_mmio(0) === fromICache.bits.pmp_mmio(1) && fromICache.bits.itlb_pbmt(0) === fromICache.bits.itlb_pbmt(1) ), ExceptionType.none, ExceptionType.af ) )) // merge exceptions val f2_exception = ExceptionType.merge(f2_exception_in, f2_mmio_mismatch_exception) // we need only the first port, as the second is asked to be the same val f2_pmp_mmio = fromICache.bits.pmp_mmio(0) val f2_itlb_pbmt = fromICache.bits.itlb_pbmt(0) /** * reduce the number of registers, origin code * f2_pc = RegEnable(f1_pc, f1_fire) */ val f2_pc_lower_result = RegEnable(f1_pc_lower_result, f1_fire) val f2_pc_high = RegEnable(f1_pc_high, f1_fire) val f2_pc_high_plus1 = RegEnable(f1_pc_high_plus1, f1_fire) val f2_pc = CatPC(f2_pc_lower_result, f2_pc_high, f2_pc_high_plus1) val f2_cut_ptr = RegEnable(f1_cut_ptr, f1_fire) val f2_resend_vaddr = RegEnable(f1_ftq_req.startAddr + 2.U, f1_fire) def isNextLine(pc: UInt, startAddr: UInt) = startAddr(blockOffBits) ^ pc(blockOffBits) def isLastInLine(pc: UInt) = pc(blockOffBits - 1, 0) === "b111110".U val f2_foldpc = VecInit(f2_pc.map(i => XORFold(i(VAddrBits - 1, 1), MemPredPCWidth))) val f2_jump_range = Fill(PredictWidth, !f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits require( isPow2(PredictWidth), "If PredictWidth does not satisfy the power of 2," + "expression: Fill(PredictWidth, 1.U(1.W)) >> ~f2_ftq_req.ftqOffset.bits is not right !!" ) val f2_ftr_range = Fill(PredictWidth, f2_ftq_req.ftqOffset.valid) | Fill(PredictWidth, 1.U(1.W)) >> ~getBasicBlockIdx( f2_ftq_req.nextStartAddr, f2_ftq_req.startAddr ) val f2_instr_range = f2_jump_range & f2_ftr_range val f2_exception_vec = VecInit((0 until PredictWidth).map(i => MuxCase( ExceptionType.none, Seq( !isNextLine(f2_pc(i), f2_ftq_req.startAddr) -> f2_exception(0), (isNextLine(f2_pc(i), f2_ftq_req.startAddr) && f2_doubleLine) -> f2_exception(1) ) ) )) val f2_perf_info = io.icachePerfInfo def cut(cacheline: UInt, cutPtr: Vec[UInt]): Vec[UInt] = { require(HasCExtension) // if(HasCExtension){ val result = Wire(Vec(PredictWidth + 1, UInt(16.W))) val dataVec = cacheline.asTypeOf(Vec(blockBytes, UInt(16.W))) // 32 16-bit data vector (0 until PredictWidth + 1).foreach(i => result(i) := dataVec(cutPtr(i)) // the max ptr is 3*blockBytes/4-1 ) result // } else { // val result = Wire(Vec(PredictWidth, UInt(32.W)) ) // val dataVec = cacheline.asTypeOf(Vec(blockBytes * 2/ 4, UInt(32.W))) // (0 until PredictWidth).foreach( i => // result(i) := dataVec(cutPtr(i)) // ) // result // } } /* NOTE: the following `Cat(_data, _data)` *is* intentional. * Explanation: * In the old design, IFU is responsible for selecting requested data from two adjacent cachelines, * so IFU has to receive 2*64B (2cacheline * 64B) data from ICache, and do `Cat(_data(1), _data(0))` here. * However, a fetch block is 34B at max, sending 2*64B is quiet a waste of power. * In current design (2024.06~), ICacheDataArray is responsible for selecting data from two adjacent cachelines, * so IFU only need to receive 40B (5bank * 8B) valid data, and use only one port is enough. * For example, when pc falls on the 6th bank in cacheline0(so this is a doubleline request): * MSB LSB * cacheline 1 || 1-7 | 1-6 | 1-5 | 1-4 | 1-3 | 1-2 | 1-1 | 1-0 || * cacheline 0 || 0-7 | 0-6 | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | 0-0 || * and ICacheDataArray will respond: * fromICache.bits.data || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || * therefore simply make a copy of the response and `Cat` together, and obtain the requested data from centre: * f2_data_2_cacheline || 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 | 0-7 | 0-6 | xxx | xxx | xxx | 1-2 | 1-1 | 1-0 || * requested data: ^-----------------------------^ * For another example, pc falls on the 1st bank in cacheline 0, we have: * fromICache.bits.data || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || * f2_data_2_cacheline || xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx | xxx | xxx | 0-5 | 0-4 | 0-3 | 0-2 | 0-1 | xxx || * requested data: ^-----------------------------^ * Each "| x-y |" block is a 8B bank from cacheline(x).bank(y) * Please also refer to: * - DataArray selects data: * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L355-L381 * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICache.scala#L149-L161 * - ICache respond to IFU: * https://github.com/OpenXiangShan/XiangShan/blob/d4078d6edbfb4611ba58c8b0d1d8236c9115dbfc/src/main/scala/xiangshan/frontend/icache/ICacheMainPipe.scala#L473 */ val f2_data_2_cacheline = Cat(fromICache.bits.data, fromICache.bits.data) val f2_cut_data = cut(f2_data_2_cacheline, f2_cut_ptr) /** predecode (include RVC expander) */ // preDecoderRegIn.data := f2_reg_cut_data // preDecoderRegInIn.frontendTrigger := io.frontendTrigger // preDecoderRegInIn.csrTriggerEnable := io.csrTriggerEnable // preDecoderRegIn.pc := f2_pc val preDecoderIn = preDecoder.io.in preDecoderIn.valid := f2_valid preDecoderIn.bits.data := f2_cut_data preDecoderIn.bits.frontendTrigger := io.frontendTrigger preDecoderIn.bits.pc := f2_pc val preDecoderOut = preDecoder.io.out // val f2_expd_instr = preDecoderOut.expInstr val f2_instr = preDecoderOut.instr val f2_pd = preDecoderOut.pd val f2_jump_offset = preDecoderOut.jumpOffset val f2_hasHalfValid = preDecoderOut.hasHalfValid /* if there is a cross-page RVI instruction, and the former page has no exception, * whether it has exception is actually depends on the latter page */ val f2_crossPage_exception_vec = VecInit((0 until PredictWidth).map { i => Mux( isLastInLine(f2_pc(i)) && !f2_pd(i).isRVC && f2_doubleLine && !ExceptionType.hasException(f2_exception(0)), f2_exception(1), ExceptionType.none ) }) XSPerfAccumulate("fetch_bubble_icache_not_resp", f2_valid && !icacheRespAllValid) /** ****************************************************************************** * IFU Stage 3 * - handle MMIO instruciton * -send request to Uncache fetch Unit * -every packet include 1 MMIO instruction * -MMIO instructions will stop fetch pipeline until commiting from RoB * -flush to snpc (send ifu_redirect to Ftq) * - Ibuffer enqueue * - check predict result in Frontend (jalFault/retFault/notCFIFault/invalidTakenFault/targetFault) * - handle last half RVI instruction ****************************************************************************** */ val expanders = Seq.fill(PredictWidth)(Module(new RVCExpander)) val f3_valid = RegInit(false.B) val f3_ftq_req = RegEnable(f2_ftq_req, f2_fire) // val f3_situation = RegEnable(f2_situation, f2_fire) val f3_doubleLine = RegEnable(f2_doubleLine, f2_fire) val f3_fire = io.toIbuffer.fire val f3_cut_data = RegEnable(f2_cut_data, f2_fire) val f3_exception = RegEnable(f2_exception, f2_fire) val f3_pmp_mmio = RegEnable(f2_pmp_mmio, f2_fire) val f3_itlb_pbmt = RegEnable(f2_itlb_pbmt, f2_fire) val f3_backendException = RegEnable(f2_backendException, f2_fire) val f3_instr = RegEnable(f2_instr, f2_fire) expanders.zipWithIndex.foreach { case (expander, i) => expander.io.in := f3_instr(i) expander.io.fsIsOff := io.csr_fsIsOff } // Use expanded instruction only when input is legal. // Otherwise use origin illegal RVC instruction. val f3_expd_instr = VecInit(expanders.map { expander: RVCExpander => Mux(expander.io.ill, expander.io.in, expander.io.out.bits) }) val f3_ill = VecInit(expanders.map(_.io.ill)) val f3_pd_wire = RegEnable(f2_pd, f2_fire) val f3_pd = WireInit(f3_pd_wire) val f3_jump_offset = RegEnable(f2_jump_offset, f2_fire) val f3_exception_vec = RegEnable(f2_exception_vec, f2_fire) val f3_crossPage_exception_vec = RegEnable(f2_crossPage_exception_vec, f2_fire) val f3_pc_lower_result = RegEnable(f2_pc_lower_result, f2_fire) val f3_pc_high = RegEnable(f2_pc_high, f2_fire) val f3_pc_high_plus1 = RegEnable(f2_pc_high_plus1, f2_fire) val f3_pc = CatPC(f3_pc_lower_result, f3_pc_high, f3_pc_high_plus1) val f3_pc_last_lower_result_plus2 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 2.U, f2_fire) val f3_pc_last_lower_result_plus4 = RegEnable(f2_pc_lower_result(PredictWidth - 1) + 4.U, f2_fire) // val f3_half_snpc = RegEnable(f2_half_snpc, f2_fire) /** *********************************************************************** * Half snpc(i) is larger than pc(i) by 4. Using pc to calculate half snpc may be a good choice. *********************************************************************** */ val f3_half_snpc = Wire(Vec(PredictWidth, UInt(VAddrBits.W))) for (i <- 0 until PredictWidth) { if (i == (PredictWidth - 2)) { f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus2, f3_pc_high, f3_pc_high_plus1) } else if (i == (PredictWidth - 1)) { f3_half_snpc(i) := CatPC(f3_pc_last_lower_result_plus4, f3_pc_high, f3_pc_high_plus1) } else { f3_half_snpc(i) := f3_pc(i + 2) } } val f3_instr_range = RegEnable(f2_instr_range, f2_fire) val f3_foldpc = RegEnable(f2_foldpc, f2_fire) val f3_hasHalfValid = RegEnable(f2_hasHalfValid, f2_fire) val f3_paddrs = RegEnable(f2_paddrs, f2_fire) val f3_gpaddr = RegEnable(f2_gpaddr, f2_fire) val f3_isForVSnonLeafPTE = RegEnable(f2_isForVSnonLeafPTE, f2_fire) val f3_resend_vaddr = RegEnable(f2_resend_vaddr, f2_fire) // Expand 1 bit to prevent overflow when assert val f3_ftq_req_startAddr = Cat(0.U(1.W), f3_ftq_req.startAddr) val f3_ftq_req_nextStartAddr = Cat(0.U(1.W), f3_ftq_req.nextStartAddr) // brType, isCall and isRet generation is delayed to f3 stage val f3Predecoder = Module(new F3Predecoder) f3Predecoder.io.in.instr := f3_instr f3_pd.zipWithIndex.map { case (pd, i) => pd.brType := f3Predecoder.io.out.pd(i).brType pd.isCall := f3Predecoder.io.out.pd(i).isCall pd.isRet := f3Predecoder.io.out.pd(i).isRet } val f3PdDiff = f3_pd_wire.zip(f3_pd).map { case (a, b) => a.asUInt =/= b.asUInt }.reduce(_ || _) XSError(f3_valid && f3PdDiff, "f3 pd diff") when(f3_valid && !f3_ftq_req.ftqOffset.valid) { assert( f3_ftq_req_startAddr + (2 * PredictWidth).U >= f3_ftq_req_nextStartAddr, s"More tha ${2 * PredictWidth} Bytes fetch is not allowed!" ) } /*** MMIO State Machine***/ val f3_mmio_data = Reg(Vec(2, UInt(16.W))) val mmio_is_RVC = RegInit(false.B) val mmio_resend_addr = RegInit(0.U(PAddrBits.W)) val mmio_resend_exception = RegInit(0.U(ExceptionType.width.W)) // NOTE: we dont use GPAddrBits here, refer to ICacheMainPipe.scala L43-48 and PR#3795 val mmio_resend_gpaddr = RegInit(0.U(PAddrBitsMax.W)) val mmio_resend_isForVSnonLeafPTE = RegInit(false.B) // last instuction finish val is_first_instr = RegInit(true.B) /*** Determine whether the MMIO instruction is executable based on the previous prediction block ***/ io.mmioCommitRead.mmioFtqPtr := RegNext(f3_ftq_req.ftqIdx - 1.U) val m_idle :: m_waitLastCmt :: m_sendReq :: m_waitResp :: m_sendTLB :: m_tlbResp :: m_sendPMP :: m_resendReq :: m_waitResendResp :: m_waitCommit :: m_commited :: Nil = Enum(11) val mmio_state = RegInit(m_idle) // do mmio fetch only when pmp/pbmt shows it is a uncacheable address and no exception occurs /* FIXME: we do not distinguish pbmt is NC or IO now * but we actually can do speculative execution if pbmt is NC, maybe fix this later for performance */ val f3_req_is_mmio = f3_valid && (f3_pmp_mmio || Pbmt.isUncache(f3_itlb_pbmt)) && !ExceptionType.hasException(f3_exception) val mmio_commit = VecInit(io.rob_commits.map { commit => commit.valid && commit.bits.ftqIdx === f3_ftq_req.ftqIdx && commit.bits.ftqOffset === 0.U }).asUInt.orR val f3_mmio_req_commit = f3_req_is_mmio && mmio_state === m_commited val f3_mmio_to_commit = f3_req_is_mmio && mmio_state === m_waitCommit val f3_mmio_to_commit_next = RegNext(f3_mmio_to_commit) val f3_mmio_can_go = f3_mmio_to_commit && !f3_mmio_to_commit_next val fromFtqRedirectReg = Wire(fromFtq.redirect.cloneType) fromFtqRedirectReg.bits := RegEnable( fromFtq.redirect.bits, 0.U.asTypeOf(fromFtq.redirect.bits), fromFtq.redirect.valid ) fromFtqRedirectReg.valid := RegNext(fromFtq.redirect.valid, init = false.B) val mmioF3Flush = RegNext(f3_flush, init = false.B) val f3_ftq_flush_self = fromFtqRedirectReg.valid && RedirectLevel.flushItself(fromFtqRedirectReg.bits.level) val f3_ftq_flush_by_older = fromFtqRedirectReg.valid && isBefore(fromFtqRedirectReg.bits.ftqIdx, f3_ftq_req.ftqIdx) val f3_need_not_flush = f3_req_is_mmio && fromFtqRedirectReg.valid && !f3_ftq_flush_self && !f3_ftq_flush_by_older /** ********************************************************************************** * We want to defer instruction fetching when encountering MMIO instructions to ensure that the MMIO region is not negatively impacted. * This is the exception when the first instruction is an MMIO instruction. ********************************************************************************** */ when(is_first_instr && f3_fire) { is_first_instr := false.B } when(f3_flush && !f3_req_is_mmio)(f3_valid := false.B) .elsewhen(mmioF3Flush && f3_req_is_mmio && !f3_need_not_flush)(f3_valid := false.B) .elsewhen(f2_fire && !f2_flush)(f3_valid := true.B) .elsewhen(io.toIbuffer.fire && !f3_req_is_mmio)(f3_valid := false.B) .elsewhen(f3_req_is_mmio && f3_mmio_req_commit)(f3_valid := false.B) val f3_mmio_use_seq_pc = RegInit(false.B) val (redirect_ftqIdx, redirect_ftqOffset) = (fromFtqRedirectReg.bits.ftqIdx, fromFtqRedirectReg.bits.ftqOffset) val redirect_mmio_req = fromFtqRedirectReg.valid && redirect_ftqIdx === f3_ftq_req.ftqIdx && redirect_ftqOffset === 0.U when(RegNext(f2_fire && !f2_flush) && f3_req_is_mmio)(f3_mmio_use_seq_pc := true.B) .elsewhen(redirect_mmio_req)(f3_mmio_use_seq_pc := false.B) f3_ready := (io.toIbuffer.ready && (f3_mmio_req_commit || !f3_req_is_mmio)) || !f3_valid // mmio state machine switch(mmio_state) { is(m_idle) { when(f3_req_is_mmio) { // in idempotent spaces, we can send request directly (i.e. can do speculative fetch) mmio_state := Mux(f3_itlb_pbmt === Pbmt.nc, m_sendReq, m_waitLastCmt) } } is(m_waitLastCmt) { when(is_first_instr) { mmio_state := m_sendReq }.otherwise { mmio_state := Mux(io.mmioCommitRead.mmioLastCommit, m_sendReq, m_waitLastCmt) } } is(m_sendReq) { mmio_state := Mux(toUncache.fire, m_waitResp, m_sendReq) } is(m_waitResp) { when(fromUncache.fire) { val isRVC = fromUncache.bits.data(1, 0) =/= 3.U val needResend = !isRVC && f3_paddrs(0)(2, 1) === 3.U mmio_state := Mux(needResend, m_sendTLB, m_waitCommit) mmio_is_RVC := isRVC f3_mmio_data(0) := fromUncache.bits.data(15, 0) f3_mmio_data(1) := fromUncache.bits.data(31, 16) } } is(m_sendTLB) { mmio_state := Mux(io.iTLBInter.req.fire, m_tlbResp, m_sendTLB) } is(m_tlbResp) { when(io.iTLBInter.resp.fire) { // we are using a blocked tlb, so resp.fire must have !resp.bits.miss assert(!io.iTLBInter.resp.bits.miss, "blocked mode iTLB miss when resp.fire") val tlb_exception = ExceptionType.fromTlbResp(io.iTLBInter.resp.bits) // if itlb re-check respond pbmt mismatch with previous check, must be access fault val pbmt_mismatch_exception = Mux( io.iTLBInter.resp.bits.pbmt(0) =/= f3_itlb_pbmt, ExceptionType.af, ExceptionType.none ) val exception = ExceptionType.merge(tlb_exception, pbmt_mismatch_exception) // if tlb has exception, abort checking pmp, just send instr & exception to ibuffer and wait for commit mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_sendPMP) // also save itlb response mmio_resend_addr := io.iTLBInter.resp.bits.paddr(0) mmio_resend_exception := exception mmio_resend_gpaddr := io.iTLBInter.resp.bits.gpaddr(0) mmio_resend_isForVSnonLeafPTE := io.iTLBInter.resp.bits.isForVSnonLeafPTE(0) } } is(m_sendPMP) { val pmp_exception = ExceptionType.fromPMPResp(io.pmp.resp) // if pmp re-check respond mismatch with previous check, must be access fault val mmio_mismatch_exception = Mux( io.pmp.resp.mmio =/= f3_pmp_mmio, ExceptionType.af, ExceptionType.none ) val exception = ExceptionType.merge(pmp_exception, mmio_mismatch_exception) // if pmp has exception, abort sending request, just send instr & exception to ibuffer and wait for commit mmio_state := Mux(ExceptionType.hasException(exception), m_waitCommit, m_resendReq) // also save pmp response mmio_resend_exception := exception } is(m_resendReq) { mmio_state := Mux(toUncache.fire, m_waitResendResp, m_resendReq) } is(m_waitResendResp) { when(fromUncache.fire) { mmio_state := m_waitCommit f3_mmio_data(1) := fromUncache.bits.data(15, 0) } } is(m_waitCommit) { // in idempotent spaces, we can skip waiting for commit (i.e. can do speculative fetch) // but we do not skip m_waitCommit state, as other signals (e.g. f3_mmio_can_go relies on this) mmio_state := Mux(mmio_commit || f3_itlb_pbmt === Pbmt.nc, m_commited, m_waitCommit) } // normal mmio instruction is(m_commited) { mmio_state := m_idle mmio_is_RVC := false.B mmio_resend_addr := 0.U mmio_resend_exception := ExceptionType.none mmio_resend_gpaddr := 0.U mmio_resend_isForVSnonLeafPTE := false.B } } // Exception or flush by older branch prediction // Condition is from RegNext(fromFtq.redirect), 1 cycle after backend rediect when(f3_ftq_flush_self || f3_ftq_flush_by_older) { mmio_state := m_idle mmio_is_RVC := false.B mmio_resend_addr := 0.U mmio_resend_exception := ExceptionType.none mmio_resend_gpaddr := 0.U mmio_resend_isForVSnonLeafPTE := false.B f3_mmio_data.map(_ := 0.U) } toUncache.valid := ((mmio_state === m_sendReq) || (mmio_state === m_resendReq)) && f3_req_is_mmio toUncache.bits.addr := Mux(mmio_state === m_resendReq, mmio_resend_addr, f3_paddrs(0)) fromUncache.ready := true.B // send itlb request in m_sendTLB state io.iTLBInter.req.valid := (mmio_state === m_sendTLB) && f3_req_is_mmio io.iTLBInter.req.bits.size := 3.U io.iTLBInter.req.bits.vaddr := f3_resend_vaddr io.iTLBInter.req.bits.debug.pc := f3_resend_vaddr io.iTLBInter.req.bits.cmd := TlbCmd.exec io.iTLBInter.req.bits.isPrefetch := false.B io.iTLBInter.req.bits.kill := false.B // IFU use itlb for mmio, doesn't need sync, set it to false io.iTLBInter.req.bits.no_translate := false.B io.iTLBInter.req.bits.fullva := 0.U io.iTLBInter.req.bits.checkfullva := false.B io.iTLBInter.req.bits.hyperinst := DontCare io.iTLBInter.req.bits.hlvx := DontCare io.iTLBInter.req.bits.memidx := DontCare io.iTLBInter.req.bits.debug.robIdx := DontCare io.iTLBInter.req.bits.debug.isFirstIssue := DontCare io.iTLBInter.req.bits.pmp_addr := DontCare // whats the difference between req_kill and req.bits.kill? io.iTLBInter.req_kill := false.B // wait for itlb response in m_tlbResp state io.iTLBInter.resp.ready := (mmio_state === m_tlbResp) && f3_req_is_mmio io.pmp.req.valid := (mmio_state === m_sendPMP) && f3_req_is_mmio io.pmp.req.bits.addr := mmio_resend_addr io.pmp.req.bits.size := 3.U io.pmp.req.bits.cmd := TlbCmd.exec val f3_lastHalf = RegInit(0.U.asTypeOf(new LastHalfInfo)) val f3_predecode_range = VecInit(preDecoderOut.pd.map(inst => inst.valid)).asUInt val f3_mmio_range = VecInit((0 until PredictWidth).map(i => if (i == 0) true.B else false.B)) val f3_instr_valid = Wire(Vec(PredictWidth, Bool())) /*** prediction result check ***/ checkerIn.ftqOffset := f3_ftq_req.ftqOffset checkerIn.jumpOffset := f3_jump_offset checkerIn.target := f3_ftq_req.nextStartAddr checkerIn.instrRange := f3_instr_range.asTypeOf(Vec(PredictWidth, Bool())) checkerIn.instrValid := f3_instr_valid.asTypeOf(Vec(PredictWidth, Bool())) checkerIn.pds := f3_pd checkerIn.pc := f3_pc checkerIn.fire_in := RegNext(f2_fire, init = false.B) /*** handle half RVI in the last 2 Bytes ***/ def hasLastHalf(idx: UInt) = // !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken(idx) && !checkerOutStage2.fixedMissPred(idx) && ! f3_req_is_mmio !f3_pd(idx).isRVC && checkerOutStage1.fixedRange(idx) && f3_instr_valid(idx) && !checkerOutStage1.fixedTaken( idx ) && !f3_req_is_mmio val f3_last_validIdx = ParallelPosteriorityEncoder(checkerOutStage1.fixedRange) val f3_hasLastHalf = hasLastHalf((PredictWidth - 1).U) val f3_false_lastHalf = hasLastHalf(f3_last_validIdx) val f3_false_snpc = f3_half_snpc(f3_last_validIdx) val f3_lastHalf_mask = VecInit((0 until PredictWidth).map(i => if (i == 0) false.B else true.B)).asUInt val f3_lastHalf_disable = RegInit(false.B) when(f3_flush || (f3_fire && f3_lastHalf_disable)) { f3_lastHalf_disable := false.B } when(f3_flush) { f3_lastHalf.valid := false.B }.elsewhen(f3_fire) { f3_lastHalf.valid := f3_hasLastHalf && !f3_lastHalf_disable f3_lastHalf.middlePC := f3_ftq_req.nextStartAddr } f3_instr_valid := Mux(f3_lastHalf.valid, f3_hasHalfValid, VecInit(f3_pd.map(inst => inst.valid))) /*** frontend Trigger ***/ frontendTrigger.io.pds := f3_pd frontendTrigger.io.pc := f3_pc frontendTrigger.io.data := f3_cut_data frontendTrigger.io.frontendTrigger := io.frontendTrigger val f3_triggered = frontendTrigger.io.triggered val f3_toIbuffer_valid = f3_valid && (!f3_req_is_mmio || f3_mmio_can_go) && !f3_flush /*** send to Ibuffer ***/ io.toIbuffer.valid := f3_toIbuffer_valid io.toIbuffer.bits.instrs := f3_expd_instr io.toIbuffer.bits.valid := f3_instr_valid.asUInt io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt io.toIbuffer.bits.pd := f3_pd io.toIbuffer.bits.ftqPtr := f3_ftq_req.ftqIdx io.toIbuffer.bits.pc := f3_pc // Find last using PriorityMux io.toIbuffer.bits.isLastInFtqEntry := Reverse(PriorityEncoderOH(Reverse(io.toIbuffer.bits.enqEnable))).asBools io.toIbuffer.bits.ftqOffset.zipWithIndex.map { case (a, i) => a.bits := i.U; a.valid := checkerOutStage1.fixedTaken(i) && !f3_req_is_mmio } io.toIbuffer.bits.foldpc := f3_foldpc io.toIbuffer.bits.exceptionType := ExceptionType.merge(f3_exception_vec, f3_crossPage_exception_vec) // backendException only needs to be set for the first instruction. // Other instructions in the same block may have pf or af set, // which is a side effect of the first instruction and actually not necessary. io.toIbuffer.bits.backendException := (0 until PredictWidth).map { case 0 => f3_backendException case _ => false.B } io.toIbuffer.bits.crossPageIPFFix := f3_crossPage_exception_vec.map(ExceptionType.hasException) io.toIbuffer.bits.illegalInstr := f3_ill io.toIbuffer.bits.triggered := f3_triggered when(f3_lastHalf.valid) { io.toIbuffer.bits.enqEnable := checkerOutStage1.fixedRange.asUInt & f3_instr_valid.asUInt & f3_lastHalf_mask io.toIbuffer.bits.valid := f3_lastHalf_mask & f3_instr_valid.asUInt } /** to backend */ // f3_gpaddr is valid iff gpf is detected io.toBackend.gpaddrMem_wen := f3_toIbuffer_valid && Mux( f3_req_is_mmio, mmio_resend_exception === ExceptionType.gpf, f3_exception.map(_ === ExceptionType.gpf).reduce(_ || _) ) io.toBackend.gpaddrMem_waddr := f3_ftq_req.ftqIdx.value io.toBackend.gpaddrMem_wdata.gpaddr := Mux(f3_req_is_mmio, mmio_resend_gpaddr, f3_gpaddr) io.toBackend.gpaddrMem_wdata.isForVSnonLeafPTE := Mux( f3_req_is_mmio, mmio_resend_isForVSnonLeafPTE, f3_isForVSnonLeafPTE ) // Write back to Ftq val f3_cache_fetch = f3_valid && !(f2_fire && !f2_flush) val finishFetchMaskReg = RegNext(f3_cache_fetch) val mmioFlushWb = Wire(Valid(new PredecodeWritebackBundle)) val f3_mmio_missOffset = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) f3_mmio_missOffset.valid := f3_req_is_mmio f3_mmio_missOffset.bits := 0.U // Send mmioFlushWb back to FTQ 1 cycle after uncache fetch return // When backend redirect, mmio_state reset after 1 cycle. // In this case, mask .valid to avoid overriding backend redirect mmioFlushWb.valid := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc && !f3_ftq_flush_self && !f3_ftq_flush_by_older) mmioFlushWb.bits.pc := f3_pc mmioFlushWb.bits.pd := f3_pd mmioFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := f3_mmio_range(i) } mmioFlushWb.bits.ftqIdx := f3_ftq_req.ftqIdx mmioFlushWb.bits.ftqOffset := f3_ftq_req.ftqOffset.bits mmioFlushWb.bits.misOffset := f3_mmio_missOffset mmioFlushWb.bits.cfiOffset := DontCare mmioFlushWb.bits.target := Mux(mmio_is_RVC, f3_ftq_req.startAddr + 2.U, f3_ftq_req.startAddr + 4.U) mmioFlushWb.bits.jalTarget := DontCare mmioFlushWb.bits.instrRange := f3_mmio_range val mmioRVCExpander = Module(new RVCExpander) mmioRVCExpander.io.in := Mux(f3_req_is_mmio, Cat(f3_mmio_data(1), f3_mmio_data(0)), 0.U) mmioRVCExpander.io.fsIsOff := io.csr_fsIsOff /** external predecode for MMIO instruction */ when(f3_req_is_mmio) { val inst = Cat(f3_mmio_data(1), f3_mmio_data(0)) val currentIsRVC = isRVC(inst) val brType :: isCall :: isRet :: Nil = brInfo(inst) val jalOffset = jal_offset(inst, currentIsRVC) val brOffset = br_offset(inst, currentIsRVC) io.toIbuffer.bits.instrs(0) := Mux(mmioRVCExpander.io.ill, mmioRVCExpander.io.in, mmioRVCExpander.io.out.bits) io.toIbuffer.bits.pd(0).valid := true.B io.toIbuffer.bits.pd(0).isRVC := currentIsRVC io.toIbuffer.bits.pd(0).brType := brType io.toIbuffer.bits.pd(0).isCall := isCall io.toIbuffer.bits.pd(0).isRet := isRet io.toIbuffer.bits.exceptionType(0) := mmio_resend_exception io.toIbuffer.bits.crossPageIPFFix(0) := ExceptionType.hasException(mmio_resend_exception) io.toIbuffer.bits.illegalInstr(0) := mmioRVCExpander.io.ill io.toIbuffer.bits.enqEnable := f3_mmio_range.asUInt mmioFlushWb.bits.pd(0).valid := true.B mmioFlushWb.bits.pd(0).isRVC := currentIsRVC mmioFlushWb.bits.pd(0).brType := brType mmioFlushWb.bits.pd(0).isCall := isCall mmioFlushWb.bits.pd(0).isRet := isRet } mmio_redirect := (f3_req_is_mmio && mmio_state === m_waitCommit && RegNext(fromUncache.fire) && f3_mmio_use_seq_pc) XSPerfAccumulate("fetch_bubble_ibuffer_not_ready", io.toIbuffer.valid && !io.toIbuffer.ready) /** ****************************************************************************** * IFU Write Back Stage * - write back predecode information to Ftq to update * - redirect if found fault prediction * - redirect if has false hit last half (last PC is not start + 32 Bytes, but in the midle of an notCFI RVI instruction) ****************************************************************************** */ val wb_enable = RegNext(f2_fire && !f2_flush) && !f3_req_is_mmio && !f3_flush val wb_valid = RegNext(wb_enable, init = false.B) val wb_ftq_req = RegEnable(f3_ftq_req, wb_enable) val wb_check_result_stage1 = RegEnable(checkerOutStage1, wb_enable) val wb_check_result_stage2 = checkerOutStage2 val wb_instr_range = RegEnable(io.toIbuffer.bits.enqEnable, wb_enable) val wb_pc_lower_result = RegEnable(f3_pc_lower_result, wb_enable) val wb_pc_high = RegEnable(f3_pc_high, wb_enable) val wb_pc_high_plus1 = RegEnable(f3_pc_high_plus1, wb_enable) val wb_pc = CatPC(wb_pc_lower_result, wb_pc_high, wb_pc_high_plus1) // val wb_pc = RegEnable(f3_pc, wb_enable) val wb_pd = RegEnable(f3_pd, wb_enable) val wb_instr_valid = RegEnable(f3_instr_valid, wb_enable) /* false hit lastHalf */ val wb_lastIdx = RegEnable(f3_last_validIdx, wb_enable) val wb_false_lastHalf = RegEnable(f3_false_lastHalf, wb_enable) && wb_lastIdx =/= (PredictWidth - 1).U val wb_false_target = RegEnable(f3_false_snpc, wb_enable) val wb_half_flush = wb_false_lastHalf val wb_half_target = wb_false_target /* false oversize */ val lastIsRVC = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())).last && wb_pd.last.isRVC val lastIsRVI = wb_instr_range.asTypeOf(Vec(PredictWidth, Bool()))(PredictWidth - 2) && !wb_pd(PredictWidth - 2).isRVC val lastTaken = wb_check_result_stage1.fixedTaken.last f3_wb_not_flush := wb_ftq_req.ftqIdx === f3_ftq_req.ftqIdx && f3_valid && wb_valid /** if a req with a last half but miss predicted enters in wb stage, and this cycle f3 stalls, * we set a flag to notify f3 that the last half flag need not to be set. */ // f3_fire is after wb_valid when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && !f3_fire && !RegNext( f3_fire, init = false.B ) && !f3_flush) { f3_lastHalf_disable := true.B } // wb_valid and f3_fire are in same cycle when(wb_valid && RegNext(f3_hasLastHalf, init = false.B) && wb_check_result_stage2.fixedMissPred(PredictWidth - 1) && f3_fire) { f3_lastHalf.valid := false.B } val checkFlushWb = Wire(Valid(new PredecodeWritebackBundle)) val checkFlushWbjalTargetIdx = ParallelPriorityEncoder(VecInit(wb_pd.zip(wb_instr_valid).map { case (pd, v) => v && pd.isJal })) val checkFlushWbTargetIdx = ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) checkFlushWb.valid := wb_valid checkFlushWb.bits.pc := wb_pc checkFlushWb.bits.pd := wb_pd checkFlushWb.bits.pd.zipWithIndex.map { case (instr, i) => instr.valid := wb_instr_valid(i) } checkFlushWb.bits.ftqIdx := wb_ftq_req.ftqIdx checkFlushWb.bits.ftqOffset := wb_ftq_req.ftqOffset.bits checkFlushWb.bits.misOffset.valid := ParallelOR(wb_check_result_stage2.fixedMissPred) || wb_half_flush checkFlushWb.bits.misOffset.bits := Mux( wb_half_flush, wb_lastIdx, ParallelPriorityEncoder(wb_check_result_stage2.fixedMissPred) ) checkFlushWb.bits.cfiOffset.valid := ParallelOR(wb_check_result_stage1.fixedTaken) checkFlushWb.bits.cfiOffset.bits := ParallelPriorityEncoder(wb_check_result_stage1.fixedTaken) checkFlushWb.bits.target := Mux( wb_half_flush, wb_half_target, wb_check_result_stage2.fixedTarget(checkFlushWbTargetIdx) ) checkFlushWb.bits.jalTarget := wb_check_result_stage2.jalTarget(checkFlushWbjalTargetIdx) checkFlushWb.bits.instrRange := wb_instr_range.asTypeOf(Vec(PredictWidth, Bool())) toFtq.pdWb := Mux(wb_valid, checkFlushWb, mmioFlushWb) wb_redirect := checkFlushWb.bits.misOffset.valid && wb_valid /*write back flush type*/ val checkFaultType = wb_check_result_stage2.faultType val checkJalFault = wb_valid && checkFaultType.map(_.isjalFault).reduce(_ || _) val checkJalrFault = wb_valid && checkFaultType.map(_.isjalrFault).reduce(_ || _) val checkRetFault = wb_valid && checkFaultType.map(_.isRetFault).reduce(_ || _) val checkTargetFault = wb_valid && checkFaultType.map(_.istargetFault).reduce(_ || _) val checkNotCFIFault = wb_valid && checkFaultType.map(_.notCFIFault).reduce(_ || _) val checkInvalidTaken = wb_valid && checkFaultType.map(_.invalidTakenFault).reduce(_ || _) XSPerfAccumulate("predecode_flush_jalFault", checkJalFault) XSPerfAccumulate("predecode_flush_jalrFault", checkJalrFault) XSPerfAccumulate("predecode_flush_retFault", checkRetFault) XSPerfAccumulate("predecode_flush_targetFault", checkTargetFault) XSPerfAccumulate("predecode_flush_notCFIFault", checkNotCFIFault) XSPerfAccumulate("predecode_flush_incalidTakenFault", checkInvalidTaken) XSDebug( checkRetFault, "startAddr:%x nextstartAddr:%x taken:%d takenIdx:%d\n", wb_ftq_req.startAddr, wb_ftq_req.nextStartAddr, wb_ftq_req.ftqOffset.valid, wb_ftq_req.ftqOffset.bits ) /** performance counter */ val f3_perf_info = RegEnable(f2_perf_info, f2_fire) val f3_req_0 = io.toIbuffer.fire val f3_req_1 = io.toIbuffer.fire && f3_doubleLine val f3_hit_0 = io.toIbuffer.fire && f3_perf_info.bank_hit(0) val f3_hit_1 = io.toIbuffer.fire && f3_doubleLine & f3_perf_info.bank_hit(1) val f3_hit = f3_perf_info.hit val perfEvents = Seq( ("frontendFlush ", wb_redirect), ("ifu_req ", io.toIbuffer.fire), ("ifu_miss ", io.toIbuffer.fire && !f3_perf_info.hit), ("ifu_req_cacheline_0 ", f3_req_0), ("ifu_req_cacheline_1 ", f3_req_1), ("ifu_req_cacheline_0_hit ", f3_hit_1), ("ifu_req_cacheline_1_hit ", f3_hit_1), ("only_0_hit ", f3_perf_info.only_0_hit && io.toIbuffer.fire), ("only_0_miss ", f3_perf_info.only_0_miss && io.toIbuffer.fire), ("hit_0_hit_1 ", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire), ("hit_0_miss_1 ", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire), ("miss_0_hit_1 ", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire), ("miss_0_miss_1 ", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) ) generatePerfEvent() XSPerfAccumulate("ifu_req", io.toIbuffer.fire) XSPerfAccumulate("ifu_miss", io.toIbuffer.fire && !f3_hit) XSPerfAccumulate("ifu_req_cacheline_0", f3_req_0) XSPerfAccumulate("ifu_req_cacheline_1", f3_req_1) XSPerfAccumulate("ifu_req_cacheline_0_hit", f3_hit_0) XSPerfAccumulate("ifu_req_cacheline_1_hit", f3_hit_1) XSPerfAccumulate("frontendFlush", wb_redirect) XSPerfAccumulate("only_0_hit", f3_perf_info.only_0_hit && io.toIbuffer.fire) XSPerfAccumulate("only_0_miss", f3_perf_info.only_0_miss && io.toIbuffer.fire) XSPerfAccumulate("hit_0_hit_1", f3_perf_info.hit_0_hit_1 && io.toIbuffer.fire) XSPerfAccumulate("hit_0_miss_1", f3_perf_info.hit_0_miss_1 && io.toIbuffer.fire) XSPerfAccumulate("miss_0_hit_1", f3_perf_info.miss_0_hit_1 && io.toIbuffer.fire) XSPerfAccumulate("miss_0_miss_1", f3_perf_info.miss_0_miss_1 && io.toIbuffer.fire) XSPerfAccumulate("hit_0_except_1", f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) XSPerfAccumulate("miss_0_except_1", f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) XSPerfAccumulate("except_0", f3_perf_info.except_0 && io.toIbuffer.fire) XSPerfHistogram( "ifu2ibuffer_validCnt", PopCount(io.toIbuffer.bits.valid & io.toIbuffer.bits.enqEnable), io.toIbuffer.fire, 0, PredictWidth + 1, 1 ) val hartId = p(XSCoreParamsKey).HartId val isWriteFetchToIBufferTable = Constantin.createRecord(s"isWriteFetchToIBufferTable$hartId") val isWriteIfuWbToFtqTable = Constantin.createRecord(s"isWriteIfuWbToFtqTable$hartId") val fetchToIBufferTable = ChiselDB.createTable(s"FetchToIBuffer$hartId", new FetchToIBufferDB) val ifuWbToFtqTable = ChiselDB.createTable(s"IfuWbToFtq$hartId", new IfuWbToFtqDB) val fetchIBufferDumpData = Wire(new FetchToIBufferDB) fetchIBufferDumpData.start_addr := f3_ftq_req.startAddr fetchIBufferDumpData.instr_count := PopCount(io.toIbuffer.bits.enqEnable) fetchIBufferDumpData.exception := (f3_perf_info.except_0 && io.toIbuffer.fire) || (f3_perf_info.hit_0_except_1 && io.toIbuffer.fire) || (f3_perf_info.miss_0_except_1 && io.toIbuffer.fire) fetchIBufferDumpData.is_cache_hit := f3_hit val ifuWbToFtqDumpData = Wire(new IfuWbToFtqDB) ifuWbToFtqDumpData.start_addr := wb_ftq_req.startAddr ifuWbToFtqDumpData.is_miss_pred := checkFlushWb.bits.misOffset.valid ifuWbToFtqDumpData.miss_pred_offset := checkFlushWb.bits.misOffset.bits ifuWbToFtqDumpData.checkJalFault := checkJalFault ifuWbToFtqDumpData.checkJalrFault := checkJalrFault ifuWbToFtqDumpData.checkRetFault := checkRetFault ifuWbToFtqDumpData.checkTargetFault := checkTargetFault ifuWbToFtqDumpData.checkNotCFIFault := checkNotCFIFault ifuWbToFtqDumpData.checkInvalidTaken := checkInvalidTaken fetchToIBufferTable.log( data = fetchIBufferDumpData, en = isWriteFetchToIBufferTable.orR && io.toIbuffer.fire, site = "IFU" + p(XSCoreParamsKey).HartId.toString, clock = clock, reset = reset ) ifuWbToFtqTable.log( data = ifuWbToFtqDumpData, en = isWriteIfuWbToFtqTable.orR && checkFlushWb.valid, site = "IFU" + p(XSCoreParamsKey).HartId.toString, clock = clock, reset = reset ) }