1package xiangshan.frontend 2 3import chisel3._ 4import chisel3.util._ 5import xiangshan._ 6import xiangshan.utils._ 7import utils._ 8 9class TableAddr(val idxBits: Int, val banks: Int) extends XSBundle { 10 def tagBits = VAddrBits - idxBits - 2 11 12 val tag = UInt(tagBits.W) 13 val idx = UInt(idxBits.W) 14 val offset = UInt(2.W) 15 16 def fromUInt(x: UInt) = x.asTypeOf(UInt(VAddrBits.W)).asTypeOf(this) 17 def getTag(x: UInt) = fromUInt(x).tag 18 def getIdx(x: UInt) = fromUInt(x).idx 19 def getBank(x: UInt) = getIdx(x)(log2Up(banks) - 1, 0) 20 def getBankIdx(x: UInt) = getIdx(x)(idxBits - 1, log2Up(banks)) 21} 22 23class Stage1To2IO extends XSBundle { 24 val pc = Output(UInt(VAddrBits.W)) 25 val btb = new Bundle { 26 val hits = Output(UInt(FetchWidth.W)) 27 val targets = Output(Vec(FetchWidth, UInt(VAddrBits.B))) 28 } 29 val jbtac = new Bundle { 30 val hitIdx = Output(UInt(FetchWidth.W)) 31 val target = Output(UInt(VAddrBits.W)) 32 } 33 val tage = new Bundle { 34 val hits = Output(UInt(FetchWidth.W)) 35 val takens = Output(Vec(FetchWidth, Bool())) 36 } 37 val hist = Output(Vec(FetchWidth, UInt(HistoryLength.W))) 38 val btbPred = ValidIO(new BranchPrediction) 39} 40 41class BPUStage1 extends XSModule { 42 val io = IO(new Bundle() { 43 val in = new Bundle { val pc = Flipped(Decoupled(UInt(VAddrBits.W))) } 44 // from backend 45 val redirectInfo = Flipped(new RedirectInfo) 46 // from Stage3 47 val flush = Input(Bool()) 48 val s3RollBackHist = Input(UInt(HistoryLength.W)) 49 // to ifu, quick prediction result 50 val btbOut = ValidIO(new BranchPrediction) 51 // to Stage2 52 val out = Decoupled(new Stage1To2IO) 53 }) 54 55 // flush Stage1 when io.flush 56 val flushS1 = BoolStopWatch(io.flush, io.in.pc.fire(), startHighPriority = true) 57 58 // global history register 59 val ghr = RegInit(0.U(HistoryLength.W)) 60 // modify updateGhr and newGhr when updating ghr 61 val updateGhr = WireInit(false.B) 62 val newGhr = WireInit(0.U(HistoryLength.W)) 63 when (updateGhr) { ghr := newGhr } 64 // use hist as global history!!! 65 val hist = Mux(updateGhr, newGhr, ghr) 66 67 // Tage predictor 68 val tage = Module(new Tage) 69 tage.io.req.valid := io.in.pc.fire() 70 tage.io.req.bits.pc := io.in.pc.bits 71 tage.io.req.bits.hist := hist 72 tage.io.redirectInfo <> io.redirectInfo 73 io.out.bits.tage <> tage.io.out 74 io.btbOut.bits.tageMeta := tage.io.meta 75 76} 77 78class Stage2To3IO extends Stage1To2IO { 79} 80 81class BPUStage2 extends XSModule { 82 val io = IO(new Bundle() { 83 // flush from Stage3 84 val flush = Input(Bool()) 85 val in = Flipped(Decoupled(new Stage1To2IO)) 86 val out = Decoupled(new Stage2To3IO) 87 }) 88 89 // flush Stage2 when Stage3 or banckend redirects 90 val flushS2 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) 91 io.out.valid := !flushS2 && RegNext(io.in.fire()) 92 io.in.ready := !io.out.valid || io.out.fire() 93 94 // do nothing 95 io.out.bits := RegEnable(io.in.bits, io.in.fire()) 96} 97 98class BPUStage3 extends XSModule { 99 val io = IO(new Bundle() { 100 val flush = Input(Bool()) 101 val in = Flipped(Decoupled(new Stage2To3IO)) 102 val out = ValidIO(new BranchPrediction) 103 // from icache 104 val predecode = Flipped(ValidIO(new Predecode)) 105 // from backend 106 val redirectInfo = Flipped(new RedirectInfo) 107 // to Stage1 and Stage2 108 val flushBPU = Output(Bool()) 109 // to Stage1, restore ghr in stage1 when flushBPU is valid 110 val s1RollBackHist = Output(UInt(HistoryLength.W)) 111 }) 112 113 val flushS3 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) 114 val inLatch = RegInit(0.U.asTypeOf(io.in.bits)) 115 val validLatch = RegInit(false.B) 116 when (io.in.fire()) { inLatch := io.in.bits } 117 when (io.in.fire()) { 118 validLatch := !io.in.flush 119 }.elsewhen (io.out.valid) { 120 validLatch := false.B 121 } 122 io.out.valid := validLatch && io.predecode.valid && !flushS3 123 io.in.ready := !validLatch || io.out.valid 124 125 // RAS 126 // TODO: split retAddr and ctr 127 def rasEntry() = new Bundle { 128 val retAddr = UInt(VAddrBits.W) 129 val ctr = UInt(8.W) // layer of nested call functions 130 } 131 val ras = RegInit(VecInit(RasSize, 0.U.asTypeOf(rasEntry()))) 132 val sp = Counter(RasSize) 133 val rasTop = ras(sp.value) 134 val rasTopAddr = rasTop.retAddr 135 136 // get the first taken branch/jal/call/jalr/ret in a fetch line 137 // brTakenIdx/jalIdx/callIdx/jalrIdx/retIdx/jmpIdx is one-hot encoded. 138 // brNotTakenIdx indicates all the not-taken branches before the first jump instruction. 139 val brIdx = inLatch.btb.hits & io.predecode.bits.fuTypes.map { t => ALUOpType.isBranch(t) }.asUInt & io.predecode.bits.mask 140 val brTakenIdx = LowestBit(brIdx & inLatch.tage.takens.asUInt, FetchWidth) 141 val jalIdx = LowestBit(inLatch.btb.hits & io.predecode.bits.fuTypes.map { t => t === ALUOpType.jal }.asUInt & io.predecode.bits.mask, FetchWidth) 142 val callIdx = LowestBit(inLatch.btb.hits & io.predecode.bits.mask & io.predecode.bits.fuTypes.map { t => t === ALUOpType.call }.asUInt, FetchWidth) 143 val jalrIdx = LowestBit(inLatch.jbtac.hitIdx & io.predecode.bits.mask & io.predecode.bits.fuTypes.map { t => t === ALUOpType.jalr }.asUInt, FetchWidth) 144 val retIdx = LowestBit(io.predecode.bits.mask & io.predecode.bits.fuTypes.map { t => t === ALUOpType.ret }.asUInt, FetchWidth) 145 146 val jmpIdx = LowestBit(brTakenIdx | jalIdx | callIdx | jalrIdx | retIdx, FetchWidth) 147 val brNotTakenIdx = brIdx & ~inLatch.tage.takens.asUInt & LowerMask(jmpIdx, FetchWidth) 148 149 io.out.bits.redirect := jmpIdx.orR.asBool 150 io.out.bits.target := Mux(jmpIdx === retIdx, rasTopAddr, 151 Mux(jmpIdx === jalrIdx, inLatch.jbtac.target, 152 Mux(jmpIdx === 0.U, inLatch.pc + 4.U, // TODO: RVC 153 PriorityMux(jmpIdx, inLatch.btb.targets)))) 154 io.out.bits.instrValid := LowerMask(jmpIdx, FetchWidth).asTypeOf(Vec(FetchWidth, Bool())) 155 io.out.bits.tageMeta := inLatch.btbPred.bits.tageMeta 156 //io.out.bits._type := Mux(jmpIdx === retIdx, BTBtype.R, 157 // Mux(jmpIdx === jalrIdx, BTBtype.I, 158 // Mux(jmpIdx === brTakenIdx, BTBtype.B, BTBtype.J))) 159 val firstHist = inLatch.btbPred.bits.hist 160 // there may be several notTaken branches before the first jump instruction, 161 // so we need to calculate how many zeroes should each instruction shift in its global history. 162 // each history is exclusive of instruction's own jump direction. 163 val histShift = WireInit(VecInit(FetchWidth, 0.U(log2Up(FetchWidth).W))) 164 histShift := (0 until FetchWidth).map(i => Mux(!brNotTakenIdx(i), 0.U, ~LowerMask(UIntToOH(i.U), FetchWidth))).reduce(_+_) 165 (0 until FetchWidth).map(i => io.out.bits.hist(i) := firstHist << histShift) 166 // save ras checkpoint info 167 io.out.bits.rasSp := sp.value 168 io.out.bits.rasTopCtr := rasTop.ctr 169 170 // flush BPU and redirect when target differs from the target predicted in Stage1 171 io.out.bits.redirect := !inLatch.btbPred.bits.redirect ^ jmpIdx.orR.asBool || 172 inLatch.btbPred.bits.redirect && jmpIdx.orR.asBool && io.out.bits.target =/= inLatch.btbPred.bits.target 173 io.flushBPU := io.out.bits.redirect && io.out.valid 174 175 // speculative update RAS 176 val rasWrite = WireInit(0.U.asTypeOf(rasEntry())) 177 rasWrite.retAddr := inLatch.pc + OHToUInt(callIdx) << 2.U + 4.U 178 val allocNewEntry = rasWrite.retAddr =/= rasTopAddr 179 rasWrite.ctr := Mux(allocNewEntry, 1.U, rasTop.ctr + 1.U) 180 when (io.out.valid) { 181 when (jmpIdx === callIdx) { 182 ras(Mux(allocNewEntry, sp.value + 1.U, sp.value)) := rasWrite 183 when (allocNewEntry) { sp.value := sp.value + 1.U } 184 }.elsewhen (jmpIdx === retIdx) { 185 when (rasTop.ctr === 1.U) { 186 sp.value := Mux(sp.value === 0.U, 0.U, sp.value - 1.U) 187 }.otherwise { 188 ras(sp.value) := Cat(rasTop.ctr - 1.U, rasTopAddr).asTypeOf(rasEntry()) 189 } 190 } 191 } 192 // use checkpoint to recover RAS 193 val recoverSp = io.redirectInfo.redirect.rasSp 194 val recoverCtr = io.redirectInfo.redirect.rasTopCtr 195 when (io.redirectInfo.valid && io.redirectInfo.misPred) { 196 sp.value := recoverSp 197 ras(recoverSp) := Cat(recoverCtr, ras(recoverSp).retAddr).asTypeOf(rasEntry()) 198 } 199 200 // roll back global history in S1 if S3 redirects 201 io.s1RollBackHist := PriorityMux(jmpIdx, io.out.bits.hist) 202} 203 204class BPU extends XSModule { 205 val io = IO(new Bundle() { 206 // from backend 207 // flush pipeline if misPred and update bpu based on redirect signals from brq 208 val redirectInfo = Flipped(new RedirectInfo) 209 210 val in = new Bundle { val pc = Flipped(Valid(UInt(VAddrBits.W))) } 211 212 val btbOut = ValidIO(new BranchPrediction) 213 val tageOut = ValidIO(new BranchPrediction) 214 215 // predecode info from icache 216 // TODO: simplify this after implement predecode unit 217 val predecode = Flipped(ValidIO(new Predecode)) 218 }) 219 220 val s1 = Module(new BPUStage1) 221 val s2 = Module(new BPUStage2) 222 val s3 = Module(new BPUStage3) 223 224 s1.io.redirectInfo <> io.redirectInfo 225 s1.io.flush := s3.io.flushBPU || io.redirectInfo.flush() 226 s1.io.in.pc.valid := io.in.pc.valid 227 s1.io.in.pc.bits <> io.in.pc.bits 228 io.btbOut <> s1.io.btbOut 229 s1.io.s3RollBackHist := s3.io.s1RollBackHist 230 231 s1.io.out <> s2.io.in 232 s2.io.flush := s3.io.flushBPU || io.redirectInfo.flush() 233 234 s2.io.out <> s3.io.in 235 s3.io.flush := io.redirectInfo.flush() 236 s3.io.predecode <> io.predecode 237 io.tageOut <> s3.io.out 238 s3.io.redirectInfo <> io.redirectInfo 239 240 // TODO: delete this and put BTB and JBTAC into Stage1 241 /* 242 val flush = BoolStopWatch(io.redirect.valid, io.in.pc.valid, startHighPriority = true) 243 244 // BTB makes a quick prediction for branch and direct jump, which is 245 // 4-way set-associative, and each way is divided into 4 banks. 246 val btbAddr = new TableAddr(log2Up(BtbSets), BtbBanks) 247 def btbEntry() = new Bundle { 248 val valid = Bool() 249 // TODO: don't need full length of tag and target 250 val tag = UInt(btbAddr.tagBits.W) 251 val _type = UInt(2.W) 252 val target = UInt(VAddrBits.W) 253 val pred = UInt(2.W) // 2-bit saturated counter as a quick predictor 254 } 255 256 val btb = List.fill(BtbBanks)(List.fill(BtbWays)( 257 Module(new SRAMTemplate(btbEntry(), set = BtbSets / BtbBanks, shouldReset = true, holdRead = true, singlePort = true)))) 258 259 // val fetchPkgAligned = btbAddr.getBank(io.in.pc.bits) === 0.U 260 val HeadBank = btbAddr.getBank(io.in.pc.bits) 261 val TailBank = btbAddr.getBank(io.in.pc.bits + FetchWidth.U << 2.U - 4.U) 262 for (b <- 0 until BtbBanks) { 263 for (w <- 0 until BtbWays) { 264 btb(b)(w).reset := reset.asBool 265 btb(b)(w).io.r.req.valid := io.in.pc.valid && Mux(TailBank > HeadBank, b.U >= HeadBank && b.U <= TailBank, b.U >= TailBank || b.U <= HeadBank) 266 btb(b)(w).io.r.req.bits.setIdx := btbAddr.getBankIdx(io.in.pc.bits) 267 } 268 } 269 // latch pc for 1 cycle latency when reading SRAM 270 val pcLatch = RegEnable(io.in.pc.bits, io.in.pc.valid) 271 val btbRead = Wire(Vec(BtbBanks, Vec(BtbWays, btbEntry()))) 272 val btbHits = Wire(Vec(FetchWidth, Bool())) 273 val btbTargets = Wire(Vec(FetchWidth, UInt(VAddrBits.W))) 274 val btbTypes = Wire(Vec(FetchWidth, UInt(2.W))) 275 // val btbPreds = Wire(Vec(FetchWidth, UInt(2.W))) 276 val btbTakens = Wire(Vec(FetchWidth, Bool())) 277 for (b <- 0 until BtbBanks) { 278 for (w <- 0 until BtbWays) { 279 btbRead(b)(w) := btb(b)(w).io.r.resp.data(0) 280 } 281 } 282 for (i <- 0 until FetchWidth) { 283 btbHits(i) := false.B 284 for (b <- 0 until BtbBanks) { 285 for (w <- 0 until BtbWays) { 286 when (b.U === btbAddr.getBank(pcLatch) && btbRead(b)(w).valid && btbRead(b)(w).tag === btbAddr.getTag(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2)) { 287 btbHits(i) := !flush && RegNext(btb(b)(w).io.r.req.fire(), init = false.B) 288 btbTargets(i) := btbRead(b)(w).target 289 btbTypes(i) := btbRead(b)(w)._type 290 // btbPreds(i) := btbRead(b)(w).pred 291 btbTakens(i) := (btbRead(b)(w).pred)(1).asBool 292 }.otherwise { 293 btbHits(i) := false.B 294 btbTargets(i) := DontCare 295 btbTypes(i) := DontCare 296 btbTakens(i) := DontCare 297 } 298 } 299 } 300 } 301 302 // JBTAC, divided into 8 banks, makes prediction for indirect jump except ret. 303 val jbtacAddr = new TableAddr(log2Up(JbtacSize), JbtacBanks) 304 def jbtacEntry() = new Bundle { 305 val valid = Bool() 306 // TODO: don't need full length of tag and target 307 val tag = UInt(jbtacAddr.tagBits.W) 308 val target = UInt(VAddrBits.W) 309 } 310 311 val jbtac = List.fill(JbtacBanks)(Module(new SRAMTemplate(jbtacEntry(), set = JbtacSize / JbtacBanks, shouldReset = true, holdRead = true, singlePort = true))) 312 313 (0 until JbtacBanks).map(i => jbtac(i).reset := reset.asBool) 314 (0 until JbtacBanks).map(i => jbtac(i).io.r.req.valid := io.in.pc.valid) 315 (0 until JbtacBanks).map(i => jbtac(i).io.r.req.bits.setIdx := jbtacAddr.getBankIdx(Cat((io.in.pc.bits)(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2)) 316 317 val jbtacRead = Wire(Vec(JbtacBanks, jbtacEntry())) 318 (0 until JbtacBanks).map(i => jbtacRead(i) := jbtac(i).io.r.resp.data(0)) 319 val jbtacHits = Wire(Vec(FetchWidth, Bool())) 320 val jbtacTargets = Wire(Vec(FetchWidth, UInt(VAddrBits.W))) 321 val jbtacHeadBank = jbtacAddr.getBank(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W))) 322 for (i <- 0 until FetchWidth) { 323 jbtacHits(i) := false.B 324 for (b <- 0 until JbtacBanks) { 325 when (jbtacHeadBank + i.U === b.U) { 326 jbtacHits(i) := jbtacRead(b).valid && jbtacRead(b).tag === jbtacAddr.getTag(Cat(pcLatch(VAddrBits - 1, 2), 0.U(2.W)) + i.U << 2) && 327 !flush && RegNext(jbtac(b).io.r.req.fire(), init = false.B) 328 jbtacTargets(i) := jbtacRead(b).target 329 }.otherwise { 330 jbtacHits(i) := false.B 331 jbtacTargets(i) := DontCare 332 } 333 } 334 } 335 336 // redirect based on BTB and JBTAC 337 (0 until FetchWidth).map(i => io.predMask(i) := btbHits(i) && Mux(btbTypes(i) === BTBtype.B, btbTakens(i), true.B) || jbtacHits(i)) 338 (0 until FetchWidth).map(i => io.predTargets(i) := Mux(btbHits(i) && !(btbTypes(i) === BTBtype.B && !btbTakens(i)), btbTargets(i), jbtacTargets(i))) 339 340 341 // update bpu, including BTB, JBTAC... 342 // 1. update BTB 343 // 1.1 read the selected bank 344 for (b <- 0 until BtbBanks) { 345 for (w <- 0 until BtbWays) { 346 btb(b)(w).io.r.req.valid := io.redirect.valid && btbAddr.getBank(io.redirect.bits.pc) === b.U 347 btb(b)(w).io.r.req.bits.setIdx := btbAddr.getBankIdx(io.redirect.bits.pc) 348 } 349 } 350 351 // 1.2 match redirect pc tag with the 4 tags in a btb line, find a way to write 352 // val redirectLatch = RegEnable(io.redirect.bits, io.redirect.valid) 353 val redirectLatch = RegNext(io.redirect.bits, init = 0.U.asTypeOf(new Redirect)) 354 val bankLatch = btbAddr.getBank(redirectLatch.pc) 355 val btbUpdateRead = Wire(Vec(BtbWays, btbEntry())) 356 val btbValids = Wire(Vec(BtbWays, Bool())) 357 val btbUpdateTagHits = Wire(Vec(BtbWays, Bool())) 358 for (b <- 0 until BtbBanks) { 359 for (w <- 0 until BtbWays) { 360 when (b.U === bankLatch) { 361 btbUpdateRead(w) := btb(b)(w).io.r.resp.data(0) 362 btbValids(w) := btbUpdateRead(w).valid && RegNext(btb(b)(w).io.r.req.fire(), init = false.B) 363 }.otherwise { 364 btbUpdateRead(w) := 0.U.asTypeOf(btbEntry()) 365 btbValids(w) := false.B 366 } 367 } 368 } 369 (0 until BtbWays).map(w => btbUpdateTagHits(w) := btbValids(w) && btbUpdateRead(w).tag === btbAddr.getTag(redirectLatch.pc)) 370 // val btbWriteWay = Wire(Vec(BtbWays, Bool())) 371 val btbWriteWay = Wire(UInt(BtbWays.W)) 372 val btbInvalids = ~ btbValids.asUInt 373 when (btbUpdateTagHits.asUInt.orR) { 374 // tag hits 375 btbWriteWay := btbUpdateTagHits.asUInt 376 }.elsewhen (!btbValids.asUInt.andR) { 377 // no tag hits but there are free entries 378 btbWriteWay := Mux(btbInvalids >= 8.U, "b1000".U, 379 Mux(btbInvalids >= 4.U, "b0100".U, 380 Mux(btbInvalids >= 2.U, "b0010".U, "b0001".U))) 381 }.otherwise { 382 // no tag hits and no free entry, select a victim way 383 btbWriteWay := UIntToOH(LFSR64()(log2Up(BtbWays) - 1, 0)) 384 } 385 386 // 1.3 calculate new 2-bit counter value 387 val btbWrite = WireInit(0.U.asTypeOf(btbEntry())) 388 btbWrite.valid := true.B 389 btbWrite.tag := btbAddr.getTag(redirectLatch.pc) 390 btbWrite._type := redirectLatch._type 391 btbWrite.target := redirectLatch.brTarget 392 val oldPred = WireInit("b01".U) 393 oldPred := PriorityMux(btbWriteWay.asTypeOf(Vec(BtbWays, Bool())), btbUpdateRead.map{ e => e.pred }) 394 val newPred = Mux(redirectLatch.taken, Mux(oldPred === "b11".U, "b11".U, oldPred + 1.U), 395 Mux(oldPred === "b00".U, "b00".U, oldPred - 1.U)) 396 btbWrite.pred := Mux(btbUpdateTagHits.asUInt.orR && redirectLatch._type === BTBtype.B, newPred, "b01".U) 397 398 // 1.4 write BTB 399 for (b <- 0 until BtbBanks) { 400 for (w <- 0 until BtbWays) { 401 when (b.U === bankLatch) { 402 btb(b)(w).io.w.req.valid := OHToUInt(btbWriteWay) === w.U && 403 RegNext(io.redirect.valid, init = false.B) && 404 (redirectLatch._type === BTBtype.B || redirectLatch._type === BTBtype.J) 405 btb(b)(w).io.w.req.bits.setIdx := btbAddr.getBankIdx(redirectLatch.pc) 406 btb(b)(w).io.w.req.bits.data := btbWrite 407 }.otherwise { 408 btb(b)(w).io.w.req.valid := false.B 409 btb(b)(w).io.w.req.bits.setIdx := DontCare 410 btb(b)(w).io.w.req.bits.data := DontCare 411 } 412 } 413 } 414 415 // 2. update JBTAC 416 val jbtacWrite = WireInit(0.U.asTypeOf(jbtacEntry())) 417 jbtacWrite.valid := true.B 418 jbtacWrite.tag := jbtacAddr.getTag(io.redirect.bits.pc) 419 jbtacWrite.target := io.redirect.bits.target 420 (0 until JbtacBanks).map(b => 421 jbtac(b).io.w.req.valid := io.redirect.valid && 422 b.U === jbtacAddr.getBank(io.redirect.bits.pc) && 423 io.redirect.bits._type === BTBtype.I) 424 (0 until JbtacBanks).map(b => jbtac(b).io.w.req.bits.setIdx := jbtacAddr.getBankIdx(io.redirect.bits.pc)) 425 (0 until JbtacBanks).map(b => jbtac(b).io.w.req.bits.data := jbtacWrite) 426 */ 427} 428