xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision f4b2089a918d093dcd57da84f0b8b6319ef987f9)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect]): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(3.W))
63  val scommit = Output(UInt(3.W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {
80  val crossPageIPFFix = Bool()
81}
82
83class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
84  val io = IO(new Bundle {
85    // for commits/flush
86    val state = Input(UInt(2.W))
87    val deq_v = Vec(CommitWidth, Input(Bool()))
88    val deq_w = Vec(CommitWidth, Input(Bool()))
89    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
90    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
91    val intrBitSetReg = Input(Bool())
92    val hasNoSpecExec = Input(Bool())
93    val commitType = Input(CommitType())
94    val misPredBlock = Input(Bool())
95    val isReplaying = Input(Bool())
96    // output: the CommitWidth deqPtr
97    val out = Vec(CommitWidth, Output(new RobPtr))
98    val next_out = Vec(CommitWidth, Output(new RobPtr))
99  })
100
101  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
102
103  // for exceptions (flushPipe included) and interrupts:
104  // only consider the first instruction
105  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
106  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
107  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
108
109  // for normal commits: only to consider when there're no exceptions
110  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
111  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
112  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
113  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
114  // when io.intrBitSetReg or there're possible exceptions in these instructions,
115  // only one instruction is allowed to commit
116  val allowOnlyOne = commit_exception || io.intrBitSetReg
117  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
118
119  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
120  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
121
122  deqPtrVec := deqPtrVec_next
123
124  io.next_out := deqPtrVec_next
125  io.out      := deqPtrVec
126
127  when (io.state === 0.U) {
128    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
129  }
130
131}
132
133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
134  val io = IO(new Bundle {
135    // for input redirect
136    val redirect = Input(Valid(new Redirect))
137    // for enqueue
138    val allowEnqueue = Input(Bool())
139    val hasBlockBackward = Input(Bool())
140    val enq = Vec(RenameWidth, Input(Bool()))
141    val out = Output(new RobPtr)
142  })
143
144  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
145
146  // enqueue
147  val canAccept = io.allowEnqueue && !io.hasBlockBackward
148  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
149
150  when (io.redirect.valid) {
151    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
152  }.otherwise {
153    enqPtr := enqPtr + dispatchNum
154  }
155
156  io.out := enqPtr
157
158}
159
160class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
161  // val valid = Bool()
162  val robIdx = new RobPtr
163  val exceptionVec = ExceptionVec()
164  val flushPipe = Bool()
165  val replayInst = Bool() // redirect to that inst itself
166  val singleStep = Bool()
167
168  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst
169  // only exceptions are allowed to writeback when enqueue
170  def can_writeback = exceptionVec.asUInt.orR || singleStep
171}
172
173class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
174  val io = IO(new Bundle {
175    val redirect = Input(Valid(new Redirect))
176    val flush = Input(Bool())
177    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
178    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
179    val out = ValidIO(new RobExceptionInfo)
180    val state = ValidIO(new RobExceptionInfo)
181  })
182
183  val current = Reg(Valid(new RobExceptionInfo))
184
185  // orR the exceptionVec
186  val lastCycleFlush = RegNext(io.flush)
187  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
188  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
189
190  // s0: compare wb(1),wb(2) and wb(3),wb(4)
191  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
192  val csr_wb_bits = io.wb(0).bits
193  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
194  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
195  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
196  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
197
198  // s1: compare last four and current flush
199  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
200  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
201  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
202  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
203  val s1_out_bits = RegNext(compare_bits)
204  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
205
206  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
207  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
208
209  // s2: compare the input exception with the current one
210  // priorities:
211  // (1) system reset
212  // (2) current is valid: flush, remain, merge, update
213  // (3) current is not valid: s1 or enq
214  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
215  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
216  when (reset.asBool) {
217    current.valid := false.B
218  }.elsewhen (current.valid) {
219    when (current_flush) {
220      current.valid := Mux(s1_flush, false.B, s1_out_valid)
221    }
222    when (s1_out_valid && !s1_flush) {
223      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
224        current.bits := s1_out_bits
225      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
226        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
227        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
228        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
229        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
230      }
231    }
232  }.elsewhen (s1_out_valid && !s1_flush) {
233    current.valid := true.B
234    current.bits := s1_out_bits
235  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
236    current.valid := true.B
237    current.bits := enq_bits
238  }
239
240  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
241  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
242  io.state := current
243
244}
245
246class RobFlushInfo(implicit p: Parameters) extends XSBundle {
247  val ftqIdx = new FtqPtr
248  val robIdx = new RobPtr
249  val ftqOffset = UInt(log2Up(PredictWidth).W)
250  val replayInst = Bool()
251}
252
253class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
254  val io = IO(new Bundle() {
255    val redirect = Input(Valid(new Redirect))
256    val enq = new RobEnqIO
257    val flushOut = ValidIO(new Redirect)
258    val exception = ValidIO(new ExceptionInfo)
259    // exu + brq
260    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
261    val commits = new RobCommitIO
262    val lsq = new RobLsqIO
263    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
264    val robDeqPtr = Output(new RobPtr)
265    val csr = new RobCSRIO
266    val robFull = Output(Bool())
267  })
268
269  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
270
271  // instvalid field
272  // val valid = RegInit(VecInit(List.fill(RobSize)(false.B)))
273  val valid = Mem(RobSize, Bool())
274  // writeback status
275  // val writebacked = Reg(Vec(RobSize, Bool()))
276  val writebacked = Mem(RobSize, Bool())
277  val store_data_writebacked = Mem(RobSize, Bool())
278  // data for redirect, exception, etc.
279  // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B)))
280  val flagBkup = Mem(RobSize, Bool())
281  // record move elimination info for each instruction
282  val eliminatedMove = Mem(RobSize, Bool())
283
284  // data for debug
285  // Warn: debug_* prefix should not exist in generated verilog.
286  val debug_microOp = Mem(RobSize, new MicroOp)
287  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
288  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
289
290  // pointers
291  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
292  val enqPtr = Wire(new RobPtr)
293  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
294
295  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
296  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
297  val allowEnqueue = RegInit(true.B)
298
299  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
300  val deqPtr = deqPtrVec(0)
301  val walkPtr = walkPtrVec(0)
302
303  val isEmpty = enqPtr === deqPtr
304  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
305
306  /**
307    * states of Rob
308    */
309  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
310  val state = RegInit(s_idle)
311
312  /**
313    * Data Modules
314    *
315    * CommitDataModule: data from dispatch
316    * (1) read: commits/walk/exception
317    * (2) write: enqueue
318    *
319    * WritebackData: data from writeback
320    * (1) read: commits/walk/exception
321    * (2) write: write back from exe units
322    */
323  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
324  val dispatchDataRead = dispatchData.io.rdata
325
326  val exceptionGen = Module(new ExceptionGen)
327  val exceptionDataRead = exceptionGen.io.state
328  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
329
330  io.robDeqPtr := deqPtr
331
332  /**
333    * Enqueue (from dispatch)
334    */
335  // special cases
336  val hasBlockBackward = RegInit(false.B)
337  val hasNoSpecExec = RegInit(false.B)
338  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
339  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
340  when (isEmpty) { hasBlockBackward:= false.B }
341  // When any instruction commits, hasNoSpecExec should be set to false.B
342  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
343
344  io.enq.canAccept := allowEnqueue && !hasBlockBackward
345  io.enq.resp      := enqPtrVec
346  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
347  val timer = GTimer()
348  for (i <- 0 until RenameWidth) {
349    // we don't check whether io.redirect is valid here since redirect has higher priority
350    when (canEnqueue(i)) {
351      // store uop in data module and debug_microOp Vec
352      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
353      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
354      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
355      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
356      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
357      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
358      when (io.enq.req(i).bits.ctrl.blockBackward) {
359        hasBlockBackward := true.B
360      }
361      when (io.enq.req(i).bits.ctrl.noSpecExec) {
362        hasNoSpecExec := true.B
363      }
364    }
365  }
366  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
367  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
368
369  // debug info for enqueue (dispatch)
370  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
371  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
372
373
374  /**
375    * Writeback (from execution units)
376    */
377  for (i <- 0 until numWbPorts) {
378    when (io.exeWbResults(i).valid) {
379      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
380      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
381      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
382      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
383      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
384      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
385      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
386      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
387      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
388      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
389      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
390
391      val debug_Uop = debug_microOp(wbIdx)
392      XSInfo(true.B,
393        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
394        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
395        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
396      )
397    }
398  }
399  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
400  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
401
402
403  /**
404    * RedirectOut: Interrupt and Exceptions
405    */
406  val deqDispatchData = dispatchDataRead(0)
407  val debug_deqUop = debug_microOp(deqPtr.value)
408
409  // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back.
410  // However, we cannot determine whether a load/store instruction is MMIO.
411  // Thus, we don't allow load/store instructions to trigger an interrupt.
412  val intrBitSetReg = RegNext(io.csr.intrBitSet)
413  val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType)
414  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
415  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
416  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
417  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
418  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
419  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
420
421  // io.flushOut will trigger redirect at the next cycle.
422  // Block any redirect or commit at the next cycle.
423  val lastCycleFlush = RegNext(io.flushOut.valid)
424
425  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
426  io.flushOut.bits := DontCare
427  io.flushOut.bits.robIdx := deqPtr
428  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
429  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
430  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter)
431  io.flushOut.bits.interrupt := true.B
432  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
433  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
434  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
435  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
436
437  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
438  io.exception.valid := RegNext(exceptionHappen)
439  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
440  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
441  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
442  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
443  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(deqDispatchData.crossPageIPFFix, exceptionHappen)
444  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
445
446  XSDebug(io.flushOut.valid,
447    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
448    p"excp $exceptionEnable flushPipe $isFlushPipe " +
449    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
450
451
452  /**
453    * Commits (and walk)
454    * They share the same width.
455    */
456  val walkCounter = Reg(UInt(log2Up(RobSize).W))
457  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
458  val walkFinished = walkCounter <= CommitWidth.U
459
460  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
461  require(RenameWidth <= CommitWidth)
462  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
463  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
464  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
465    usedSpaceForMPR := io.enq.needAlloc
466    extraSpaceForMPR := dispatchData.io.wdata
467    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
468  }
469
470  // wiring to csr
471  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
472    val v = io.commits.valid(i)
473    val info = io.commits.info(i)
474    (v & info.wflags, v & info.fpWen)
475  }).unzip
476  val fflags = Wire(Valid(UInt(5.W)))
477  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
478  fflags.bits := wflags.zip(fflagsDataRead).map({
479    case (w, f) => Mux(w, f, 0.U)
480  }).reduce(_|_)
481  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
482
483  // when mispredict branches writeback, stop commit in the next 2 cycles
484  // TODO: don't check all exu write back
485  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
486    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
487  ))).orR()
488  val misPredBlockCounter = Reg(UInt(3.W))
489  misPredBlockCounter := Mux(misPredWb,
490    "b111".U,
491    misPredBlockCounter >> 1.U
492  )
493  val misPredBlock = misPredBlockCounter(0)
494
495  io.commits.isWalk := state =/= s_idle
496  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
497  // store will be commited iff both sta & std have been writebacked
498  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
499  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
500  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
501  val allowOnlyOneCommit = commit_exception || intrBitSetReg
502  // for instructions that may block others, we don't allow them to commit
503  for (i <- 0 until CommitWidth) {
504    // defaults: state === s_idle and instructions commit
505    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
506    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
507    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
508    io.commits.info(i)  := dispatchDataRead(i)
509
510    when (state === s_walk) {
511      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
512    }.elsewhen(state === s_extrawalk) {
513      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
514      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
515    }
516
517    XSInfo(state === s_idle && io.commits.valid(i),
518      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
519      debug_microOp(deqPtrVec(i).value).cf.pc,
520      io.commits.info(i).rfWen,
521      io.commits.info(i).ldest,
522      io.commits.info(i).pdest,
523      io.commits.info(i).old_pdest,
524      debug_exuData(deqPtrVec(i).value),
525      fflagsDataRead(i)
526    )
527    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
528      debug_microOp(walkPtrVec(i).value).cf.pc,
529      io.commits.info(i).rfWen,
530      io.commits.info(i).ldest,
531      debug_exuData(walkPtrVec(i).value)
532    )
533    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
534      io.commits.info(i).rfWen,
535      io.commits.info(i).ldest
536    )
537  }
538  if (!env.FPGAPlatform) {
539    io.commits.info.map(info => dontTouch(info.pc))
540  }
541
542  // sync fflags/dirty_fs to csr
543  io.csr.fflags := fflags
544  io.csr.dirty_fs := dirty_fs
545
546  // commit branch to brq
547  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
548  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
549
550  // commit load/store to lsq
551  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
552  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
553  io.lsq.lcommit := Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))
554  io.lsq.scommit := Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))
555  io.lsq.pendingld := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)
556  io.lsq.pendingst := !io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)
557  io.lsq.commit := !io.commits.isWalk && io.commits.valid(0)
558
559  /**
560    * state changes
561    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
562    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
563    * (3) walk: when walking comes to the end, switch to s_walk
564    * (4) s_extrawalk to s_walk
565    */
566  val state_next = Mux(io.redirect.valid,
567    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
568    Mux(state === s_walk && walkFinished,
569      s_idle,
570      Mux(state === s_extrawalk, s_walk, state)
571    )
572  )
573  state := state_next
574
575  /**
576    * pointers and counters
577    */
578  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
579  deqPtrGenModule.io.state := state
580  deqPtrGenModule.io.deq_v := commit_v
581  deqPtrGenModule.io.deq_w := commit_w
582  deqPtrGenModule.io.exception_state := exceptionDataRead
583  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
584  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
585  deqPtrGenModule.io.commitType := deqDispatchData.commitType
586
587  deqPtrGenModule.io.misPredBlock := misPredBlock
588  deqPtrGenModule.io.isReplaying := isReplaying
589  deqPtrVec := deqPtrGenModule.io.out
590  val deqPtrVec_next = deqPtrGenModule.io.next_out
591
592  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
593  enqPtrGenModule.io.redirect := io.redirect
594  enqPtrGenModule.io.allowEnqueue := allowEnqueue
595  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
596  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
597  enqPtr := enqPtrGenModule.io.out
598
599  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
600  // next walkPtrVec:
601  // (1) redirect occurs: update according to state
602  // (2) walk: move backwards
603  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
604    Mux(state === s_walk,
605      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
606      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
607    ),
608    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
609  )
610  walkPtrVec := walkPtrVec_next
611
612  val lastCycleRedirect = RegNext(io.redirect.valid)
613  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
614  val commitCnt = PopCount(io.commits.valid)
615  validCounter := Mux(state === s_idle,
616    (validCounter - commitCnt) + dispatchNum,
617    trueValidCounter
618  )
619
620  allowEnqueue := Mux(state === s_idle,
621    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
622    trueValidCounter <= (RobSize - RenameWidth).U
623  )
624
625  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
626  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
627  when (io.redirect.valid) {
628    walkCounter := Mux(state === s_walk,
629      redirectWalkDistance + io.redirect.bits.flushItself() - commitCnt,
630      redirectWalkDistance + io.redirect.bits.flushItself()
631    )
632  }.elsewhen (state === s_walk) {
633    walkCounter := walkCounter - commitCnt
634    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
635  }
636
637
638  /**
639    * States
640    * We put all the stage bits changes here.
641
642    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
643    * All states: (1) valid; (2) writebacked; (3) flagBkup
644    */
645  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
646
647  // enqueue logic writes 6 valid
648  for (i <- 0 until RenameWidth) {
649    when (canEnqueue(i) && !io.redirect.valid) {
650      valid(enqPtrVec(i).value) := true.B
651    }
652  }
653  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
654  for (i <- 0 until CommitWidth) {
655    when (io.commits.valid(i) && state =/= s_extrawalk) {
656      valid(commitReadAddr(i)) := false.B
657    }
658  }
659  // reset: when exception, reset all valid to false
660  when (reset.asBool) {
661    for (i <- 0 until RobSize) {
662      valid(i) := false.B
663    }
664  }
665
666  // status field: writebacked
667  // enqueue logic set 6 writebacked to false
668  for (i <- 0 until RenameWidth) {
669    when (canEnqueue(i)) {
670      eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
671      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR
672      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
673      store_data_writebacked(enqPtrVec(i).value) := !isStu
674    }
675  }
676  when (exceptionGen.io.out.valid) {
677    val wbIdx = exceptionGen.io.out.bits.robIdx.value
678    writebacked(wbIdx) := true.B
679    store_data_writebacked(wbIdx) := true.B
680  }
681  // writeback logic set numWbPorts writebacked to true
682  for (i <- 0 until numWbPorts) {
683    when (io.exeWbResults(i).valid) {
684      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
685      val block_wb =
686        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
687        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
688        io.exeWbResults(i).bits.uop.ctrl.replayInst
689      writebacked(wbIdx) := !block_wb
690    }
691  }
692  // store data writeback logic mark store as data_writebacked
693  for (i <- 0 until StorePipelineWidth) {
694    when(io.lsq.storeDataRobWb(i).valid) {
695      store_data_writebacked(io.lsq.storeDataRobWb(i).bits.value) := true.B
696    }
697  }
698
699  // flagBkup
700  // enqueue logic set 6 flagBkup at most
701  for (i <- 0 until RenameWidth) {
702    when (canEnqueue(i)) {
703      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
704    }
705  }
706
707
708  /**
709    * read and write of data modules
710    */
711  val commitReadAddr_next = Mux(state_next === s_idle,
712    VecInit(deqPtrVec_next.map(_.value)),
713    VecInit(walkPtrVec_next.map(_.value))
714  )
715  dispatchData.io.wen := canEnqueue
716  dispatchData.io.waddr := enqPtrVec.map(_.value)
717  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
718    wdata.ldest := req.ctrl.ldest
719    wdata.rfWen := req.ctrl.rfWen
720    wdata.fpWen := req.ctrl.fpWen
721    wdata.wflags := req.ctrl.fpu.wflags
722    wdata.commitType := req.ctrl.commitType
723    wdata.eliminatedMove := req.eliminatedMove
724    wdata.pdest := req.pdest
725    wdata.old_pdest := req.old_pdest
726    wdata.ftqIdx := req.cf.ftqPtr
727    wdata.ftqOffset := req.cf.ftqOffset
728    wdata.pc := req.cf.pc
729    wdata.crossPageIPFFix := req.cf.crossPageIPFFix
730    wdata.isFused := req.ctrl.isFused
731    // wdata.exceptionVec := req.cf.exceptionVec
732  }
733  dispatchData.io.raddr := commitReadAddr_next
734
735  exceptionGen.io.redirect <> io.redirect
736  exceptionGen.io.flush := io.flushOut.valid
737  for (i <- 0 until RenameWidth) {
738    exceptionGen.io.enq(i).valid := canEnqueue(i)
739    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
740    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
741    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
742    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
743    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
744    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
745  }
746
747  // TODO: don't hard code these idxes
748  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
749  // CSR is after Alu and Load
750  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
751  def atomic_wb_idx = exuParameters.AluCnt // first port for load
752  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
753  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
754  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
755  all_exception_possibilities.zipWithIndex.map{ case (p, i) => connect_exception(i, p) }
756  def connect_exception(index: Int, wb_index: Int) = {
757    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
758    // A temporary fix for float load writeback
759    // TODO: let int/fp load use the same two wb ports
760    if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) {
761      when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) {
762        exceptionGen.io.wb(index).valid := true.B
763      }
764    }
765    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
766    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
767    else if (wb_index == atomic_wb_idx) selectAtomics _
768    else if (load_wb_idxes.contains(wb_index)) selectLoad _
769    else {
770      assert(store_wb_idxes.contains(wb_index))
771      selectStore _
772    }
773    exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
774    exceptionGen.io.wb(index).bits.flushPipe    := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
775    exceptionGen.io.wb(index).bits.replayInst   := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
776    exceptionGen.io.wb(index).bits.singleStep   := false.B
777  }
778
779  // 4 fmac + 2 fmisc + 1 i2f
780  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
781  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2)
782  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
783  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
784    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
785  }).map(_._1)
786  val fflagsDataModule = Module(new SyncDataModuleTemplate(
787    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
788  )
789  for(i <- fflags_wb.indices){
790    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
791    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
792    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
793  }
794  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
795  fflagsDataRead := fflagsDataModule.io.rdata
796
797
798  val instrCnt = RegInit(0.U(64.W))
799  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && i.isFused =/= 0.U })
800  val trueCommitCnt = commitCnt +& fuseCommitCnt
801  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
802  instrCnt := instrCnt + retireCounter
803  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
804  io.robFull := !allowEnqueue
805
806  /**
807    * debug info
808    */
809  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
810  XSDebug("")
811  for(i <- 0 until RobSize){
812    XSDebug(false, !valid(i), "-")
813    XSDebug(false, valid(i) && writebacked(i), "w")
814    XSDebug(false, valid(i) && !writebacked(i), "v")
815  }
816  XSDebug(false, true.B, "\n")
817
818  for(i <- 0 until RobSize) {
819    if(i % 4 == 0) XSDebug("")
820    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
821    XSDebug(false, !valid(i), "- ")
822    XSDebug(false, valid(i) && writebacked(i), "w ")
823    XSDebug(false, valid(i) && !writebacked(i), "v ")
824    if(i % 4 == 3) XSDebug(false, true.B, "\n")
825  }
826
827  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
828
829  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
830  XSPerfAccumulate("clock_cycle", 1.U)
831  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
832  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
833  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
834  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
835  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
836  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
837  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
838  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
839  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
840  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
841  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
842  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
843  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
844  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
845  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
846  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
847  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
848  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
849  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
850  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
851  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
852  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
853  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
854  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
855  val deqUopCommitType = io.commits.info(0).commitType
856  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
857  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
858  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
859  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
860  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
861  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
862  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
863  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
864  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
865  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
866  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
867  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
868  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
869    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
870  }
871  for (fuType <- FuType.functionNameMap.keys) {
872    val fuName = FuType.functionNameMap(fuType)
873    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
874    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
875    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
876    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
877    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
878    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
879    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
880    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
881    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
882    if (fuType == FuType.fmac.litValue()) {
883      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
884      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
885      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
886      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
887    }
888  }
889
890
891  //difftest signals
892  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
893
894  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
895  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
896  val trapVec = Wire(Vec(CommitWidth, Bool()))
897  for(i <- 0 until CommitWidth) {
898    val idx = deqPtrVec(i).value
899    wdata(i) := debug_exuData(idx)
900    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
901    trapVec(i) := io.commits.valid(i) && (state===s_idle) && commitDebugUop(i).ctrl.isXSTrap
902  }
903  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
904  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
905  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
906
907  val hitTrap = trapVec.reduce(_||_)
908  val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
909  val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
910
911  if (!env.FPGAPlatform) {
912    for (i <- 0 until CommitWidth) {
913      val difftest = Module(new DifftestInstrCommit)
914      difftest.io.clock    := clock
915      difftest.io.coreid   := hardId.U
916      difftest.io.index    := i.U
917
918      val ptr = deqPtrVec(i).value
919      val uop = commitDebugUop(i)
920      val exuOut = debug_exuDebug(ptr)
921      val exuData = debug_exuData(ptr)
922      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
923      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
924      difftest.io.instr    := RegNext(uop.cf.instr)
925      difftest.io.special  := RegNext(uop.ctrl.isFused =/= 0.U)
926      // when committing an eliminated move instruction,
927      // we must make sure that skip is properly set to false (output from EXU is random value)
928      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
929      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
930      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
931        uop.ctrl.fuType === FuType.mou &&
932        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
933      difftest.io.wen      := RegNext(io.commits.valid(i) && uop.ctrl.rfWen && uop.ctrl.ldest =/= 0.U)
934      difftest.io.wdata    := RegNext(exuData)
935      difftest.io.wdest    := RegNext(uop.ctrl.ldest)
936
937      // XSDebug(p"[difftest-instr-commit]valid:${difftest.io.valid},pc:${difftest.io.pc},instr:${difftest.io.instr},skip:${difftest.io.skip},isRVC:${difftest.io.isRVC},scFailed:${difftest.io.scFailed},wen:${difftest.io.wen},wdata:${difftest.io.wdata},wdest:${difftest.io.wdest}\n")
938
939      // runahead commit hint
940      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
941      runahead_commit.io.clock := clock
942      runahead_commit.io.coreid := hardId.U
943      runahead_commit.io.index := i.U
944      runahead_commit.io.valid := difftest.io.valid &&
945        (commitBranchValid(i) || commitIsStore(i))
946      // TODO: is branch or store
947      runahead_commit.io.pc    := difftest.io.pc
948    }
949  }
950
951  if (!env.FPGAPlatform) {
952    for (i <- 0 until CommitWidth) {
953      val difftest = Module(new DifftestLoadEvent)
954      difftest.io.clock  := clock
955      difftest.io.coreid := hardId.U
956      difftest.io.index  := i.U
957
958      val ptr = deqPtrVec(i).value
959      val uop = commitDebugUop(i)
960      val exuOut = debug_exuDebug(ptr)
961      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
962      difftest.io.paddr  := RegNext(exuOut.paddr)
963      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
964      difftest.io.fuType := RegNext(uop.ctrl.fuType)
965    }
966  }
967
968  if (!env.FPGAPlatform) {
969    val difftest = Module(new DifftestTrapEvent)
970    difftest.io.clock    := clock
971    difftest.io.coreid   := hardId.U
972    difftest.io.valid    := hitTrap
973    difftest.io.code     := trapCode
974    difftest.io.pc       := trapPC
975    difftest.io.cycleCnt := timer
976    difftest.io.instrCnt := instrCnt
977  }
978}
979