1package xiangshan.frontend 2 3import chisel3._ 4import chisel3.util._ 5import xiangshan._ 6import xiangshan.utils._ 7import xiangshan.backend.ALUOpType 8import utils._ 9 10class TableAddr(val idxBits: Int, val banks: Int) extends XSBundle { 11 def tagBits = VAddrBits - idxBits - 2 12 13 val tag = UInt(tagBits.W) 14 val idx = UInt(idxBits.W) 15 val offset = UInt(2.W) 16 17 def fromUInt(x: UInt) = x.asTypeOf(UInt(VAddrBits.W)).asTypeOf(this) 18 def getTag(x: UInt) = fromUInt(x).tag 19 def getIdx(x: UInt) = fromUInt(x).idx 20 def getBank(x: UInt) = getIdx(x)(log2Up(banks) - 1, 0) 21 def getBankIdx(x: UInt) = getIdx(x)(idxBits - 1, log2Up(banks)) 22} 23 24class Stage1To2IO extends XSBundle { 25 val pc = Output(UInt(VAddrBits.W)) 26 val btb = new Bundle { 27 val hits = Output(UInt(FetchWidth.W)) 28 val targets = Output(Vec(FetchWidth, UInt(VAddrBits.W))) 29 } 30 val jbtac = new Bundle { 31 val hitIdx = Output(UInt(FetchWidth.W)) 32 val target = Output(UInt(VAddrBits.W)) 33 } 34 val tage = new Bundle { 35 val hits = Output(UInt(FetchWidth.W)) 36 val takens = Output(Vec(FetchWidth, Bool())) 37 } 38 val hist = Output(Vec(FetchWidth, UInt(HistoryLength.W))) 39 val btbPred = ValidIO(new BranchPrediction) 40} 41 42class BPUStage1 extends XSModule { 43 val io = IO(new Bundle() { 44 val in = new Bundle { val pc = Flipped(Decoupled(UInt(VAddrBits.W))) } 45 // from backend 46 val redirectInfo = Flipped(new RedirectInfo) 47 // from Stage3 48 val flush = Input(Bool()) 49 val s3RollBackHist = Input(UInt(HistoryLength.W)) 50 // to ifu, quick prediction result 51 val btbOut = ValidIO(new BranchPrediction) 52 // to Stage2 53 val out = Decoupled(new Stage1To2IO) 54 }) 55 56 // TODO: delete this!!! 57 io.in.pc.ready := true.B 58 io.btbOut.valid := false.B 59 io.btbOut.bits := DontCare 60 io.out.valid := false.B 61 io.out.bits := DontCare 62 63 // flush Stage1 when io.flush 64 val flushS1 = BoolStopWatch(io.flush, io.in.pc.fire(), startHighPriority = true) 65 66 // global history register 67 val ghr = RegInit(0.U(HistoryLength.W)) 68 // modify updateGhr and newGhr when updating ghr 69 val updateGhr = WireInit(false.B) 70 val newGhr = WireInit(0.U(HistoryLength.W)) 71 when (updateGhr) { ghr := newGhr } 72 // use hist as global history!!! 73 val hist = Mux(updateGhr, newGhr, ghr) 74 75 // Tage predictor 76 val tage = Module(new Tage) 77 tage.io.req.valid := io.in.pc.fire() 78 tage.io.req.bits.pc := io.in.pc.bits 79 tage.io.req.bits.hist := hist 80 tage.io.redirectInfo <> io.redirectInfo 81 io.out.bits.tage <> tage.io.out 82 io.btbOut.bits.tageMeta := tage.io.meta 83 84} 85 86class Stage2To3IO extends Stage1To2IO { 87} 88 89class BPUStage2 extends XSModule { 90 val io = IO(new Bundle() { 91 // flush from Stage3 92 val flush = Input(Bool()) 93 val in = Flipped(Decoupled(new Stage1To2IO)) 94 val out = Decoupled(new Stage2To3IO) 95 }) 96 97 // flush Stage2 when Stage3 or banckend redirects 98 val flushS2 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) 99 io.out.valid := !flushS2 && RegNext(io.in.fire()) 100 io.in.ready := !io.out.valid || io.out.fire() 101 102 // do nothing 103 io.out.bits := RegEnable(io.in.bits, io.in.fire()) 104} 105 106class BPUStage3 extends XSModule { 107 val io = IO(new Bundle() { 108 val flush = Input(Bool()) 109 val in = Flipped(Decoupled(new Stage2To3IO)) 110 val out = ValidIO(new BranchPrediction) 111 // from icache 112 val predecode = Flipped(ValidIO(new Predecode)) 113 // from backend 114 val redirectInfo = Flipped(new RedirectInfo) 115 // to Stage1 and Stage2 116 val flushBPU = Output(Bool()) 117 // to Stage1, restore ghr in stage1 when flushBPU is valid 118 val s1RollBackHist = Output(UInt(HistoryLength.W)) 119 }) 120 121 val flushS3 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) 122 val inLatch = RegInit(0.U.asTypeOf(io.in.bits)) 123 val validLatch = RegInit(false.B) 124 when (io.in.fire()) { inLatch := io.in.bits } 125 when (io.in.fire()) { 126 validLatch := !io.flush 127 }.elsewhen (io.out.valid) { 128 validLatch := false.B 129 } 130 io.out.valid := validLatch && io.predecode.valid && !flushS3 131 io.in.ready := !validLatch || io.out.valid 132 133 // RAS 134 // TODO: split retAddr and ctr 135 def rasEntry() = new Bundle { 136 val retAddr = UInt(VAddrBits.W) 137 val ctr = UInt(8.W) // layer of nested call functions 138 } 139 val ras = RegInit(VecInit(Seq.fill(RasSize)(0.U.asTypeOf(rasEntry())))) 140 val sp = Counter(RasSize) 141 val rasTop = ras(sp.value) 142 val rasTopAddr = rasTop.retAddr 143 144 // get the first taken branch/jal/call/jalr/ret in a fetch line 145 // brTakenIdx/jalIdx/callIdx/jalrIdx/retIdx/jmpIdx is one-hot encoded. 146 // brNotTakenIdx indicates all the not-taken branches before the first jump instruction. 147 val brIdx = inLatch.btb.hits & Cat(io.predecode.bits.fuTypes.map { t => ALUOpType.isBranch(t) }).asUInt & io.predecode.bits.mask 148 val brTakenIdx = LowestBit(brIdx & inLatch.tage.takens.asUInt, FetchWidth) 149 val jalIdx = LowestBit(inLatch.btb.hits & Cat(io.predecode.bits.fuTypes.map { t => t === ALUOpType.jal }).asUInt & io.predecode.bits.mask, FetchWidth) 150 val callIdx = LowestBit(inLatch.btb.hits & io.predecode.bits.mask & Cat(io.predecode.bits.fuTypes.map { t => t === ALUOpType.call }).asUInt, FetchWidth) 151 val jalrIdx = LowestBit(inLatch.jbtac.hitIdx & io.predecode.bits.mask & Cat(io.predecode.bits.fuTypes.map { t => t === ALUOpType.jalr }).asUInt, FetchWidth) 152 val retIdx = LowestBit(io.predecode.bits.mask & Cat(io.predecode.bits.fuTypes.map { t => t === ALUOpType.ret }).asUInt, FetchWidth) 153 154 val jmpIdx = LowestBit(brTakenIdx | jalIdx | callIdx | jalrIdx | retIdx, FetchWidth) 155 val brNotTakenIdx = brIdx & ~inLatch.tage.takens.asUInt & LowerMask(jmpIdx, FetchWidth) 156 157 io.out.bits.redirect := jmpIdx.orR.asBool 158 io.out.bits.target := Mux(jmpIdx === retIdx, rasTopAddr, 159 Mux(jmpIdx === jalrIdx, inLatch.jbtac.target, 160 Mux(jmpIdx === 0.U, inLatch.pc + 4.U, // TODO: RVC 161 PriorityMux(jmpIdx, inLatch.btb.targets)))) 162 io.out.bits.instrValid := LowerMask(jmpIdx, FetchWidth).asTypeOf(Vec(FetchWidth, Bool())) 163 io.out.bits.tageMeta := inLatch.btbPred.bits.tageMeta 164 //io.out.bits._type := Mux(jmpIdx === retIdx, BTBtype.R, 165 // Mux(jmpIdx === jalrIdx, BTBtype.I, 166 // Mux(jmpIdx === brTakenIdx, BTBtype.B, BTBtype.J))) 167 val firstHist = inLatch.btbPred.bits.hist(0) 168 // there may be several notTaken branches before the first jump instruction, 169 // so we need to calculate how many zeroes should each instruction shift in its global history. 170 // each history is exclusive of instruction's own jump direction. 171 val histShift = Wire(Vec(FetchWidth, UInt(log2Up(FetchWidth).W))) 172 val shift = Wire(Vec(FetchWidth, Vec(FetchWidth, UInt(1.W)))) 173 (0 until FetchWidth).map(i => shift(i) := Mux(!brNotTakenIdx(i), 0.U, ~LowerMask(UIntToOH(i.U), FetchWidth)).asTypeOf(Vec(FetchWidth, UInt(1.W)))) 174 for (j <- 0 until FetchWidth) { 175 var tmp = 0.U 176 for (i <- 0 until FetchWidth) { 177 tmp = tmp + shift(i)(j) 178 } 179 histShift(j) := tmp 180 } 181 (0 until FetchWidth).map(i => io.out.bits.hist(i) := firstHist << histShift(i)) 182 // save ras checkpoint info 183 io.out.bits.rasSp := sp.value 184 io.out.bits.rasTopCtr := rasTop.ctr 185 186 // flush BPU and redirect when target differs from the target predicted in Stage1 187 io.out.bits.redirect := !inLatch.btbPred.bits.redirect ^ jmpIdx.orR.asBool || 188 inLatch.btbPred.bits.redirect && jmpIdx.orR.asBool && io.out.bits.target =/= inLatch.btbPred.bits.target 189 io.flushBPU := io.out.bits.redirect && io.out.valid 190 191 // speculative update RAS 192 val rasWrite = WireInit(0.U.asTypeOf(rasEntry())) 193 rasWrite.retAddr := inLatch.pc + OHToUInt(callIdx) << 2.U + 4.U 194 val allocNewEntry = rasWrite.retAddr =/= rasTopAddr 195 rasWrite.ctr := Mux(allocNewEntry, 1.U, rasTop.ctr + 1.U) 196 when (io.out.valid) { 197 when (jmpIdx === callIdx) { 198 ras(Mux(allocNewEntry, sp.value + 1.U, sp.value)) := rasWrite 199 when (allocNewEntry) { sp.value := sp.value + 1.U } 200 }.elsewhen (jmpIdx === retIdx) { 201 when (rasTop.ctr === 1.U) { 202 sp.value := Mux(sp.value === 0.U, 0.U, sp.value - 1.U) 203 }.otherwise { 204 ras(sp.value) := Cat(rasTop.ctr - 1.U, rasTopAddr).asTypeOf(rasEntry()) 205 } 206 } 207 } 208 // use checkpoint to recover RAS 209 val recoverSp = io.redirectInfo.redirect.rasSp 210 val recoverCtr = io.redirectInfo.redirect.rasTopCtr 211 when (io.redirectInfo.valid && io.redirectInfo.misPred) { 212 sp.value := recoverSp 213 ras(recoverSp) := Cat(recoverCtr, ras(recoverSp).retAddr).asTypeOf(rasEntry()) 214 } 215 216 // roll back global history in S1 if S3 redirects 217 io.s1RollBackHist := PriorityMux(jmpIdx, io.out.bits.hist) 218} 219 220class BPU extends XSModule { 221 val io = IO(new Bundle() { 222 // from backend 223 // flush pipeline if misPred and update bpu based on redirect signals from brq 224 val redirectInfo = Flipped(new RedirectInfo) 225 226 val in = new Bundle { val pc = Flipped(Valid(UInt(VAddrBits.W))) } 227 228 val btbOut = ValidIO(new BranchPrediction) 229 val tageOut = ValidIO(new BranchPrediction) 230 231 // predecode info from icache 232 // TODO: simplify this after implement predecode unit 233 val predecode = Flipped(ValidIO(new Predecode)) 234 }) 235 236 val s1 = Module(new BPUStage1) 237 val s2 = Module(new BPUStage2) 238 val s3 = Module(new BPUStage3) 239 240 s1.io.redirectInfo <> io.redirectInfo 241 s1.io.flush := s3.io.flushBPU || io.redirectInfo.flush() 242 s1.io.in.pc.valid := io.in.pc.valid 243 s1.io.in.pc.bits <> io.in.pc.bits 244 io.btbOut <> s1.io.btbOut 245 s1.io.s3RollBackHist := s3.io.s1RollBackHist 246 247 s1.io.out <> s2.io.in 248 s2.io.flush := s3.io.flushBPU || io.redirectInfo.flush() 249 250 s2.io.out <> s3.io.in 251 s3.io.flush := io.redirectInfo.flush() 252 s3.io.predecode <> io.predecode 253 io.tageOut <> s3.io.out 254 s3.io.redirectInfo <> io.redirectInfo 255 256 // TODO: delete this and put BTB and JBTAC into Stage1 257 /* 258 val flush = BoolStopWatch(io.redirect.valid, io.in.pc.valid, startHighPriority = true) 259 260 // BTB makes a quick prediction for branch and direct jump, which is 261 // 4-way set-associative, and each way is divided into 4 banks. 262 val btbAddr = new TableAddr(log2Up(BtbSets), BtbBanks) 263 def btbEntry() = new Bundle { 264 val valid = Bool() 265 // TODO: don't need full length of tag and target 266 val tag = UInt(btbAddr.tagBits.W) 267 val _type = UInt(2.W) 268 val target = UInt(VAddrBits.W) 269 val pred = UInt(2.W) // 2-bit saturated counter as a quick predictor 270 } 271 272 val btb = List.fill(BtbBanks)(List.fill(BtbWays)( 273 Module(new SRAMTemplate(btbEntry(), set = BtbSets / BtbBanks, shouldReset = true, holdRead = true, singlePort = true)))) 274 275 // val fetchPkgAligned = btbAddr.getBank(io.in.pc.bits) === 0.U 276 val HeadBank = btbAddr.getBank(io.in.pc.bits) 277 val TailBank = btbAddr.getBank(io.in.pc.bits + FetchWidth.U << 2.U - 4.U) 278 for (b <- 0 until BtbBanks) { 279 for (w <- 0 until BtbWays) { 280 btb(b)(w).reset := reset.asBool 281 btb(b)(w).io.r.req.valid := io.in.pc.valid && Mux(TailBank > HeadBank, b.U >= HeadBank && b.U <= TailBank, b.U >= TailBank || b.U <= HeadBank) 282 btb(b)(w).io.r.req.bits.setIdx := btbAddr.getBankIdx(io.in.pc.bits) 283 } 284 } 285 // latch pc for 1 cycle latency when reading SRAM 286 val pcLatch = RegEnable(io.in.pc.bits, io.in.pc.valid) 287 val btbRead = Wire(Vec(BtbBanks, Vec(BtbWays, btbEntry()))) 288 val btbHits = Wire(Vec(FetchWidth, Bool())) 289 val btbTargets = Wire(Vec(FetchWidth, UInt(VAddrBits.W))) 290 val btbTypes = Wire(Vec(FetchWidth, UInt(2.W))) 291 // val btbPreds = Wire(Vec(FetchWidth, UInt(2.W))) 292 val btbTakens = Wire(Vec(FetchWidth, Bool())) 293 for (b <- 0 until BtbBanks) { 294 for (w <- 0 until BtbWays) { 295 btbRead(b)(w) := btb(b)(w).io.r.resp.data(0) 296 } 297 } 298 for (i <- 0 until FetchWidth) { 299 btbHits(i) := false.B 300 for (b <- 0 until BtbBanks) { 301 for (w <- 0 until BtbWays) { 302 when (b.U === btbAddr.getBank(pcLatch) && btbRead(b)(w).valid && btbRead(b)(w).tag === btbAddr.getTag(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2)) { 303 btbHits(i) := !flush && RegNext(btb(b)(w).io.r.req.fire(), init = false.B) 304 btbTargets(i) := btbRead(b)(w).target 305 btbTypes(i) := btbRead(b)(w)._type 306 // btbPreds(i) := btbRead(b)(w).pred 307 btbTakens(i) := (btbRead(b)(w).pred)(1).asBool 308 }.otherwise { 309 btbHits(i) := false.B 310 btbTargets(i) := DontCare 311 btbTypes(i) := DontCare 312 btbTakens(i) := DontCare 313 } 314 } 315 } 316 } 317 318 // JBTAC, divided into 8 banks, makes prediction for indirect jump except ret. 319 val jbtacAddr = new TableAddr(log2Up(JbtacSize), JbtacBanks) 320 def jbtacEntry() = new Bundle { 321 val valid = Bool() 322 // TODO: don't need full length of tag and target 323 val tag = UInt(jbtacAddr.tagBits.W) 324 val target = UInt(VAddrBits.W) 325 } 326 327 val jbtac = List.fill(JbtacBanks)(Module(new SRAMTemplate(jbtacEntry(), set = JbtacSize / JbtacBanks, shouldReset = true, holdRead = true, singlePort = true))) 328 329 (0 until JbtacBanks).map(i => jbtac(i).reset := reset.asBool) 330 (0 until JbtacBanks).map(i => jbtac(i).io.r.req.valid := io.in.pc.valid) 331 (0 until JbtacBanks).map(i => jbtac(i).io.r.req.bits.setIdx := jbtacAddr.getBankIdx(Cat((io.in.pc.bits)(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2)) 332 333 val jbtacRead = Wire(Vec(JbtacBanks, jbtacEntry())) 334 (0 until JbtacBanks).map(i => jbtacRead(i) := jbtac(i).io.r.resp.data(0)) 335 val jbtacHits = Wire(Vec(FetchWidth, Bool())) 336 val jbtacTargets = Wire(Vec(FetchWidth, UInt(VAddrBits.W))) 337 val jbtacHeadBank = jbtacAddr.getBank(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W))) 338 for (i <- 0 until FetchWidth) { 339 jbtacHits(i) := false.B 340 for (b <- 0 until JbtacBanks) { 341 when (jbtacHeadBank + i.U === b.U) { 342 jbtacHits(i) := jbtacRead(b).valid && jbtacRead(b).tag === jbtacAddr.getTag(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2) && 343 !flush && RegNext(jbtac(b).io.r.req.fire(), init = false.B) 344 jbtacTargets(i) := jbtacRead(b).target 345 }.otherwise { 346 jbtacHits(i) := false.B 347 jbtacTargets(i) := DontCare 348 } 349 } 350 } 351 352 // redirect based on BTB and JBTAC 353 (0 until FetchWidth).map(i => io.predMask(i) := btbHits(i) && Mux(btbTypes(i) === BTBtype.B, btbTakens(i), true.B) || jbtacHits(i)) 354 (0 until FetchWidth).map(i => io.predTargets(i) := Mux(btbHits(i) && !(btbTypes(i) === BTBtype.B && !btbTakens(i)), btbTargets(i), jbtacTargets(i))) 355 356 357 // update bpu, including BTB, JBTAC... 358 // 1. update BTB 359 // 1.1 read the selected bank 360 for (b <- 0 until BtbBanks) { 361 for (w <- 0 until BtbWays) { 362 btb(b)(w).io.r.req.valid := io.redirect.valid && btbAddr.getBank(io.redirect.bits.pc) === b.U 363 btb(b)(w).io.r.req.bits.setIdx := btbAddr.getBankIdx(io.redirect.bits.pc) 364 } 365 } 366 367 // 1.2 match redirect pc tag with the 4 tags in a btb line, find a way to write 368 // val redirectLatch = RegEnable(io.redirect.bits, io.redirect.valid) 369 val redirectLatch = RegNext(io.redirect.bits, init = 0.U.asTypeOf(new Redirect)) 370 val bankLatch = btbAddr.getBank(redirectLatch.pc) 371 val btbUpdateRead = Wire(Vec(BtbWays, btbEntry())) 372 val btbValids = Wire(Vec(BtbWays, Bool())) 373 val btbUpdateTagHits = Wire(Vec(BtbWays, Bool())) 374 for (b <- 0 until BtbBanks) { 375 for (w <- 0 until BtbWays) { 376 when (b.U === bankLatch) { 377 btbUpdateRead(w) := btb(b)(w).io.r.resp.data(0) 378 btbValids(w) := btbUpdateRead(w).valid && RegNext(btb(b)(w).io.r.req.fire(), init = false.B) 379 }.otherwise { 380 btbUpdateRead(w) := 0.U.asTypeOf(btbEntry()) 381 btbValids(w) := false.B 382 } 383 } 384 } 385 (0 until BtbWays).map(w => btbUpdateTagHits(w) := btbValids(w) && btbUpdateRead(w).tag === btbAddr.getTag(redirectLatch.pc)) 386 // val btbWriteWay = Wire(Vec(BtbWays, Bool())) 387 val btbWriteWay = Wire(UInt(BtbWays.W)) 388 val btbInvalids = ~ btbValids.asUInt 389 when (btbUpdateTagHits.asUInt.orR) { 390 // tag hits 391 btbWriteWay := btbUpdateTagHits.asUInt 392 }.elsewhen (!btbValids.asUInt.andR) { 393 // no tag hits but there are free entries 394 btbWriteWay := Mux(btbInvalids >= 8.U, "b1000".U, 395 Mux(btbInvalids >= 4.U, "b0100".U, 396 Mux(btbInvalids >= 2.U, "b0010".U, "b0001".U))) 397 }.otherwise { 398 // no tag hits and no free entry, select a victim way 399 btbWriteWay := UIntToOH(LFSR64()(log2Up(BtbWays) - 1, 0)) 400 } 401 402 // 1.3 calculate new 2-bit counter value 403 val btbWrite = WireInit(0.U.asTypeOf(btbEntry())) 404 btbWrite.valid := true.B 405 btbWrite.tag := btbAddr.getTag(redirectLatch.pc) 406 btbWrite._type := redirectLatch._type 407 btbWrite.target := redirectLatch.brTarget 408 val oldPred = WireInit("b01".U) 409 oldPred := PriorityMux(btbWriteWay.asTypeOf(Vec(BtbWays, Bool())), btbUpdateRead.map{ e => e.pred }) 410 val newPred = Mux(redirectLatch.taken, Mux(oldPred === "b11".U, "b11".U, oldPred + 1.U), 411 Mux(oldPred === "b00".U, "b00".U, oldPred - 1.U)) 412 btbWrite.pred := Mux(btbUpdateTagHits.asUInt.orR && redirectLatch._type === BTBtype.B, newPred, "b01".U) 413 414 // 1.4 write BTB 415 for (b <- 0 until BtbBanks) { 416 for (w <- 0 until BtbWays) { 417 when (b.U === bankLatch) { 418 btb(b)(w).io.w.req.valid := OHToUInt(btbWriteWay) === w.U && 419 RegNext(io.redirect.valid, init = false.B) && 420 (redirectLatch._type === BTBtype.B || redirectLatch._type === BTBtype.J) 421 btb(b)(w).io.w.req.bits.setIdx := btbAddr.getBankIdx(redirectLatch.pc) 422 btb(b)(w).io.w.req.bits.data := btbWrite 423 }.otherwise { 424 btb(b)(w).io.w.req.valid := false.B 425 btb(b)(w).io.w.req.bits.setIdx := DontCare 426 btb(b)(w).io.w.req.bits.data := DontCare 427 } 428 } 429 } 430 431 // 2. update JBTAC 432 val jbtacWrite = WireInit(0.U.asTypeOf(jbtacEntry())) 433 jbtacWrite.valid := true.B 434 jbtacWrite.tag := jbtacAddr.getTag(io.redirect.bits.pc) 435 jbtacWrite.target := io.redirect.bits.target 436 (0 until JbtacBanks).map(b => 437 jbtac(b).io.w.req.valid := io.redirect.valid && 438 b.U === jbtacAddr.getBank(io.redirect.bits.pc) && 439 io.redirect.bits._type === BTBtype.I) 440 (0 until JbtacBanks).map(b => jbtac(b).io.w.req.bits.setIdx := jbtacAddr.getBankIdx(io.redirect.bits.pc)) 441 (0 until JbtacBanks).map(b => jbtac(b).io.w.req.bits.data := jbtacWrite) 442 */ 443} 444