1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(3.W)) 63 val scommit = Output(UInt(3.W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo { 80 val crossPageIPFFix = Bool() 81} 82 83class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 84 val io = IO(new Bundle { 85 // for commits/flush 86 val state = Input(UInt(2.W)) 87 val deq_v = Vec(CommitWidth, Input(Bool())) 88 val deq_w = Vec(CommitWidth, Input(Bool())) 89 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 90 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 91 val intrBitSetReg = Input(Bool()) 92 val hasNoSpecExec = Input(Bool()) 93 val commitType = Input(CommitType()) 94 val misPredBlock = Input(Bool()) 95 val isReplaying = Input(Bool()) 96 // output: the CommitWidth deqPtr 97 val out = Vec(CommitWidth, Output(new RobPtr)) 98 val next_out = Vec(CommitWidth, Output(new RobPtr)) 99 }) 100 101 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 102 103 // for exceptions (flushPipe included) and interrupts: 104 // only consider the first instruction 105 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 106 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 107 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 108 109 // for normal commits: only to consider when there're no exceptions 110 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 111 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 112 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 113 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 114 // when io.intrBitSetReg or there're possible exceptions in these instructions, 115 // only one instruction is allowed to commit 116 val allowOnlyOne = commit_exception || io.intrBitSetReg 117 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 118 119 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 120 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 121 122 deqPtrVec := deqPtrVec_next 123 124 io.next_out := deqPtrVec_next 125 io.out := deqPtrVec 126 127 when (io.state === 0.U) { 128 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 129 } 130 131} 132 133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 134 val io = IO(new Bundle { 135 // for input redirect 136 val redirect = Input(Valid(new Redirect)) 137 // for enqueue 138 val allowEnqueue = Input(Bool()) 139 val hasBlockBackward = Input(Bool()) 140 val enq = Vec(RenameWidth, Input(Bool())) 141 val out = Output(new RobPtr) 142 }) 143 144 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 145 146 // enqueue 147 val canAccept = io.allowEnqueue && !io.hasBlockBackward 148 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 149 150 when (io.redirect.valid) { 151 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 152 }.otherwise { 153 enqPtr := enqPtr + dispatchNum 154 } 155 156 io.out := enqPtr 157 158} 159 160class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 161 // val valid = Bool() 162 val robIdx = new RobPtr 163 val exceptionVec = ExceptionVec() 164 val flushPipe = Bool() 165 val replayInst = Bool() // redirect to that inst itself 166 val singleStep = Bool() 167 168 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst 169 // only exceptions are allowed to writeback when enqueue 170 def can_writeback = exceptionVec.asUInt.orR || singleStep 171} 172 173class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 174 val io = IO(new Bundle { 175 val redirect = Input(Valid(new Redirect)) 176 val flush = Input(Bool()) 177 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 178 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 179 val out = ValidIO(new RobExceptionInfo) 180 val state = ValidIO(new RobExceptionInfo) 181 }) 182 183 val current = Reg(Valid(new RobExceptionInfo)) 184 185 // orR the exceptionVec 186 val lastCycleFlush = RegNext(io.flush) 187 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 188 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 189 190 // s0: compare wb(1),wb(2) and wb(3),wb(4) 191 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 192 val csr_wb_bits = io.wb(0).bits 193 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 194 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 195 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 196 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 197 198 // s1: compare last four and current flush 199 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 200 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 201 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 202 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 203 val s1_out_bits = RegNext(compare_bits) 204 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 205 206 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 207 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 208 209 // s2: compare the input exception with the current one 210 // priorities: 211 // (1) system reset 212 // (2) current is valid: flush, remain, merge, update 213 // (3) current is not valid: s1 or enq 214 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 215 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 216 when (reset.asBool) { 217 current.valid := false.B 218 }.elsewhen (current.valid) { 219 when (current_flush) { 220 current.valid := Mux(s1_flush, false.B, s1_out_valid) 221 } 222 when (s1_out_valid && !s1_flush) { 223 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 224 current.bits := s1_out_bits 225 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 226 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 227 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 228 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 229 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 230 } 231 } 232 }.elsewhen (s1_out_valid && !s1_flush) { 233 current.valid := true.B 234 current.bits := s1_out_bits 235 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 236 current.valid := true.B 237 current.bits := enq_bits 238 } 239 240 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 241 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 242 io.state := current 243 244} 245 246class RobFlushInfo(implicit p: Parameters) extends XSBundle { 247 val ftqIdx = new FtqPtr 248 val robIdx = new RobPtr 249 val ftqOffset = UInt(log2Up(PredictWidth).W) 250 val replayInst = Bool() 251} 252 253class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 254 val io = IO(new Bundle() { 255 val redirect = Input(Valid(new Redirect)) 256 val enq = new RobEnqIO 257 val flushOut = ValidIO(new Redirect) 258 val exception = ValidIO(new ExceptionInfo) 259 // exu + brq 260 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 261 val commits = new RobCommitIO 262 val lsq = new RobLsqIO 263 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 264 val robDeqPtr = Output(new RobPtr) 265 val csr = new RobCSRIO 266 val robFull = Output(Bool()) 267 }) 268 269 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 270 271 // instvalid field 272 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 273 val valid = Mem(RobSize, Bool()) 274 // writeback status 275 // val writebacked = Reg(Vec(RobSize, Bool())) 276 val writebacked = Mem(RobSize, Bool()) 277 val store_data_writebacked = Mem(RobSize, Bool()) 278 // data for redirect, exception, etc. 279 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 280 val flagBkup = Mem(RobSize, Bool()) 281 // record move elimination info for each instruction 282 val eliminatedMove = Mem(RobSize, Bool()) 283 284 // data for debug 285 // Warn: debug_* prefix should not exist in generated verilog. 286 val debug_microOp = Mem(RobSize, new MicroOp) 287 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 288 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 289 290 // pointers 291 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 292 val enqPtr = Wire(new RobPtr) 293 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 294 295 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 296 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 297 val allowEnqueue = RegInit(true.B) 298 299 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 300 val deqPtr = deqPtrVec(0) 301 val walkPtr = walkPtrVec(0) 302 303 val isEmpty = enqPtr === deqPtr 304 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 305 306 /** 307 * states of Rob 308 */ 309 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 310 val state = RegInit(s_idle) 311 312 /** 313 * Data Modules 314 * 315 * CommitDataModule: data from dispatch 316 * (1) read: commits/walk/exception 317 * (2) write: enqueue 318 * 319 * WritebackData: data from writeback 320 * (1) read: commits/walk/exception 321 * (2) write: write back from exe units 322 */ 323 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 324 val dispatchDataRead = dispatchData.io.rdata 325 326 val exceptionGen = Module(new ExceptionGen) 327 val exceptionDataRead = exceptionGen.io.state 328 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 329 330 io.robDeqPtr := deqPtr 331 332 /** 333 * Enqueue (from dispatch) 334 */ 335 // special cases 336 val hasBlockBackward = RegInit(false.B) 337 val hasNoSpecExec = RegInit(false.B) 338 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 339 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 340 when (isEmpty) { hasBlockBackward:= false.B } 341 // When any instruction commits, hasNoSpecExec should be set to false.B 342 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 343 344 io.enq.canAccept := allowEnqueue && !hasBlockBackward 345 io.enq.resp := enqPtrVec 346 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 347 val timer = GTimer() 348 for (i <- 0 until RenameWidth) { 349 // we don't check whether io.redirect is valid here since redirect has higher priority 350 when (canEnqueue(i)) { 351 // store uop in data module and debug_microOp Vec 352 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 353 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 354 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 355 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 356 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 357 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 358 when (io.enq.req(i).bits.ctrl.blockBackward) { 359 hasBlockBackward := true.B 360 } 361 when (io.enq.req(i).bits.ctrl.noSpecExec) { 362 hasNoSpecExec := true.B 363 } 364 } 365 } 366 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 367 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 368 369 // debug info for enqueue (dispatch) 370 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 371 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 372 373 374 /** 375 * Writeback (from execution units) 376 */ 377 for (i <- 0 until numWbPorts) { 378 when (io.exeWbResults(i).valid) { 379 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 380 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 381 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 382 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 383 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 384 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 385 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 386 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 387 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 388 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 389 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 390 391 val debug_Uop = debug_microOp(wbIdx) 392 XSInfo(true.B, 393 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 394 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 395 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 396 ) 397 } 398 } 399 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 400 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 401 402 403 /** 404 * RedirectOut: Interrupt and Exceptions 405 */ 406 val deqDispatchData = dispatchDataRead(0) 407 val debug_deqUop = debug_microOp(deqPtr.value) 408 409 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 410 // However, we cannot determine whether a load/store instruction is MMIO. 411 // Thus, we don't allow load/store instructions to trigger an interrupt. 412 val intrBitSetReg = RegNext(io.csr.intrBitSet) 413 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 414 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 415 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 416 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 417 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 418 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 419 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 420 421 // io.flushOut will trigger redirect at the next cycle. 422 // Block any redirect or commit at the next cycle. 423 val lastCycleFlush = RegNext(io.flushOut.valid) 424 425 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 426 io.flushOut.bits := DontCare 427 io.flushOut.bits.robIdx := deqPtr 428 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 429 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 430 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 431 io.flushOut.bits.interrupt := true.B 432 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 433 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 434 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 435 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 436 437 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 438 io.exception.valid := RegNext(exceptionHappen) 439 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 440 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 441 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 442 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 443 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(deqDispatchData.crossPageIPFFix, exceptionHappen) 444 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 445 446 XSDebug(io.flushOut.valid, 447 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 448 p"excp $exceptionEnable flushPipe $isFlushPipe " + 449 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 450 451 452 /** 453 * Commits (and walk) 454 * They share the same width. 455 */ 456 val walkCounter = Reg(UInt(log2Up(RobSize).W)) 457 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 458 val walkFinished = walkCounter <= CommitWidth.U 459 460 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 461 require(RenameWidth <= CommitWidth) 462 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 463 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 464 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 465 usedSpaceForMPR := io.enq.needAlloc 466 extraSpaceForMPR := dispatchData.io.wdata 467 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 468 } 469 470 // wiring to csr 471 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 472 val v = io.commits.valid(i) 473 val info = io.commits.info(i) 474 (v & info.wflags, v & info.fpWen) 475 }).unzip 476 val fflags = Wire(Valid(UInt(5.W))) 477 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 478 fflags.bits := wflags.zip(fflagsDataRead).map({ 479 case (w, f) => Mux(w, f, 0.U) 480 }).reduce(_|_) 481 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 482 483 // when mispredict branches writeback, stop commit in the next 2 cycles 484 // TODO: don't check all exu write back 485 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 486 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 487 ))).orR() 488 val misPredBlockCounter = Reg(UInt(3.W)) 489 misPredBlockCounter := Mux(misPredWb, 490 "b111".U, 491 misPredBlockCounter >> 1.U 492 ) 493 val misPredBlock = misPredBlockCounter(0) 494 495 io.commits.isWalk := state =/= s_idle 496 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 497 // store will be commited iff both sta & std have been writebacked 498 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 499 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 500 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 501 val allowOnlyOneCommit = commit_exception || intrBitSetReg 502 // for instructions that may block others, we don't allow them to commit 503 for (i <- 0 until CommitWidth) { 504 // defaults: state === s_idle and instructions commit 505 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 506 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 507 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 508 io.commits.info(i) := dispatchDataRead(i) 509 510 when (state === s_walk) { 511 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 512 }.elsewhen(state === s_extrawalk) { 513 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 514 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 515 } 516 517 XSInfo(state === s_idle && io.commits.valid(i), 518 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 519 debug_microOp(deqPtrVec(i).value).cf.pc, 520 io.commits.info(i).rfWen, 521 io.commits.info(i).ldest, 522 io.commits.info(i).pdest, 523 io.commits.info(i).old_pdest, 524 debug_exuData(deqPtrVec(i).value), 525 fflagsDataRead(i) 526 ) 527 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 528 debug_microOp(walkPtrVec(i).value).cf.pc, 529 io.commits.info(i).rfWen, 530 io.commits.info(i).ldest, 531 debug_exuData(walkPtrVec(i).value) 532 ) 533 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 534 io.commits.info(i).rfWen, 535 io.commits.info(i).ldest 536 ) 537 } 538 if (!env.FPGAPlatform) { 539 io.commits.info.map(info => dontTouch(info.pc)) 540 } 541 542 // sync fflags/dirty_fs to csr 543 io.csr.fflags := fflags 544 io.csr.dirty_fs := dirty_fs 545 546 // commit branch to brq 547 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 548 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 549 550 // commit load/store to lsq 551 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 552 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 553 io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)) 554 io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)) 555 io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) 556 io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value) 557 io.lsq.commit := !io.commits.isWalk && io.commits.valid(0) 558 559 /** 560 * state changes 561 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 562 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 563 * (3) walk: when walking comes to the end, switch to s_walk 564 * (4) s_extrawalk to s_walk 565 */ 566 val state_next = Mux(io.redirect.valid, 567 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 568 Mux(state === s_walk && walkFinished, 569 s_idle, 570 Mux(state === s_extrawalk, s_walk, state) 571 ) 572 ) 573 state := state_next 574 575 /** 576 * pointers and counters 577 */ 578 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 579 deqPtrGenModule.io.state := state 580 deqPtrGenModule.io.deq_v := commit_v 581 deqPtrGenModule.io.deq_w := commit_w 582 deqPtrGenModule.io.exception_state := exceptionDataRead 583 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 584 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 585 deqPtrGenModule.io.commitType := deqDispatchData.commitType 586 587 deqPtrGenModule.io.misPredBlock := misPredBlock 588 deqPtrGenModule.io.isReplaying := isReplaying 589 deqPtrVec := deqPtrGenModule.io.out 590 val deqPtrVec_next = deqPtrGenModule.io.next_out 591 592 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 593 enqPtrGenModule.io.redirect := io.redirect 594 enqPtrGenModule.io.allowEnqueue := allowEnqueue 595 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 596 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 597 enqPtr := enqPtrGenModule.io.out 598 599 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 600 // next walkPtrVec: 601 // (1) redirect occurs: update according to state 602 // (2) walk: move backwards 603 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 604 Mux(state === s_walk, 605 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 606 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 607 ), 608 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 609 ) 610 walkPtrVec := walkPtrVec_next 611 612 val lastCycleRedirect = RegNext(io.redirect.valid) 613 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 614 val commitCnt = PopCount(io.commits.valid) 615 validCounter := Mux(state === s_idle, 616 (validCounter - commitCnt) + dispatchNum, 617 trueValidCounter 618 ) 619 620 allowEnqueue := Mux(state === s_idle, 621 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 622 trueValidCounter <= (RobSize - RenameWidth).U 623 ) 624 625 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 626 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 627 when (io.redirect.valid) { 628 walkCounter := Mux(state === s_walk, 629 redirectWalkDistance + io.redirect.bits.flushItself() - commitCnt, 630 redirectWalkDistance + io.redirect.bits.flushItself() 631 ) 632 }.elsewhen (state === s_walk) { 633 walkCounter := walkCounter - commitCnt 634 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 635 } 636 637 638 /** 639 * States 640 * We put all the stage bits changes here. 641 642 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 643 * All states: (1) valid; (2) writebacked; (3) flagBkup 644 */ 645 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 646 647 // enqueue logic writes 6 valid 648 for (i <- 0 until RenameWidth) { 649 when (canEnqueue(i) && !io.redirect.valid) { 650 valid(enqPtrVec(i).value) := true.B 651 } 652 } 653 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 654 for (i <- 0 until CommitWidth) { 655 when (io.commits.valid(i) && state =/= s_extrawalk) { 656 valid(commitReadAddr(i)) := false.B 657 } 658 } 659 // reset: when exception, reset all valid to false 660 when (reset.asBool) { 661 for (i <- 0 until RobSize) { 662 valid(i) := false.B 663 } 664 } 665 666 // status field: writebacked 667 // enqueue logic set 6 writebacked to false 668 for (i <- 0 until RenameWidth) { 669 when (canEnqueue(i)) { 670 eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 671 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 672 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 673 store_data_writebacked(enqPtrVec(i).value) := !isStu 674 } 675 } 676 when (exceptionGen.io.out.valid) { 677 val wbIdx = exceptionGen.io.out.bits.robIdx.value 678 writebacked(wbIdx) := true.B 679 store_data_writebacked(wbIdx) := true.B 680 } 681 // writeback logic set numWbPorts writebacked to true 682 for (i <- 0 until numWbPorts) { 683 when (io.exeWbResults(i).valid) { 684 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 685 val block_wb = 686 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 687 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 688 io.exeWbResults(i).bits.uop.ctrl.replayInst 689 writebacked(wbIdx) := !block_wb 690 } 691 } 692 // store data writeback logic mark store as data_writebacked 693 for (i <- 0 until StorePipelineWidth) { 694 when(io.lsq.storeDataRobWb(i).valid) { 695 store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B 696 } 697 } 698 699 // flagBkup 700 // enqueue logic set 6 flagBkup at most 701 for (i <- 0 until RenameWidth) { 702 when (canEnqueue(i)) { 703 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 704 } 705 } 706 707 708 /** 709 * read and write of data modules 710 */ 711 val commitReadAddr_next = Mux(state_next === s_idle, 712 VecInit(deqPtrVec_next.map(_.value)), 713 VecInit(walkPtrVec_next.map(_.value)) 714 ) 715 dispatchData.io.wen := canEnqueue 716 dispatchData.io.waddr := enqPtrVec.map(_.value) 717 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 718 wdata.ldest := req.ctrl.ldest 719 wdata.rfWen := req.ctrl.rfWen 720 wdata.fpWen := req.ctrl.fpWen 721 wdata.wflags := req.ctrl.fpu.wflags 722 wdata.commitType := req.ctrl.commitType 723 wdata.eliminatedMove := req.eliminatedMove 724 wdata.pdest := req.pdest 725 wdata.old_pdest := req.old_pdest 726 wdata.ftqIdx := req.cf.ftqPtr 727 wdata.ftqOffset := req.cf.ftqOffset 728 wdata.pc := req.cf.pc 729 wdata.crossPageIPFFix := req.cf.crossPageIPFFix 730 wdata.isFused := req.ctrl.isFused 731 // wdata.exceptionVec := req.cf.exceptionVec 732 } 733 dispatchData.io.raddr := commitReadAddr_next 734 735 exceptionGen.io.redirect <> io.redirect 736 exceptionGen.io.flush := io.flushOut.valid 737 for (i <- 0 until RenameWidth) { 738 exceptionGen.io.enq(i).valid := canEnqueue(i) 739 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 740 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 741 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 742 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 743 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 744 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 745 } 746 747 // TODO: don't hard code these idxes 748 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 749 // CSR is after Alu and Load 750 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 751 def atomic_wb_idx = exuParameters.AluCnt // first port for load 752 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 753 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 754 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 755 all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) } 756 def connect_exception(index: Int, wb_index: Int) = { 757 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 758 // A temporary fix for float load writeback 759 // TODO: let int/fp load use the same two wb ports 760 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 761 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 762 exceptionGen.io.wb(index).valid := true.B 763 } 764 } 765 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 766 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 767 else if (wb_index == atomic_wb_idx) selectAtomics _ 768 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 769 else { 770 assert(store_wb_idxes.contains(wb_index)) 771 selectStore _ 772 } 773 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 774 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 775 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 776 exceptionGen.io.wb(index).bits.singleStep := false.B 777 } 778 779 // 4 fmac + 2 fmisc + 1 i2f 780 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 781 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 782 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 783 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 784 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 785 }).map(_._1) 786 val fflagsDataModule = Module(new SyncDataModuleTemplate( 787 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 788 ) 789 for(i <- fflags_wb.indices){ 790 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 791 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 792 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 793 } 794 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 795 fflagsDataRead := fflagsDataModule.io.rdata 796 797 798 val instrCnt = RegInit(0.U(64.W)) 799 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && i.isFused =/= 0.U }) 800 val trueCommitCnt = commitCnt +& fuseCommitCnt 801 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 802 instrCnt := instrCnt + retireCounter 803 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 804 io.robFull := !allowEnqueue 805 806 /** 807 * debug info 808 */ 809 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 810 XSDebug("") 811 for(i <- 0 until RobSize){ 812 XSDebug(false, !valid(i), "-") 813 XSDebug(false, valid(i) && writebacked(i), "w") 814 XSDebug(false, valid(i) && !writebacked(i), "v") 815 } 816 XSDebug(false, true.B, "\n") 817 818 for(i <- 0 until RobSize) { 819 if(i % 4 == 0) XSDebug("") 820 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 821 XSDebug(false, !valid(i), "- ") 822 XSDebug(false, valid(i) && writebacked(i), "w ") 823 XSDebug(false, valid(i) && !writebacked(i), "v ") 824 if(i % 4 == 3) XSDebug(false, true.B, "\n") 825 } 826 827 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 828 829 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 830 XSPerfAccumulate("clock_cycle", 1.U) 831 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 832 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 833 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 834 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 835 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 836 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 837 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 838 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 839 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 840 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 841 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 842 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 843 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 844 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 845 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 846 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 847 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 848 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 849 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 850 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 851 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 852 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 853 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 854 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 855 val deqUopCommitType = io.commits.info(0).commitType 856 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 857 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 858 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 859 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 860 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 861 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 862 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 863 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 864 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 865 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 866 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 867 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 868 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 869 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 870 } 871 for (fuType <- FuType.functionNameMap.keys) { 872 val fuName = FuType.functionNameMap(fuType) 873 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 874 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 875 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 876 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 877 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 878 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 879 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 880 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 881 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 882 if (fuType == FuType.fmac.litValue()) { 883 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 884 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 885 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 886 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 887 } 888 } 889 890 891 //difftest signals 892 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 893 894 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 895 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 896 val trapVec = Wire(Vec(CommitWidth, Bool())) 897 for(i <- 0 until CommitWidth) { 898 val idx = deqPtrVec(i).value 899 wdata(i) := debug_exuData(idx) 900 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 901 trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap 902 } 903 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 904 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 905 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 906 907 val hitTrap = trapVec.reduce(_||_) 908 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 909 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 910 911 if (!env.FPGAPlatform) { 912 for (i <- 0 until CommitWidth) { 913 val difftest = Module(new DifftestInstrCommit) 914 difftest.io.clock := clock 915 difftest.io.coreid := hardId.U 916 difftest.io.index := i.U 917 918 val ptr = deqPtrVec(i).value 919 val uop = commitDebugUop(i) 920 val exuOut = debug_exuDebug(ptr) 921 val exuData = debug_exuData(ptr) 922 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 923 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 924 difftest.io.instr := RegNext(uop.cf.instr) 925 difftest.io.special := RegNext(uop.ctrl.isFused =/= 0.U) 926 // when committing an eliminated move instruction, 927 // we must make sure that skip is properly set to false (output from EXU is random value) 928 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 929 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 930 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 931 uop.ctrl.fuType === FuType.mou && 932 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 933 difftest.io.wen := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U) 934 difftest.io.wdata := RegNext(exuData) 935 difftest.io.wdest := RegNext(uop.ctrl.ldest) 936 937 // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n") 938 939 // runahead commit hint 940 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 941 runahead_commit.io.clock := clock 942 runahead_commit.io.coreid := hardId.U 943 runahead_commit.io.index := i.U 944 runahead_commit.io.valid := difftest.io.valid && 945 (commitBranchValid(i) || commitIsStore(i)) 946 // TODO: is branch or store 947 runahead_commit.io.pc := difftest.io.pc 948 } 949 } 950 951 if (!env.FPGAPlatform) { 952 for (i <- 0 until CommitWidth) { 953 val difftest = Module(new DifftestLoadEvent) 954 difftest.io.clock := clock 955 difftest.io.coreid := hardId.U 956 difftest.io.index := i.U 957 958 val ptr = deqPtrVec(i).value 959 val uop = commitDebugUop(i) 960 val exuOut = debug_exuDebug(ptr) 961 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 962 difftest.io.paddr := RegNext(exuOut.paddr) 963 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 964 difftest.io.fuType := RegNext(uop.ctrl.fuType) 965 } 966 } 967 968 if (!env.FPGAPlatform) { 969 val difftest = Module(new DifftestTrapEvent) 970 difftest.io.clock := clock 971 difftest.io.coreid := hardId.U 972 difftest.io.valid := hitTrap 973 difftest.io.code := trapCode 974 difftest.io.pc := trapPC 975 difftest.io.cycleCnt := timer 976 difftest.io.instrCnt := instrCnt 977 } 978} 979