1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.SnapshotGenerator 28import xiangshan.backend.exu.ExuConfig 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LsqEnqIO, LqPtr} 31 32class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 33 val ssid = UInt(SSIDWidth.W) 34 val waitAllStore = Bool() 35} 36 37class DebugLsInfo(implicit p: Parameters) extends XSBundle { 38 val s1 = new Bundle { 39 val isTlbFirstMiss = Bool() // in s1 40 val isBankConflict = Bool() // in s1 41 val isLoadToLoadForward = Bool() 42 val isReplayFast = Bool() 43 } 44 val s2 = new Bundle{ 45 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 46 val isForwardFail = Bool() // in s2 47 val isReplaySlow = Bool() 48 val isLoadReplayTLBMiss = Bool() 49 val isLoadReplayCacheMiss = Bool() 50 } 51 val replayCnt = UInt(XLEN.W) 52 53 def s1SignalEnable(ena: DebugLsInfo) = { 54 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 55 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 56 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 57 when(ena.s1.isReplayFast) { 58 s1.isReplayFast := true.B 59 replayCnt := replayCnt + 1.U 60 } 61 } 62 63 def s2SignalEnable(ena: DebugLsInfo) = { 64 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 65 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 66 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 67 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 68 when(ena.s2.isReplaySlow) { 69 s2.isReplaySlow := true.B 70 replayCnt := replayCnt + 1.U 71 } 72 } 73 74} 75object DebugLsInfo { 76 def init(implicit p: Parameters): DebugLsInfo = { 77 val lsInfo = Wire(new DebugLsInfo) 78 lsInfo.s1.isTlbFirstMiss := false.B 79 lsInfo.s1.isBankConflict := false.B 80 lsInfo.s1.isLoadToLoadForward := false.B 81 lsInfo.s1.isReplayFast := false.B 82 lsInfo.s2.isDcacheFirstMiss := false.B 83 lsInfo.s2.isForwardFail := false.B 84 lsInfo.s2.isReplaySlow := false.B 85 lsInfo.s2.isLoadReplayTLBMiss := false.B 86 lsInfo.s2.isLoadReplayCacheMiss := false.B 87 lsInfo.replayCnt := 0.U 88 lsInfo 89 } 90 91} 92class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 93 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 94 val s1_robIdx = UInt(log2Ceil(RobSize).W) 95 val s2_robIdx = UInt(log2Ceil(RobSize).W) 96} 97class DebugLSIO(implicit p: Parameters) extends XSBundle { 98 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 99} 100 101class LsTopdownInfo(implicit p: Parameters) extends XSBundle { 102 val s1 = new Bundle { 103 val robIdx = UInt(log2Ceil(RobSize).W) 104 val vaddr_valid = Bool() 105 val vaddr_bits = UInt(VAddrBits.W) 106 } 107 val s2 = new Bundle { 108 val robIdx = UInt(log2Ceil(RobSize).W) 109 val paddr_valid = Bool() 110 val paddr_bits = UInt(PAddrBits.W) 111 val cache_miss_en = Bool() 112 val first_real_miss = Bool() 113 } 114 115 def s1SignalEnable(ena: LsTopdownInfo) = { 116 when(ena.s1.vaddr_valid) { 117 s1.vaddr_valid := true.B 118 s1.vaddr_bits := ena.s1.vaddr_bits 119 } 120 } 121 122 def s2SignalEnable(ena: LsTopdownInfo) = { 123 when(ena.s2.paddr_valid) { 124 s2.paddr_valid := true.B 125 s2.paddr_bits := ena.s2.paddr_bits 126 } 127 when(ena.s2.cache_miss_en) { 128 s2.first_real_miss := ena.s2.first_real_miss 129 } 130 } 131} 132 133object LsTopdownInfo { 134 def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo) 135} 136 137class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 138 p => p(XSCoreParamsKey).RobSize 139) with HasCircularQueuePtrHelper { 140 141 def needFlush(redirect: Valid[Redirect]): Bool = { 142 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 143 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 144 } 145 146 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 147} 148 149object RobPtr { 150 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 151 val ptr = Wire(new RobPtr) 152 ptr.flag := f 153 ptr.value := v 154 ptr 155 } 156} 157 158class RobCSRIO(implicit p: Parameters) extends XSBundle { 159 val intrBitSet = Input(Bool()) 160 val trapTarget = Input(UInt(VAddrBits.W)) 161 val isXRet = Input(Bool()) 162 val wfiEvent = Input(Bool()) 163 164 val fflags = Output(Valid(UInt(5.W))) 165 val dirty_fs = Output(Bool()) 166 val perfinfo = new Bundle { 167 val retiredInstr = Output(UInt(3.W)) 168 } 169} 170 171class RobLsqIO(implicit p: Parameters) extends XSBundle { 172 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 173 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 174 val pendingld = Output(Bool()) 175 val pendingst = Output(Bool()) 176 val commit = Output(Bool()) 177 val pendingPtr = Output(new RobPtr) 178 179 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 180 val uop = Input(Vec(LoadPipelineWidth, new MicroOp)) 181} 182 183class RobEnqIO(implicit p: Parameters) extends XSBundle { 184 val canAccept = Output(Bool()) 185 val isEmpty = Output(Bool()) 186 // valid vector, for robIdx gen and walk 187 val needAlloc = Vec(RenameWidth, Input(Bool())) 188 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 189 val resp = Vec(RenameWidth, Output(new RobPtr)) 190} 191 192class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 193 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 194 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 195} 196 197class RobDispatchTopDownIO extends Bundle { 198 val robTrueCommit = Output(UInt(64.W)) 199 val robHeadLsIssue = Output(Bool()) 200} 201 202class RobDebugRollingIO extends Bundle { 203 val robTrueCommit = Output(UInt(64.W)) 204} 205 206class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 207 val io = IO(new Bundle { 208 // for commits/flush 209 val state = Input(UInt(2.W)) 210 val deq_v = Vec(CommitWidth, Input(Bool())) 211 val deq_w = Vec(CommitWidth, Input(Bool())) 212 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 213 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 214 val intrBitSetReg = Input(Bool()) 215 val hasNoSpecExec = Input(Bool()) 216 val interrupt_safe = Input(Bool()) 217 val blockCommit = Input(Bool()) 218 // output: the CommitWidth deqPtr 219 val out = Vec(CommitWidth, Output(new RobPtr)) 220 val next_out = Vec(CommitWidth, Output(new RobPtr)) 221 }) 222 223 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 224 225 // for exceptions (flushPipe included) and interrupts: 226 // only consider the first instruction 227 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 228 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 229 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 230 231 // for normal commits: only to consider when there're no exceptions 232 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 233 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 234 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 235 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 236 // when io.intrBitSetReg or there're possible exceptions in these instructions, 237 // only one instruction is allowed to commit 238 val allowOnlyOne = commit_exception || io.intrBitSetReg 239 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 240 241 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 242 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 243 244 deqPtrVec := deqPtrVec_next 245 246 io.next_out := deqPtrVec_next 247 io.out := deqPtrVec 248 249 when (io.state === 0.U) { 250 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 251 } 252 253} 254 255class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 256 val io = IO(new Bundle { 257 // for input redirect 258 val redirect = Input(Valid(new Redirect)) 259 // for enqueue 260 val allowEnqueue = Input(Bool()) 261 val hasBlockBackward = Input(Bool()) 262 val enq = Vec(RenameWidth, Input(Bool())) 263 val out = Output(Vec(RenameWidth, new RobPtr)) 264 }) 265 266 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 267 268 // enqueue 269 val canAccept = io.allowEnqueue && !io.hasBlockBackward 270 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 271 272 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 273 when(io.redirect.valid) { 274 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 275 }.otherwise { 276 ptr := ptr + dispatchNum 277 } 278 } 279 280 io.out := enqPtrVec 281 282} 283 284class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 285 // val valid = Bool() 286 val robIdx = new RobPtr 287 val exceptionVec = ExceptionVec() 288 val flushPipe = Bool() 289 val replayInst = Bool() // redirect to that inst itself 290 val singleStep = Bool() // TODO add frontend hit beneath 291 val crossPageIPFFix = Bool() 292 val trigger = new TriggerCf 293 294// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 295// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 296 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 297 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 298 // only exceptions are allowed to writeback when enqueue 299 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 300} 301 302class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 303 val io = IO(new Bundle { 304 val redirect = Input(Valid(new Redirect)) 305 val flush = Input(Bool()) 306 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 307 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 308 val out = ValidIO(new RobExceptionInfo) 309 val state = ValidIO(new RobExceptionInfo) 310 }) 311 312 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 313 assert(valid.length == bits.length) 314 if (valid.length == 1) { 315 (valid, bits) 316 } else if (valid.length == 2) { 317 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 318 for (i <- res.indices) { 319 res(i).valid := valid(i) 320 res(i).bits := bits(i) 321 } 322 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 323 (Seq(oldest.valid), Seq(oldest.bits)) 324 } else { 325 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 326 val right = getOldest(valid.takeRight(valid.length - valid.length / 2), bits.takeRight(valid.length - valid.length / 2)) 327 getOldest(left._1 ++ right._1, left._2 ++ right._2) 328 } 329 } 330 331 val currentValid = RegInit(false.B) 332 val current = Reg(new RobExceptionInfo) 333 334 // orR the exceptionVec 335 val lastCycleFlush = RegNext(io.flush) 336 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 337 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 338 339 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 340 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 341 val csr_wb_bits = io.wb(0).bits 342 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 343 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 344 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 345 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 346 347 // s1: compare last four and current flush 348 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 349 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 350 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 351 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 352 val s1_out_bits = RegNext(compare_bits) 353 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 354 355 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 356 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 357 358 // s2: compare the input exception with the current one 359 // priorities: 360 // (1) system reset 361 // (2) current is valid: flush, remain, merge, update 362 // (3) current is not valid: s1 or enq 363 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 364 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 365 when (currentValid) { 366 when (current_flush) { 367 currentValid := Mux(s1_flush, false.B, s1_out_valid) 368 } 369 when (s1_out_valid && !s1_flush) { 370 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 371 current := s1_out_bits 372 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 373 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 374 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 375 current.replayInst := s1_out_bits.replayInst || current.replayInst 376 current.singleStep := s1_out_bits.singleStep || current.singleStep 377 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 378 } 379 } 380 }.elsewhen (s1_out_valid && !s1_flush) { 381 currentValid := true.B 382 current := s1_out_bits 383 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 384 currentValid := true.B 385 current := enq_bits 386 } 387 388 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 389 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 390 io.state.valid := currentValid 391 io.state.bits := current 392 393} 394 395class RobFlushInfo(implicit p: Parameters) extends XSBundle { 396 val ftqIdx = new FtqPtr 397 val robIdx = new RobPtr 398 val ftqOffset = UInt(log2Up(PredictWidth).W) 399 val replayInst = Bool() 400} 401 402class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 403 override def shouldBeInlined: Boolean = false 404 405 lazy val module = new RobImp(this) 406 407 override def generateWritebackIO( 408 thisMod: Option[HasWritebackSource] = None, 409 thisModImp: Option[HasWritebackSourceImp] = None 410 ): Unit = { 411 val sources = writebackSinksImp(thisMod, thisModImp) 412 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 413 } 414} 415 416class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 417 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 418 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 419 val numWbPorts = wbExuConfigs.map(_.length) 420 421 val io = IO(new Bundle() { 422 val hartId = Input(UInt(hartIdLen.W)) 423 val redirect = Input(Valid(new Redirect)) 424 val enq = new RobEnqIO 425 val flushOut = ValidIO(new Redirect) 426 val exception = ValidIO(new ExceptionInfo) 427 // exu + brq 428 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 429 val commits = Output(new RobCommitIO) 430 val lsq = new RobLsqIO 431 val robDeqPtr = Output(new RobPtr) 432 val csr = new RobCSRIO 433 val snpt = Input(new SnapshotPort) 434 val robFull = Output(Bool()) 435 val headNotReady = Output(Bool()) 436 val cpu_halt = Output(Bool()) 437 val wfi_enable = Input(Bool()) 438 439 val debug_ls = Flipped(new DebugLSIO) 440 val debugRobHead = Output(new MicroOp) 441 val debugEnqLsq = Input(new LsqEnqIO) 442 val debugHeadLsIssue = Input(Bool()) 443 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 444 val debugTopDown = new Bundle { 445 val toCore = new RobCoreTopDownIO 446 val toDispatch = new RobDispatchTopDownIO 447 val robHeadLqIdx = Valid(new LqPtr) 448 } 449 val debugRolling = new RobDebugRollingIO 450 }) 451 452 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 453 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 454 } 455 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 456 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 457 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 458 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 459 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 460 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 461 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 462 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 463 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 464 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 465 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 466 467 468 val exuWriteback = exuWbPorts.map(_._2) 469 val stdWriteback = stdWbPorts.map(_._2) 470 471 // instvalid field 472 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 473 // writeback status 474 val writebacked = Mem(RobSize, Bool()) 475 val store_data_writebacked = Mem(RobSize, Bool()) 476 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 477 // data for redirect, exception, etc. 478 val flagBkup = Mem(RobSize, Bool()) 479 // some instructions are not allowed to trigger interrupts 480 // They have side effects on the states of the processor before they write back 481 val interrupt_safe = Mem(RobSize, Bool()) 482 483 // data for debug 484 // Warn: debug_* prefix should not exist in generated verilog. 485 val debug_microOp = DebugMem(RobSize, new MicroOp) 486 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 487 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 488 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 489 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 490 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 491 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 492 493 // pointers 494 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 495 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 496 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 497 498 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 499 val lastWalkPtr = Reg(new RobPtr) 500 val allowEnqueue = RegInit(true.B) 501 502 val enqPtr = enqPtrVec.head 503 val deqPtr = deqPtrVec(0) 504 val walkPtr = walkPtrVec(0) 505 506 val isEmpty = enqPtr === deqPtr 507 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 508 509 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 510 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 511 512 val debug_lsIssue = WireDefault(debug_lsIssued) 513 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 514 515 /** 516 * states of Rob 517 */ 518 val s_idle :: s_walk :: Nil = Enum(2) 519 val state = RegInit(s_idle) 520 521 /** 522 * Data Modules 523 * 524 * CommitDataModule: data from dispatch 525 * (1) read: commits/walk/exception 526 * (2) write: enqueue 527 * 528 * WritebackData: data from writeback 529 * (1) read: commits/walk/exception 530 * (2) write: write back from exe units 531 */ 532 val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth)) 533 val dispatchDataRead = dispatchData.io.rdata 534 535 val exceptionGen = Module(new ExceptionGen) 536 val exceptionDataRead = exceptionGen.io.state 537 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 538 539 io.robDeqPtr := deqPtr 540 io.debugRobHead := debug_microOp(deqPtr.value) 541 542 /** 543 * Enqueue (from dispatch) 544 */ 545 // special cases 546 val hasBlockBackward = RegInit(false.B) 547 val hasNoSpecExec = RegInit(false.B) 548 val doingSvinval = RegInit(false.B) 549 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 550 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 551 when (isEmpty) { hasBlockBackward:= false.B } 552 // When any instruction commits, hasNoSpecExec should be set to false.B 553 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 554 555 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 556 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 557 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 558 val hasWFI = RegInit(false.B) 559 io.cpu_halt := hasWFI 560 // WFI Timeout: 2^20 = 1M cycles 561 val wfi_cycles = RegInit(0.U(20.W)) 562 when (hasWFI) { 563 wfi_cycles := wfi_cycles + 1.U 564 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 565 wfi_cycles := 0.U 566 } 567 val wfi_timeout = wfi_cycles.andR 568 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 569 hasWFI := false.B 570 } 571 572 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 573 io.enq.canAccept := allowEnqueue && !hasBlockBackward 574 io.enq.resp := allocatePtrVec 575 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 576 val timer = GTimer() 577 for (i <- 0 until RenameWidth) { 578 // we don't check whether io.redirect is valid here since redirect has higher priority 579 when (canEnqueue(i)) { 580 val enqUop = io.enq.req(i).bits 581 val enqIndex = allocatePtrVec(i).value 582 // store uop in data module and debug_microOp Vec 583 debug_microOp(enqIndex) := enqUop 584 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 585 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 586 debug_microOp(enqIndex).debugInfo.selectTime := timer 587 debug_microOp(enqIndex).debugInfo.issueTime := timer 588 debug_microOp(enqIndex).debugInfo.writebackTime := timer 589 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 590 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 591 debug_lsInfo(enqIndex) := DebugLsInfo.init 592 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 593 debug_lqIdxValid(enqIndex) := false.B 594 debug_lsIssued(enqIndex) := false.B 595 when (enqUop.ctrl.blockBackward) { 596 hasBlockBackward := true.B 597 } 598 when (enqUop.ctrl.noSpecExec) { 599 hasNoSpecExec := true.B 600 } 601 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 602 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 603 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 604 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 605 { 606 doingSvinval := true.B 607 } 608 // the end instruction of Svinval enqs so clear doingSvinval 609 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 610 { 611 doingSvinval := false.B 612 } 613 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 614 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 615 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 616 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 617 hasWFI := true.B 618 } 619 620 mmio(enqIndex) := false.B 621 } 622 } 623 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 624 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 625 626 when (!io.wfi_enable) { 627 hasWFI := false.B 628 } 629 630 // lqEnq 631 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 632 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 633 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 634 debug_lqIdxValid(req.bits.robIdx.value) := true.B 635 } 636 } 637 638 // lsIssue 639 when(io.debugHeadLsIssue) { 640 debug_lsIssued(deqPtr.value) := true.B 641 } 642 643 /** 644 * Writeback (from execution units) 645 */ 646 for (wb <- exuWriteback) { 647 when (wb.valid) { 648 val wbIdx = wb.bits.uop.robIdx.value 649 debug_exuData(wbIdx) := wb.bits.data 650 debug_exuDebug(wbIdx) := wb.bits.debug 651 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 652 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 653 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 654 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 655 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 656 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 657 658 // debug for lqidx and sqidx 659 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 660 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 661 662 val debug_Uop = debug_microOp(wbIdx) 663 XSInfo(true.B, 664 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 665 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 666 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 667 ) 668 } 669 } 670 val writebackNum = PopCount(exuWriteback.map(_.valid)) 671 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 672 673 for (i <- 0 until LoadPipelineWidth) { 674 when (RegNext(io.lsq.mmio(i))) { 675 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 676 } 677 } 678 679 /** 680 * RedirectOut: Interrupt and Exceptions 681 */ 682 val deqDispatchData = dispatchDataRead(0) 683 val debug_deqUop = debug_microOp(deqPtr.value) 684 685 val intrBitSetReg = RegNext(io.csr.intrBitSet) 686 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 687 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 688 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 689 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 690 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 691 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 692 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 693 694 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 695 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 696 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 697 698 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 699 700 // io.flushOut will trigger redirect at the next cycle. 701 // Block any redirect or commit at the next cycle. 702 val lastCycleFlush = RegNext(io.flushOut.valid) 703 704 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 705 io.flushOut.bits := DontCare 706 io.flushOut.bits.isRVC := deqDispatchData.isRVC 707 io.flushOut.bits.robIdx := deqPtr 708 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 709 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 710 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 711 io.flushOut.bits.interrupt := true.B 712 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 713 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 714 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 715 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 716 717 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 718 io.exception.valid := RegNext(exceptionHappen) 719 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 720 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 721 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 722 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 723 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 724 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 725 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 726 727 XSDebug(io.flushOut.valid, 728 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 729 p"excp $exceptionEnable flushPipe $isFlushPipe " + 730 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 731 732 733 /** 734 * Commits (and walk) 735 * They share the same width. 736 */ 737 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 738 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 739 740 require(RenameWidth <= CommitWidth) 741 742 // wiring to csr 743 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 744 val v = io.commits.commitValid(i) 745 val info = io.commits.info(i) 746 (v & info.wflags, v & info.fpWen) 747 }).unzip 748 val fflags = Wire(Valid(UInt(5.W))) 749 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 750 fflags.bits := wflags.zip(fflagsDataRead).map({ 751 case (w, f) => Mux(w, f, 0.U) 752 }).reduce(_|_) 753 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 754 755 // when mispredict branches writeback, stop commit in the next 2 cycles 756 // TODO: don't check all exu write back 757 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 758 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid && wb.valid 759 ))).orR 760 val misPredBlockCounter = Reg(UInt(3.W)) 761 misPredBlockCounter := Mux(misPredWb, 762 "b111".U, 763 misPredBlockCounter >> 1.U 764 ) 765 val misPredBlock = misPredBlockCounter(0) 766 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 767 768 io.commits.isWalk := state === s_walk 769 io.commits.isCommit := state === s_idle && !blockCommit 770 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 771 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 772 // store will be commited iff both sta & std have been writebacked 773 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 774 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 775 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 776 val allowOnlyOneCommit = commit_exception || intrBitSetReg 777 // for instructions that may block others, we don't allow them to commit 778 for (i <- 0 until CommitWidth) { 779 // defaults: state === s_idle and instructions commit 780 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 781 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 782 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 783 io.commits.info(i) := dispatchDataRead(i) 784 io.commits.robIdx(i) := deqPtrVec(i) 785 786 io.commits.walkValid(i) := shouldWalkVec(i) 787 when (state === s_walk) { 788 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 789 XSError(!walk_v(i), s"why not $i???\n") 790 } 791 } 792 793 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 794 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b\n", 795 debug_microOp(deqPtrVec(i).value).cf.pc, 796 io.commits.info(i).rfWen, 797 io.commits.info(i).ldest, 798 io.commits.info(i).pdest, 799 debug_exuData(deqPtrVec(i).value), 800 fflagsDataRead(i) 801 ) 802 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 803 debug_microOp(walkPtrVec(i).value).cf.pc, 804 io.commits.info(i).rfWen, 805 io.commits.info(i).ldest, 806 debug_exuData(walkPtrVec(i).value) 807 ) 808 } 809 if (env.EnableDifftest) { 810 io.commits.info.map(info => dontTouch(info.pc)) 811 } 812 813 // sync fflags/dirty_fs to csr 814 io.csr.fflags := RegNext(fflags) 815 io.csr.dirty_fs := RegNext(dirty_fs) 816 817 // commit load/store to lsq 818 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 819 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 820 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 821 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 822 // indicate a pending load or store 823 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 824 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 825 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 826 io.lsq.pendingPtr := RegNext(deqPtr) 827 828 /** 829 * state changes 830 * (1) redirect: switch to s_walk 831 * (2) walk: when walking comes to the end, switch to s_idle 832 */ 833 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 834 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 835 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 836 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 837 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 838 state := state_next 839 840 /** 841 * pointers and counters 842 */ 843 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 844 deqPtrGenModule.io.state := state 845 deqPtrGenModule.io.deq_v := commit_v 846 deqPtrGenModule.io.deq_w := commit_w 847 deqPtrGenModule.io.exception_state := exceptionDataRead 848 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 849 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 850 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 851 deqPtrGenModule.io.blockCommit := blockCommit 852 deqPtrVec := deqPtrGenModule.io.out 853 val deqPtrVec_next = deqPtrGenModule.io.next_out 854 855 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 856 enqPtrGenModule.io.redirect := io.redirect 857 enqPtrGenModule.io.allowEnqueue := allowEnqueue 858 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 859 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 860 enqPtrVec := enqPtrGenModule.io.out 861 862 // next walkPtrVec: 863 // (1) redirect occurs: update according to state 864 // (2) walk: move forwards 865 val walkPtrVec_next = Mux(io.redirect.valid, 866 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 867 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 868 ) 869 walkPtrVec := walkPtrVec_next 870 871 val numValidEntries = distanceBetween(enqPtr, deqPtr) 872 val commitCnt = PopCount(io.commits.commitValid) 873 874 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 875 876 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 877 when (io.redirect.valid) { 878 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 879 } 880 881 882 /** 883 * States 884 * We put all the stage bits changes here. 885 886 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 887 * All states: (1) valid; (2) writebacked; (3) flagBkup 888 */ 889 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 890 891 // redirect logic writes 6 valid 892 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 893 val redirectTail = Reg(new RobPtr) 894 val redirectIdle :: redirectBusy :: Nil = Enum(2) 895 val redirectState = RegInit(redirectIdle) 896 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 897 when(redirectState === redirectBusy) { 898 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 899 redirectHeadVec zip invMask foreach { 900 case (redirectHead, inv) => when(inv) { 901 valid(redirectHead.value) := false.B 902 } 903 } 904 when(!invMask.last) { 905 redirectState := redirectIdle 906 } 907 } 908 when(io.redirect.valid) { 909 redirectState := redirectBusy 910 when(redirectState === redirectIdle) { 911 redirectTail := enqPtr 912 } 913 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 914 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 915 } 916 } 917 // enqueue logic writes 6 valid 918 for (i <- 0 until RenameWidth) { 919 when (canEnqueue(i) && !io.redirect.valid) { 920 valid(allocatePtrVec(i).value) := true.B 921 } 922 } 923 // dequeue logic writes 6 valid 924 for (i <- 0 until CommitWidth) { 925 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 926 when (commitValid) { 927 valid(commitReadAddr(i)) := false.B 928 } 929 } 930 931 // debug_inst update 932 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 933 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 934 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 935 } 936 for (i <- 0 until exuParameters.LduCnt) { 937 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 938 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 939 } 940 941 // status field: writebacked 942 // enqueue logic set 6 writebacked to false 943 for (i <- 0 until RenameWidth) { 944 when (canEnqueue(i)) { 945 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 946 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 947 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 948 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 949 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 950 store_data_writebacked(allocatePtrVec(i).value) := !isStu 951 } 952 } 953 when (exceptionGen.io.out.valid) { 954 val wbIdx = exceptionGen.io.out.bits.robIdx.value 955 writebacked(wbIdx) := true.B 956 store_data_writebacked(wbIdx) := true.B 957 } 958 // writeback logic set numWbPorts writebacked to true 959 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 960 when (wb.valid) { 961 val wbIdx = wb.bits.uop.robIdx.value 962 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 963 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 964 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 965 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 966 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 967 writebacked(wbIdx) := !block_wb 968 } 969 } 970 // store data writeback logic mark store as data_writebacked 971 for (wb <- stdWriteback) { 972 when(RegNext(wb.valid)) { 973 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 974 } 975 } 976 977 // flagBkup 978 // enqueue logic set 6 flagBkup at most 979 for (i <- 0 until RenameWidth) { 980 when (canEnqueue(i)) { 981 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 982 } 983 } 984 985 // interrupt_safe 986 for (i <- 0 until RenameWidth) { 987 // We RegNext the updates for better timing. 988 // Note that instructions won't change the system's states in this cycle. 989 when (RegNext(canEnqueue(i))) { 990 // For now, we allow non-load-store instructions to trigger interrupts 991 // For MMIO instructions, they should not trigger interrupts since they may 992 // be sent to lower level before it writes back. 993 // However, we cannot determine whether a load/store instruction is MMIO. 994 // Thus, we don't allow load/store instructions to trigger an interrupt. 995 // TODO: support non-MMIO load-store instructions to trigger interrupts 996 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 997 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 998 } 999 } 1000 1001 /** 1002 * read and write of data modules 1003 */ 1004 val commitReadAddr_next = Mux(state_next === s_idle, 1005 VecInit(deqPtrVec_next.map(_.value)), 1006 VecInit(walkPtrVec_next.map(_.value)) 1007 ) 1008 // NOTE: dispatch info will record the uop of inst 1009 dispatchData.io.wen := canEnqueue 1010 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1011 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1012 wdata.ldest := req.ctrl.ldest 1013 wdata.rfWen := req.ctrl.rfWen 1014 wdata.fpWen := req.ctrl.fpWen 1015 wdata.wflags := req.ctrl.fpu.wflags 1016 wdata.commitType := req.ctrl.commitType 1017 wdata.pdest := req.pdest 1018 wdata.ftqIdx := req.cf.ftqPtr 1019 wdata.ftqOffset := req.cf.ftqOffset 1020 wdata.isMove := req.eliminatedMove 1021 wdata.isRVC := req.cf.pd.isRVC 1022 wdata.pc := req.cf.pc 1023 } 1024 dispatchData.io.raddr := commitReadAddr_next 1025 1026 exceptionGen.io.redirect <> io.redirect 1027 exceptionGen.io.flush := io.flushOut.valid 1028 for (i <- 0 until RenameWidth) { 1029 exceptionGen.io.enq(i).valid := canEnqueue(i) 1030 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1031 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1032 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1033 exceptionGen.io.enq(i).bits.replayInst := false.B 1034 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1035 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1036 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1037 exceptionGen.io.enq(i).bits.trigger.clear() 1038 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1039 } 1040 1041 println(s"ExceptionGen:") 1042 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1043 require(exceptionCases.length == exceptionGen.io.wb.length) 1044 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1045 exc_wb.valid := wb.valid 1046 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1047 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1048 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1049 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1050 exc_wb.bits.singleStep := false.B 1051 exc_wb.bits.crossPageIPFFix := false.B 1052 // TODO: make trigger configurable 1053 exc_wb.bits.trigger.clear() 1054 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1055 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1056 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1057 s"replayInst ${configs.exists(_.replayInst)}") 1058 } 1059 1060 val fflags_wb = fflagsPorts.map(_._2) 1061 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1062 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 1063 ) 1064 for(i <- fflags_wb.indices){ 1065 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 1066 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 1067 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 1068 } 1069 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1070 fflagsDataRead := fflagsDataModule.io.rdata 1071 1072 val instrCntReg = RegInit(0.U(64.W)) 1073 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1074 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1075 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1076 val instrCnt = instrCntReg + retireCounter 1077 instrCntReg := instrCnt 1078 io.csr.perfinfo.retiredInstr := retireCounter 1079 io.robFull := !allowEnqueue 1080 io.headNotReady := commit_v.head && !commit_w.head 1081 1082 /** 1083 * debug info 1084 */ 1085 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1086 XSDebug("") 1087 for(i <- 0 until RobSize){ 1088 XSDebug(false, !valid(i), "-") 1089 XSDebug(false, valid(i) && writebacked(i), "w") 1090 XSDebug(false, valid(i) && !writebacked(i), "v") 1091 } 1092 XSDebug(false, true.B, "\n") 1093 1094 for(i <- 0 until RobSize) { 1095 if(i % 4 == 0) XSDebug("") 1096 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1097 XSDebug(false, !valid(i), "- ") 1098 XSDebug(false, valid(i) && writebacked(i), "w ") 1099 XSDebug(false, valid(i) && !writebacked(i), "v ") 1100 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1101 } 1102 1103 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1104 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1105 1106 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1107 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1108 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1109 XSPerfAccumulate("clock_cycle", 1.U) 1110 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1111 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1112 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1113 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1114 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1115 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1116 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1117 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1118 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1119 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1120 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1121 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1122 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1123 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1124 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1125 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1126 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1127 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1128 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1129 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1130 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1131 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1132 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1133 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1134 XSPerfAccumulate("walkCycle", state === s_walk) 1135 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1136 val deqUopCommitType = io.commits.info(0).commitType 1137 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1138 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1139 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1140 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1141 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1142 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1143 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1144 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1145 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1146 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1147 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1148 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1149 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1150 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1151 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1152 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1153 } 1154 for (fuType <- FuType.functionNameMap.keys) { 1155 val fuName = FuType.functionNameMap(fuType) 1156 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1157 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1158 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1159 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1160 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1161 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1162 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1163 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1164 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1165 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1166 if (fuType == FuType.fmac.litValue) { 1167 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1168 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1169 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1170 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1171 } 1172 } 1173 1174 // top-down info 1175 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1176 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1177 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1178 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1179 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1180 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1181 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1182 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1183 1184 // rolling 1185 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1186 1187 /** 1188 * DataBase info: 1189 * log trigger is at writeback valid 1190 * */ 1191 if(!env.FPGAPlatform){ 1192 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1193 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1194 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1195 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1196 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1197 for (wb <- exuWriteback) { 1198 when(wb.valid) { 1199 val debug_instData = Wire(new InstInfoEntry) 1200 val idx = wb.bits.uop.robIdx.value 1201 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1202 debug_instData.robIdx := idx 1203 debug_instData.instType := wb.bits.uop.ctrl.fuType 1204 debug_instData.ivaddr := wb.bits.uop.cf.pc 1205 debug_instData.dvaddr := wb.bits.debug.vaddr 1206 debug_instData.dpaddr := wb.bits.debug.paddr 1207 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1208 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1209 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1210 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1211 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1212 debug_instData.lsInfo := debug_lsInfo(idx) 1213 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1214 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1215 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1216 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1217 debug_instTable.log( 1218 data = debug_instData, 1219 en = wb.valid, 1220 site = instSiteName, 1221 clock = clock, 1222 reset = reset 1223 ) 1224 } 1225 } 1226 1227 // log when committing 1228 val load_debug_table = ChiselDB.createTable("LoadDebugTable" + p(XSCoreParamsKey).HartId.toString, new LoadInfoEntry, basicDB = false) 1229 for (i <- 0 until CommitWidth) { 1230 val log_enable = io.commits.commitValid(i) && io.commits.isCommit && (io.commits.info(i).commitType === CommitType.LOAD) 1231 val commit_index = deqPtrVec(i).value 1232 val load_debug_data = Wire(new LoadInfoEntry) 1233 1234 load_debug_data.pc := io.commits.info(i).pc 1235 load_debug_data.vaddr := debug_lsTopdownInfo(commit_index).s1.vaddr_bits 1236 load_debug_data.paddr := debug_lsTopdownInfo(commit_index).s2.paddr_bits 1237 load_debug_data.cacheMiss := debug_lsTopdownInfo(commit_index).s2.first_real_miss 1238 load_debug_data.tlbQueryLatency := tlbLatency(i) 1239 load_debug_data.exeLatency := executeLatency(i) 1240 1241 1242 load_debug_table.log( 1243 data = load_debug_data, 1244 en = log_enable, 1245 site = "LoadDebugTable", 1246 clock = clock, 1247 reset = reset 1248 ) 1249 } 1250 } 1251 1252 1253 //difftest signals 1254 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1255 1256 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1257 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1258 1259 for(i <- 0 until CommitWidth) { 1260 val idx = deqPtrVec(i).value 1261 wdata(i) := debug_exuData(idx) 1262 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1263 } 1264 1265 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1266 // These are the structures used by difftest only and should be optimized after synthesis. 1267 val dt_eliminatedMove = Mem(RobSize, Bool()) 1268 val dt_isRVC = Mem(RobSize, Bool()) 1269 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1270 for (i <- 0 until RenameWidth) { 1271 when (canEnqueue(i)) { 1272 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1273 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1274 } 1275 } 1276 for (wb <- exuWriteback) { 1277 when (wb.valid) { 1278 val wbIdx = wb.bits.uop.robIdx.value 1279 dt_exuDebug(wbIdx) := wb.bits.debug 1280 } 1281 } 1282 for (i <- 0 until CommitWidth) { 1283 val commitInfo = io.commits.info(i) 1284 val ptr = deqPtrVec(i).value 1285 val exuOut = dt_exuDebug(ptr) 1286 val eliminatedMove = dt_eliminatedMove(ptr) 1287 val isRVC = dt_isRVC(ptr) 1288 1289 val difftest = DifftestModule(new DiffInstrCommit(NRPhyRegs), delay = 3, dontCare = true) 1290 difftest.coreid := io.hartId 1291 difftest.index := i.U 1292 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1293 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1294 difftest.isRVC := isRVC 1295 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1296 difftest.fpwen := io.commits.commitValid(i) && commitInfo.fpWen 1297 difftest.wpdest := commitInfo.pdest 1298 difftest.wdest := commitInfo.ldest 1299 difftest.nFused := Mux(CommitType.isFused(commitInfo.commitType), 1.U, 0.U) 1300 1301 if (env.EnableDifftest) { 1302 val uop = commitDebugUop(i) 1303 difftest.pc := SignExt(uop.cf.pc, XLEN) 1304 difftest.instr := uop.cf.instr 1305 difftest.robIdx := ZeroExt(ptr, 10) 1306 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1307 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1308 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1309 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1310 } 1311 } 1312 } 1313 1314 if (env.EnableDifftest) { 1315 for (i <- 0 until CommitWidth) { 1316 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1317 difftest.coreid := io.hartId 1318 difftest.index := i.U 1319 1320 val ptr = deqPtrVec(i).value 1321 val uop = commitDebugUop(i) 1322 val exuOut = debug_exuDebug(ptr) 1323 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1324 difftest.paddr := exuOut.paddr 1325 difftest.opType := uop.ctrl.fuOpType 1326 difftest.fuType := uop.ctrl.fuType 1327 } 1328 } 1329 1330 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1331 val dt_isXSTrap = Mem(RobSize, Bool()) 1332 for (i <- 0 until RenameWidth) { 1333 when (canEnqueue(i)) { 1334 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1335 } 1336 } 1337 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1338 io.commits.isCommit && v && dt_isXSTrap(d.value) 1339 } 1340 val hitTrap = trapVec.reduce(_||_) 1341 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1342 difftest.coreid := io.hartId 1343 difftest.hasTrap := hitTrap 1344 difftest.cycleCnt := timer 1345 difftest.instrCnt := instrCnt 1346 difftest.hasWFI := hasWFI 1347 1348 if (env.EnableDifftest) { 1349 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1350 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1351 difftest.code := trapCode 1352 difftest.pc := trapPC 1353 } 1354 } 1355 1356 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1357 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1358 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1359 val commitLoadVec = VecInit(commitLoadValid) 1360 val commitBranchVec = VecInit(commitBranchValid) 1361 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1362 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1363 val perfEvents = Seq( 1364 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1365 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1366 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1367 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1368 ("rob_commitUop ", ifCommit(commitCnt) ), 1369 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1370 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1371 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1372 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1373 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1374 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1375 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1376 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1377 ("rob_walkCycle ", (state === s_walk) ), 1378 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1379 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1380 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1381 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1382 ) 1383 generatePerfEvent() 1384} 1385